Skip to main content

Geographic Routing

2003; Kuhn, Wattenhofer, Zollinger

  • Reference work entry
Encyclopedia of Algorithms
  • 297 Accesses

Keywords and Synonyms

Directional routing ; Geometric routing; Location-based routing; Position-based routing          

Problem Definition

Geographic routing is a type of routing particularly well suited for dynamic ad hoc networks. Sometimes also called directional, geometric, location-based, or position-based routing, it is based on two principal assumptions. First, it is assumed that every node knows its own and its network neighbors' positions. Second, the source of a message is assumed to be informed about the position of the destination. Geographic routing is defined on a Euclidean graph, that is a graph whose nodes are embedded in the Euclidean plane. Formally, geographic ad hoc routing algorithms can be defined as follows:

Definition 1 (Geographic Ad Hoc Routing Algorithm)

Let \( { G=(V,E) } \) be a Euclidean graph. The task of a geographic ad hoc routing algorithm \( { \mathcal{A} } \) is to transmit a message from a source \( { s\in V } \) to a destination \( { t\in V } \)by sending...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. Barrière, L., Fraigniaud, P., Narayanan, L.: Robust Position-Based Routing in Wireless Ad Hoc Networks with Unstable Transmission Ranges. In: Proc. of the 5th International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications (DIAL-M), pp 19–27. ACM Press, New York (2001)

    Google Scholar 

  2. Bose, P., Brodnik, A., Carlsson, S., Demaine, E., Fleischer R., López-Ortiz, A., Morin, P., Munro, J.: Online Routing in Convex Subdivisions. In: International Symposium on Algorithms and Computation (ISAAC). LNCS, vol. 1969, pp 47–59. Springer, Berlin/New York (2000)

    Google Scholar 

  3. Bose, P., Morin, P.: Online Routing in Triangulations. In: Proc. 10th Int. Symposium on Algorithms and Computation (ISAAC). LNCS, vol. 1741, pp 113–122. Springer, Berlin (1999)

    Google Scholar 

  4. Bose, P.,Morin, P., Stojmenovic, I., Urrutia J.: Routing with Guaranteed Delivery in Ad Hoc Wireless Networks. In: Proc. of the 3rd International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications (DIAL-M), 1999, pp 48–55

    Article  MATH  Google Scholar 

  5. Datta, S., Stojmenovic, I., Wu J.: Internal Node and Shortcut Based Routing with Guaranteed Delivery in Wireless Networks. In: Cluster Computing 5, pp 169–178. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  6. Finn G.: Routing and Addressing Problems in Large Metropolitan‐scale Internetworks. Tech. Report ISI/RR-87–180, USC/ISI, March (1987)

    Google Scholar 

  7. Flury, R., Wattenhofer, R.: MLS: An Efficient Location Service for Mobile Ad Hoc Networks. In: Proceedings of the 7th ACM Int. Symposium on Mobile Ad-Hoc Networking and Computing (MobiHoc), Florence, Italy, May 2006

    Google Scholar 

  8. Fonseca, R., Ratnasamy, S., Zhao, J., Ee, C.T., Culler, D., Shenker, S., Stoica, I.: Beacon Vector Routing: Scalable Point-to-Point Routing in Wireless Sensornets. In: 2nd Symposium on Networked Systems Design & Implementation (NSDI), Boston, Massachusetts, USA, May 2005

    Google Scholar 

  9. Gao, J., Guibas, L., Hershberger, J., Zhang, L., Zhu, A.: Geometric Spanner for Routing in Mobile Networks. In: Proc. 2nd ACM Int. Symposium on Mobile Ad-Hoc Networking and Computing (MobiHoc), Long Beach, CA, USA, October 2001

