Skip to main content

Fault-Tolerant Quantum Computation

1996; Shor, Aharonov, Ben-Or, Kitaev

  • Reference work entry
Encyclopedia of Algorithms
  • 362 Accesses

Keywords and Synonyms

Quantum noise threshold      

Problem Definition

Fault tolerance is the study of reliable computation using unreliable components. With a given noise model, can one still reliably compute? For example, one can run many copies of a classical calculation in parallel, periodically using majority gates to catch and correct faults. Von Neumann showed in 1956 that if each gate fails independently with probability p, flipping its output bit \( { 0 \leftrightarrow 1 } \), then such a fault-tolerance scheme still allows for arbitrarily reliable computation provided p is below some constant threshold (whose value depends on the model details) [10].

In a quantum computer, the basic gates are much more vulnerable to noise than classical transistors â€“ after all, depending on the implementation, they are manipulating single electron spins, photon polarizations and similarly fragile subatomic particles. It might not be possible to engineer systems with noise rates less than 10−2, or...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Readings

  1. Aharonov, D., Ben-Or, M.: Fault-tolerant quantum computation with constant error rate. In: Proc. 29th ACM Symp. on Theory of Computing (STOC), pp. 176–188, (1997). quant-ph/9906129

    Google Scholar 

  2. Aharonov, D., Kitaev, A.Y., Preskill, J.: Fault-tolerant quantum computation with long-range correlated noise. Phys. Rev. Lett. 96, 050504 (2006). quant-ph/0510231

    Google Scholar 

  3. Aliferis, P., Gottesman, D., Preskill, J.: Quantum accuracy threshold for concatenated distance-3 codes. Quant. Inf. Comput. 6, 97–165 (2006). quant-ph/0504218

    MathSciNet  MATH  Google Scholar 

  4. Freedman, M.H., Kitaev, A.Y., Larsen, M.J., Wang, Z.: Topological quantum computation. Bull. AMS 40(1), 31–38 (2002)

    Article  MathSciNet  Google Scholar 

  5. Kitaev, A.Y.: Quantum computations: algorithms and error correction. Russ. Math. Surv. 52, 1191–1249 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Knill, E.: Quantum computing with realistically noisy devices. Nature 434, 39–44 (2005)

    Article  Google Scholar 

  7. Reichardt, B.W.: Error-detection-based quantum fault tolerance against discrete Pauli noise. Ph. D. thesis, University of California, Berkeley (2006). quant-ph/0612004

    Google Scholar 

  8. Shor, P.W.: Fault-tolerant quantum computation. In: Proc. 37th Symp. on Foundations of Computer Science (FOCS) (1996). quant-ph/9605011

    Google Scholar 

  9. Thaker, D.D., Metodi, T.S., Cross, A.W., Chuang, I.L., Chong, F.T.: Quantum memory hierarchies: Efficient designs to match available parallelism in quantum computing. In: Proc. 33rd. Int. Symp. on Computer Architecture (ISCA), pp. 378–390 (2006) quant-ph/0604070

    Google Scholar 

  10. von Neumann, J.: Probabilistic logic and the synthesis of reliable organisms from unreliable components. In: Shannon, C.E., McCarthy, J. (eds.) Automata Studies, pp. 43–98. Princeton University Press, Princeton (1956)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Reichardt, B.W. (2008). Fault-Tolerant Quantum Computation. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30162-4_143

Download citation

Publish with us

Policies and ethics