Skip to main content

Graph Bandwidth

1998; Feige 2000; Feige

  • Reference work entry
  • 371 Accesses

Keywords and Synonyms

Graph bandwidth; Approximation algorithms; Metric embeddings      

Problem Definition

The graph bandwidth problem concerns producing a linear ordering of the vertices of a graph \( { G = (V,E) } \) so as to minimize the maximum “stretch” of any edge in the ordering. Formally, let \( { n = |V| } \), and consider any one-to-one mapping \( { \pi : V \to \{1,2, \dots, n\} } \). The bandwidth of this ordering is \( { \mathsf{bw}_\pi(G) = \max_{\{u,v\} \in E} |\pi(u)-\pi(v)| } \). The bandwidth of G is given by the bandwidth of the best possible ordering: \( { \mathsf{bw}(G) = \min_{\pi} \mathsf{bw}_\pi(G) } \).

The original motivation for this problem lies in the preprocessing of sparse symmetric square matrices. Let A be such an \( { n \times n } \) matrix, and consider the problem of finding a permutation matrix P such that the non-zero entries of \( { P^{\text{T}} A P } \)all lie in as narrow a band as possible about the diagonal. This problem is equivalent to...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   399.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    \( { N(0,1) }\) denotes a standard normal random variable with mean 0 and variance 1.

Recommended Reading

  1. Blum, A., Konjevod, G., Ravi, R., Vempala, S.: Semi-definite relaxations for minimum bandwidth and other vertex‐ordering problems. Theor. Comput. Sci. 235(1), 25–42 (2000), Selected papers in honor of Manuel Blum (Hong Kong, 1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bourgain, J.: On Lipschitz embedding of finite metric spaces in Hilbert space. Israel J. Math. 52(1–2), 46–52 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chinn, P.Z., Chvátalová, J., Dewdney, A.K., Gibbs, N.E.: The bandwidth problem for graphs and matrices—a survey. J. Graph Theory 6(3), 223–254 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chung, F.R.K., Seymour, P.D.: Graphs with small bandwidth and cutwidth. Discret. Math. 75(1–3), 113–119 (1989). Graph theory and combinatorics, Cambridge (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dunagan, J., Vempala, S.: On Euclidean embeddings and bandwidth minimization. In: Randomization, approximation, and combinatorial optimization, pp. 229–240. Springer (2001)

    Google Scholar 

  6. Even, G., Naor, J., Rao, S., Schieber, B.: Divide-and-conquer approximation algorithms via spreading metrics. J. ACM 47(4), 585–616 (2000)

    Article  MathSciNet  Google Scholar 

  7. Feige, U.: Approximating the bandwidth via volume respecting embeddings. J. Comput. Syst. Sci. 60(3), 510–539 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. George, A., Liu, J.W.H.: Computer solution of large sparse positive definite systems. Prentice-Hall Series in Computational Mathematics, Prentice-Hall Inc. Englewood Cliffs (1981)

    Google Scholar 

  9. Gupta, A.: Improved bandwidth approximation for trees and chordal graphs. J. Algorithms 40(1), 24–36 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Krauthgamer, R., Lee, J.R., Mendel, M., Naor, A.: Measured descent: A new embedding method for finite metrics. Geom. Funct. Anal. 15(4), 839–858 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Krauthgamer, R., Linial, N., Magen, A.: Metric embeddings–beyond one‐dimensional distortion. Discrete Comput. Geom. 31(3), 339–356 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lee, J.R.: Volume distortion for subsets of Euclidean spaces. In: Proceedings of the 22nd Annual Symposium on Computational Geometry, ACM, Sedona, AZ 2006, pp. 207–216.

    Google Scholar 

  13. Linial, N.: Finite metric‐spaces—combinatorics, geometry and algorithms. In: Proceedings of the International Congress of Mathematicians, vol. III, Beijing, 2002, pp. 573–586. Higher Ed. Press, Beijing (2002)

    Google Scholar 

  14. Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algorithmic applications. Combinatorica 15(2), 215–245 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Papadimitriou, C.H.: The NP‑completeness of the bandwidth minimization problem. Computing 16(3), 263–270 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rao, S.: Small distortion and volume preserving embeddings for planar and Euclidean metrics. In: Proceedings of the 15th Annual Symposium on Computational Geometry, pp. 300–306. ACM, New York (1999)

    Google Scholar 

  17. Strang, G.: Linear algebra and its applications, 2nd edn. Academic Press [Harcourt Brace Jovanovich Publishers], New York (1980)

    Google Scholar 

  18. Unger, W.: The complexity of the approximation of the bandwidth problem. In: 39th Annual Symposium on Foundations of Computer Science, IEEE, 8–11 Oct 1998, pp. 82–91.

    Google Scholar 

  19. Vempala, S.: Random projection: A new approach to VLSI layout. In: 39th Annual Symposium on Foundations of Computer Science, IEEE, 8–11 Oct 1998, pp. 389–398.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Lee, J. (2008). Graph Bandwidth. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30162-4_169

Download citation

Publish with us

Policies and ethics