Skip to main content

Wavelet Methods in Data Mining

  • Chapter
  • First Online:
Data Mining and Knowledge Discovery Handbook

Summary

Recently there has been significant development in the use of wavelet methods in various Data Mining processes. This article presents general overview of their applications in Data Mining. It first presents a high-level data-mining framework in which the overall process is divided into smaller components. It reviews applications of wavelets for each component. It discusses the impact of wavelets on Data Mining research and outlines potential future research directions and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • F. Abramovich, T. Bailey, and T. Sapatinas. Wavelet analysis and its statistical applications. JRSSD, (48):1–30, 2000.

    Google Scholar 

  • P. Abry and V. Darryl. Wavelet analysis of long-range-dependent traffic. IEEE Transactions on Information Theory, 44(1):2–16, 1998.

    Article  MATH  Google Scholar 

  • C. C. Aggarwal. On effective classification of strings with wavelets. In Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and Data Mining, pages 163–172, 2002.

    Google Scholar 

  • A. Antoniadis. Wavelets in statistics: a review. J. It. Statist. Soc., 1999.

    Google Scholar 

  • S. Ardizzoni, I. Bartolini, and M. Patella. Windsurf: Region-based image retrieval using wavelets. In DEXA Workshop, pages 167–173, 1999.

    Google Scholar 

  • C. Brambilla, A. D. Ventura, I. Gagliardi, and R. Schettini. Multiresolution wavelet transform and supervised learning for content-based image retrieval. In Proceedings of the IEEE International Conference on Multimedia Computing and Systems, pages 9183– 9188, 1999.

    Google Scholar 

  • A. Bruce and H.-Y. Gao. Waveshrink with firm shrinkage. Statistica Sinica, (4):855–874, 1996.

    Google Scholar 

  • R.W. Buccigrossi and E. P. Simoncelli. Image compression via joint statistical characterization in the wavelet domain. In Proceedings ICASSP-97 (IEEE International Conference on Acoustics, Speech and Signal Processing), number 414, pages 1688–1701, 1997.

    Google Scholar 

  • J. P. Campbell. Speaker recognition: A tutorial. In Proceedings of the IEEE, volume 85, pages 1437–1461, Sept. 1997.

    Google Scholar 

  • V. Castelli, C. Li, J. Turek, and I. Kontoyiannis. Progressive classification in the compressed domain for large EOS satellite databases, April 1996.

    Google Scholar 

  • K. Chakrabarti, M. Garofalakis, R. Rastogi, and K. Shim. Approximate query processing using wavelets. VLDB Journal, 10(2-3):199–223, 2001.

    MATH  Google Scholar 

  • K. P. Chan and A. W.-C. Fu. Efficient time series matching by wavelets. In ICDE, pages 126–133, 1999.

    Google Scholar 

  • C. Chiann and P. A. Morettin. A wavelet analysis for time series. Journal of Nonparametric Statistics, 10(1):1–46, 1999.

    Article  MathSciNet  Google Scholar 

  • R. F. Cromp and W. J. Campbell. Data Mining of multidimensional remotely sensed images. In Proc. 2nd International Conference of Information and Knowledge Management,, pages 471–480, 1993.

    Google Scholar 

  • I. Daubechies. Ten Lectures on Wavelets. Capital City Press, Montpelier, Vermont, 1992.

    MATH  Google Scholar 

  • D. L. Donoho and I. M. Johnstone. Minimax estimation via wavelet shrinkage. Annals of Statistics, 26(3):879–921, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  • G. C. Feng, P. C. Yuen, and D. Q. Dai. Human face recognition using PCA on wavelet subband. SPIE Journal of Electronic Imaging, 9(2):226–233, 2000.

    Article  Google Scholar 

  • P. Flandrin. Wavelet analysis and synthesis of fractional Brownian motion. IEEE Transactions on Information Theory, 38(2):910–917, 1992.

    Article  MathSciNet  Google Scholar 

  • M. Garofalakis and P. B. Gibbons. Wavelet synopses with erro guarantee. In Proceedings of 2002 ACM SIGMOD, pages 476–487, 2002.

    Google Scholar 

  • M. W. Garrett and W. Willinger. Analysis, modeling and generation of self-similar VBR video traffic. In Proceedings of SIGCOM, pages 269–279, 1994.

    Google Scholar 

  • A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. Surfing wavelets on streams: One-pass summaries for approximate aggregate queries. In The VLDB Journal, pages 79–88, 2001.

    Google Scholar 

  • C. E. Jacobs, A. Finkelstein, and D. H. Salesin. Fast multiresolution image querying. Computer Graphics, 29:277–286, 1995.

    Google Scholar 

  • J.S.Vitter, M. Wang, and B. Iyer. Data cube approximation and histograms via wavelets. In Proc. of the 7th Intl. Conf. On Infomration and Knowledge Management, pages 96–104, 1998.

    Google Scholar 

  • H. Kargupta, B. Park, D. Hershbereger, and E. Johnson. Collective Data Mining: A new perspective toward distributed data mining. In Advances in Distributed Data Mining, pages 133–184. 2000.

    Google Scholar 

  • Q. Li, T. Li, and S. Zhu. Improving medical/biological data classification performance by wavelet pre-processing. In ICDM, pages 657–660, 2002.

