Skip to main content

Fully Dynamic Connectivity: Upper and Lower Bounds

2000; Thorup

  • Reference work entry
  • 245 Accesses

Keywords and Synonyms

Dynamic connected components; Dynamic spanning forests        

Problem Definition

The problem is concerned with efficiently maintaining information about connectivity in a dynamically changing graph. A dynamic graph algorithm maintains a given property \( \mathcal{P} \) on a graph subject to dynamic changes, such as edge insertions, edge deletions and edge weight updates. A dynamic graph algorithm should process queries on property \( \mathcal{P} \) quickly, and perform update operations faster than recomputing from scratch, as carried out by the fastest static algorithm. An algorithm is said to be fully dynamic if it can handle both edge insertions and edge deletions. A partially dynamic algorithm can handle either edge insertions or edge deletions, but not both: it is incremental if it supports insertions only, and decremental if it supports deletions only.

In the fully dynamic connectivity problem, one wishes to maintain an undirected graph \( G = (V, E) \)under an...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   399.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Recommended Reading

  1. Alberts, D., Cattaneo, G., Italiano, G.F.: An empirical study of dynamic graph algorithms. ACM J. Exp. Algorithmics 2 (1997)

    Google Scholar 

  2. Beame, P., Fich, F.E.: Optimal bounds for the predecessor problem and related problems. J. Comp. Syst. Sci. 65(1), 38–72 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Eppstein, D.: Dynamic Connectivity in Digital Images. Inf. Process. Lett. 62(3), 121–126 (1997)

    Article  MathSciNet  Google Scholar 

  4. Eppstein, D., Galil, Z., Italiano, G.F., Nissenzweig, A.: Sparsification – a technique for speeding up dynamic graph algorithms. J. Assoc. Comp. Mach. 44(5), 669–696 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eppstein, D., Italiano, G.F., Tamassia, R., Tarjan, R.E., Westbrook, J., Yung, M.: Maintenance of a minimum spanning forest in a dynamic plane graph. J. Algorithms 13, 33–54 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eyal, E., Halperin, D.: Improved Maintenance of Molecular Surfaces Using Dynamic Graph Connectivity. in: Proc. 5th International Workshop on Algorithms in Bioinformatics (WABI 2005), Mallorca, Spain, 2005, pp. 401–413

    Google Scholar 

  7. Frederickson, G.N.: Data structures for on-line updating of minimum spanning trees. SIAM J. Comp. 14, 781–798 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Frederickson, G.N.: Ambivalent data structures for dynamic 2‐edge‐connectivity and k smallest spanning trees. In: Proc. 32nd Symp. Foundations of Computer Science, 1991, pp. 632–641

    Article  MathSciNet  MATH  Google Scholar 

  9. Henzinger, M.R., Fredman, M.L.: Lower bounds for fully dynamic connectivity problems in graphs. Algorithmica 22(3), 351–362 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Henzinger, M.R., King, V.: Randomized fully dynamic graph algorithms with polylogarithmic time per operation. J. ACM 46(4), 502–516 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Holm, J., de Lichtenberg, K., Thorup, M.: Poly‐logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM 48, 723–760 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Iyer, R., Karger, D., Rahul, H., Thorup, M.: An Experimental Study of Polylogarithmic, Fully Dynamic, Connectivity Algorithms. ACM J. Exp. Algorithmics 6 (2001)

    Google Scholar 

  13. Miltersen, P.B.: Cell probe complexity – a survey. In: 19th Conference on the Foundations of Software Technology and Theoretical Computer Science (FSTTCS), Advances in Data Structures Workshop, 1999

    Google Scholar 

  14. Miltersen, P.B., Subramanian, S., Vitter, J.S., Tamassia, R.: Complexity models for incremental computation. In: Ausiello, G., Italiano, G.F. (eds.) Special Issue on Dynamic and On-line Algorithms. Theor. Comp. Sci. 130(1), 203–236 (1994)

    Google Scholar 

  15. Pǎtraşcu, M., Demain, E.D.: Lower Bounds for Dynamic Connectivity. In: Proc. 36th ACM Symposium on Theory of Computing (STOC), 2004, pp. 546–553

    Google Scholar 

  16. Pǎtraşcu, M., Tarniţǎ, C.: On Dynamic Bit-Probe Complexity, Theoretical Computer Science, Special Issue on ICALP'05. In: Italiano, G.F., Palamidessi, C. (eds.) vol. 380, pp. 127–142 (2007) A preliminary version in Proc. 32nd International Colloquium on Automata, Languages and Programming (ICALP'05), 2005, pp. 969–981

    Google Scholar 

  17. Tarjan, R.E., Vishkin, U.: An efficient parallel biconnectivity algorithm. SIAM J. Comp. 14, 862–874 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Thorup, M.: Near-optimal fully-dynamic graph connectivity. In: Proc. 32nd ACM Symposium on Theory of Computing (STOC), 2000, pp. 343–350

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Italiano, G. (2008). Fully Dynamic Connectivity: Upper and Lower Bounds. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30162-4_153

Download citation

Publish with us

Policies and ethics