    Google Scholar 

  10. Hou, T., Li, V.: Transmission Range Control in Multihop Packet Radio Networks. IEEE Tran. Commun. 34, 38–44 (1986)

    Google Scholar 

  11. Karp, B., Kung, H.: GPSR: Greedy Perimeter Stateless Routing for Wireless Networks. In: Proc. 6th Annual Int. Conf. on Mobile Computing and Networking (MobiCom), 2000, pp 243–254

    Google Scholar 

  12. Kim, Y.J., Govindan, R., Karp, B., Shenker, S.: Geographic Routing Made Practical. In: Proceedings of the Second USENIX/ACM Symposium on Networked System Design and Implementation (NSDI 2005), Boston, Massachusetts, USA, May 2005

    Google Scholar 

  13. Kim, Y.J., Govindan, R., Karp, B., Shenker, S.: On the Pitfalls of Geographic Face Routing. In: Proc. of the ACM Joint Workshop on Foundations of Mobile Computing (DIALM-POMC), Cologne, Germany, September 2005

    Google Scholar 

  14. Kranakis, E., Singh, H., Urrutia, J.: Compass Routing on Geometric Networks. In: Proc. 11th Canadian Conference on Computational Geometry, Vancouver, August 1999, pp 51–54

    Google Scholar 

  15. Kuhn, F., Wattenhofer, R., Zhang, Y., Zollinger, A.: Geometric Routing: Of Theory and Practice. In: Proc. of the 22nd ACM Symposium on the Principles of Distributed Computing (PODC), 2003

    Google Scholar 

  16. Kuhn, F., Wattenhofer, R., Zollinger, A.: Asymptotically Optimal Geometric Mobile Ad-Hoc Routing. In: Proc. 6th Int. Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications (Dial-M), pp 24–33. ACM Press, New York (2002)

    Google Scholar 

  17. Kuhn, F., Wattenhofer, R., Zollinger, A.: Ad-Hoc Networks Beyond Unit Disk Graphs. In: 1st ACM Joint Workshop on Foundations of Mobile Computing (DIALM-POMC), San Diego, California, USA, September 2003

    Google Scholar 

  18. Kuhn, F., Wattenhofer, R., Zollinger, A.: Worst-Case Optimal and Average-Case Efficient Geometric Ad-Hoc Routing. In: Proc. 4th ACM Int. Symposium on Mobile Ad-Hoc Networking and Computing (MobiHoc), 2003

    Google Scholar 

  19. Leong, B., Liskov, B., Morris, R.: Geographic Routing without Planarization. In: 3rd Symposium on Networked Systems Design & Implementation (NSDI), San Jose, California, USA, May 2006

    Google Scholar 

  20. Leong, B., Mitra, S., Liskov, B.: Path Vector Face Routing: Geographic Routing with Local Face Information. In: 13th IEEE International Conference on Network Protocols (ICNP), Boston, Massachusetts, USA, November 2005

    Google Scholar 

  21. Takagi, H., Kleinrock, L.: Optimal Transmission Ranges for Randomly Distributed Packet Radio Terminals. IEEE Trans. Commun. 32, 246–257 (1984)

    Article  Google Scholar 

  22. Urrutia, J.: Routing with Guaranteed Delivery in Geometric and Wireless Networks. In: Stojmenovic, I. (ed.) Handbook of Wireless Networks and Mobile Computing, ch. 18 pp. 393–406. Wiley, Hoboken (2002)

    Google Scholar 

  23. Wattenhofer, M., Wattenhofer, R., Widmayer, P.: Geometric Routing without Geometry. In: 12th Colloquium on Structural Information and Communication Complexity (SIROCCO), Le Mont Saint-Michel, France, May 2005

    Google Scholar 

  24. Zollinger, A.: Networking Unleashed: Geographic Routing and Topology Control in Ad Hoc and Sensor Networks, Ph. D. thesis, ETH Zurich, Switzerland Diss. ETH 16025 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Zollinger, A. (2008). Geographic Routing. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30162-4_164

Download citation

Publish with us

Policies and ethics