    Google Scholar 

  • T. Li, Q. Li, S. Zhu, and M. Ogihara. A survey on wavelet applications in Data Mining. SIGKDD Explorations, 4(2):49–68, 2003.

    Article  Google Scholar 

  • T. Li, M. Ogihara, and Q. Li. A comparative study on content-based music genre classification. In Proceedings of 26th Annual ACM Conference on Research and Development in Information Retrieval (SIGIR 2003), pages 282–289, 2003.

    Google Scholar 

  • M. Luettgen, W. C. Karl, and A. S. Willsky. Multiscale representations of markov random fields. IEEE Trans. Signal Processing, 41:3377–3396, 1993.

    Article  MATH  Google Scholar 

  • S. Ma and C. Ji. Modeling heterogeneous network traffic in wavelet domain. IEEE/ACM Transactions on Networking, 9(5):634–649, 2001.

    Article  Google Scholar 

  • S. Mallat. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7):674–693, 1989.

    Article  MATH  Google Scholar 

  • M. K. Mandal, T. Aboulnasr, and S. Panchanathan. Fast wavelet histogram techniques for image indexing. Computer Vision and Image Understanding: CVIU, 75(1–2):99–110, 1999.

    Article  Google Scholar 

  • Y. Matias, J. S. Vitter, and M.Wang. Wavelet-based histograms for selectivity estimation. In ACM SIGMOD, pages 448–459. ACM Press, 1998.

    Google Scholar 

  • Y. Matias, J. S. Vitter, and M. Wang. Dynamic maintenance of wavelet-based histograms. In Proceedings of 26th International Conference on Very Large Data Bases, pages 101– 110, 2000.

    Google Scholar 

  • A. Mojsilovic and M. V. Popovic. Wavelet image extension for analysis and classification of infarcted myocardial tissue. IEEE Transactions on Biomedical Engineering, 44(9):856–866, 1997.

    Article  Google Scholar 

  • A. Natsev, R. Rastogi, and K. Shim. Walrus:a similarity retrieval algorithm for image databases. In Proceedings of ACM SIGMOD International Conference on Management of Data, pages 395–406. ACM Press, 1999.

    Google Scholar 

  • R. Polikar. The wavelet tutorial. Internet Resources:http://engineering.rowan.edu/ polikar/WAVELETS/WTtutorial.html.

  • V. Ribeiro, R. Riedi, M. Crouse, and R. Baraniuk. Simulation of nongaussian long-range-dependent traffic using wavelets. In Proc. ACM SIGMETRICS’99, pages 1–12, 1999.

    Google Scholar 

  • C. Shahabi, S. Chung, M. Safar, and G. Hajj. 2d TSA-tree: A wavelet-based approach to improve the efficiency of multi-level spatial Data Mining. In Statistical and Scientific Database Management, pages 59–68, 2001.

    Google Scholar 

  • C. Shahabi, X. Tian, and W. Zhao. TSA-tree: A wavelet-based approach to improve the efficiency of multi-level surprise and trend queries on time-series data. In Statistical and Scientific Database Management, pages 55–68, 2000.

    Google Scholar 

  • G. Sheikholeslami, S. Chatterjee, and A. Zhang. WaveCluster: A multiresolution clustering approach for very large spatial databases. In Proc. 24th Int. Conf. Very Large Data Bases, VLDB, pages 428–439, 1998.

    Google Scholar 

  • E. J. Stonllnitz, T. D. DeRose, and D. H. Salesin. Wavelets for computer graphics, theory and applications. Morgan Kaufman Publishers, San Francisco, CA, USA, 1996.

    Google Scholar 

  • Z. R. Struzik and A. Siebes. The haar wavelet transform in the time series similarity paradigm. In Proceedings of PKDD’99, pages 12–22, 1999.

    Google Scholar 

  • S. R. Subramanya and A. Youssef. Wavelet-based indexing of audio data in audio/multimedia databases. In IW-MMDBMS, pages 46–53, 1998.

    Google Scholar 

  • G. Tzanetakis and P. Cook. Musical genre classification of audio signals. IEEE Transactions on Speech and Audio Processing, 10(5):293–302, July 2002.

    Article  Google Scholar 

  • J. S. Vitter and M. Wang. Approximate computation of multidimensional aggregates of sparse data using wavelets. In Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, pages 193–204, 1999.

    Google Scholar 

  • J. Z. Wang, G. Wiederhold, and O. Firschein. System for screening objectionable images using daubechies’ wavelets and color histograms. In Interactive Distributed Multimedia Systems and Telecommunication Services, pages 20–30, 1997.

    Google Scholar 

  • J. Z. Wang, G. Wiederhold, O. Firschein, and S. X. Wei. Content-based image indexing and searching using daubechies’ wavelets. International Journal on Digital Libraries, 1(4):311–328, 1997.

    Article  Google Scholar 

  • Y.-L. Wu, D. Agrawal, and A. E. Abbadi. A comparison of DFT and DWT based similarity search in time-series databases. In CIKM, pages 488–495, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Li, T., Ma, S., Ogihara, M. (2009). Wavelet Methods in Data Mining. In: Maimon, O., Rokach, L. (eds) Data Mining and Knowledge Discovery Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09823-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09823-4_27

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-09822-7

  • Online ISBN: 978-0-387-09823-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics