
Randomized Parallel Approximations to Max Flow, (1991; Serna,

Spirakis)

Maria Serna, Technical University of Catalonia, www.cs.upc.edu/˜mjserna

INDEX TERMS: Maximum flow, Maximum Weight Matching, Randomized algorithm, Ap-
proximation, RNC class, FNCAS, PRAM algorithm.

SYNONIMS: Approximate Maximum Flow construction.

1 PROBLEM DEFINITION

The work of Serna and Spirakis provides a parallel approximation schema for the Maximum flow
problem. An approximate algorithm provides a solution whose cost is within a factor of the optimal
solution. The notation and definitions are the standard ones for networks and flows (see for example
[7], [2]).

A network N = (G, s, t, c) is a structure consisting of a directed graph G = (V,E), two distin-
guished vertices, s, t ∈ V (called the source and the sink), and c : E → Z+, an assignment of an
integer capacity to each edge in E. A flow function f is an assignment of a nonnegative number
to each edge of G (called the flow into the edge) such that first at no edge does the flow exceed the
capacity, and second for every vertex except s and t, the sum of the flows on its incoming edges
equals the sum of the flows on its outgoing edges. The total flow of a given flow function f is
defined as the net sum of flow into the sink t. The Maximum flow problem can be stated as

Name Maximum flow
Input A network N = (G, s, t, c)
Output Find a flow f for N for which the total flow is maximum.

Maximum Flows and Matchings The Maximum Flow Problem is closely related to the Max-
imum Matching problem on bipartite graphs.

Given a graph G = (V,E) and a set of edges M ⊆ E is a matching if in the subgraph (V,M)
all vertices have degree at most one. A maximum matching for G is a matching with maximum
number of edges. For a graph G = (V,E) with weight w(e), the weight of a matching M is the sum
of the weights of the edges in M . The problem can be stated as follows:

Name Maximum Weight Matching
Input A graph G = (V,E) and a weight w(e) for each edge e ∈ E
Output Find a matching of G with the maximum possible weight.

There is a standard reduction from the Maximum Matching problem for bipartite graphs to the
Maximum Flow problem ([7], [8]). In the general weighted case one have just to look at each edge
with capacity c > 1 as c edges joining the same points each with capacity one, and transform the
multigraph obtained as shown before. Notice that to perform this transformation it is required a
c value which is polynomially bounded. The whole procedure was introduced by Karp, Upfal and
Wigderson [5] providing the following results

1



Theorem 1. The Maximum Matching problem for bipartite graphs is NC equivalent to the Maxi-
mum Flow problem on networks with polynomial capacities. Therefore, Maximum Flow with poly-
nomial capacities problem belongs to the class RNC.

2 KEY RESULTS

The first contribution is an extension of Theorem 1 to a generalization of the problem, namely the
Maximum Flow on networks with polynomially bounded maximum flow. The proof is based on
the construction (in NC) of a second network which has the same maximum flow but for which the
maximum flow and the maximum capacity in the network are polynomially related.

Lemma 2. Let N = (G, s, t, c). Given any integer k, there is an NC algorithm that decides whether
f(N) ≥ k or f(N) < km.

Since Lemma 2 applies even to numbers that are exponential in size, they get

Lemma 3. Let N = (G, s, t, c) be a network. there is an NC algorithm that computes an integer
value k such that 2k ≤ f(N) < m 2k+1.

The following lemma establishes the NC-reduction from the Maximum Flow problem with
polynomial maximum flow to the Maximum Flow problem with polynomial capacities.

Lemma 4. Let N = (G, s, t, c) be a network, there is an NC algorithm that constructs a second
network N1 = (G, s, t, c1) such that

log(Max(N1)) ≤ log(f(N1)) +O(log n)

and f(N) = f(N1).

Lemma 4 shows that the Maximum Flow problem restricted to networks with polynomially
bounded maximum flow is NC-reducible to the Maximum Flow problem restricted to polynomially
bounded capacities, the latter problem is a simplification of the former one, so the following results
follows.

Theorem 5. For each polynomial p, the problem of constructing a maximum flow in a network N
such that f(N) ≤ p(n) is NC-equivalent to the problem of constructing a maximum matching in a
bipartite graph, and thus it is in RNC.

Recall that [5] gave us an O(log2 n) randomized parallel time algorithm to compute a maximum
matching. The combination of this with the reduction from the Maximum Flow problem to the
Maximum Matching leads to the following result.

Theorem 6. There is a randomized parallel algorithm to construct a maximum flow in a directed
network, such that the number of processors is bounded by a polynomial in the number of vertices
and the time used is O((log n)α log f(N)) for some constant α > 0.

The previous theorem is the first step towards finding a approximate maximum flow in a network
N by an RNC algorithm. The algorithm, given N and an ε > 0, outputs a solution f ′ such that
f(N)/f ′ ≤ 1 + 1/ε. The algorithm uses a polynomial number of processors (independent of ε) and
parallel time O(logα n(log n+ log ε)), where α is independent of ε. Thus the algorithm is an RNC

one as long as ε is at most polynomial in n. (Actually ε can be O(nlog
β n) for some β.) Thus being

a Fully RNC approximation scheme (FRNCAS).
The second ingredient is a rough NC approximation to the Maximum Flow problem.

2



Lemma 7. Let N = (G, s, t, c) be a network. Let k ≥ 1 be an integer, then there is an NC algorithm
to construct a network M = (G, s, t, c1) such that k f(M) ≤ f(N) ≤ k f(M) + km.

Putting all together and allowing randomization the algorithm can be sketched as follows:

FAST-FLOW(N = (G, s, t, c), ε)

1. Compute k such that 2k ≤ F (N) ≤ 2k+1m.

2. Construct a network N1 such that

log(Max(N1)) ≤ log(F (N1)) +O(log n).

3. If 2k ≤ (1 + ε)m then F (N) ≤ (1 + ε)m2 so use Algorithm ?? to solve the Maximum Flow
problem in N as a Maximum Matching and return

4. Let β =

⌊
2k

(1 + ε)m

⌋
. Construct N2 from N1 and β using the construction in Lemma 7.

5. Solve the Maximum Flow problem in N2 as a Maximum Matching.

6. Output F ′ = βF (M2) and for all e ∈ E, f ′(e) = βf(e).

Theorem 8. Let N = (G, s, t, c) be a network. Then, algorithm FAST-FLOW is an RNC algorithm
such that for all ε > 0 at most polynomial in the number of network vertices, the algorithm computes
a legal flow of value f ′ such that

f(N)

f ′
≤ 1 +

1

ε
.

Furthermore, the algorithm uses a polynomial number of processors and runs in expected parallel
time O(logα n(log n+ log ε)), for some constant α, independent of ε.

3 APPLICATIONS

The rounding/scaling technique is used in general to deal with problems that are hard due to the
presence of large weights in the problem instance. The technique modifies the problem instance in
order to produce a second instance that has no large weights, and thus can be solved efficiently. The
way in which a new instance is obtained consists in computing first an estimate of the optimal value
(when needed) in order to discard unnecessary high weights. Then the weights are modified, scaling
them down by an appropriate factor that depends on the estimation and the allowed error. The
rounding factor is determined in such a way that the so obtained instance can be solved efficiently.
Finally a last step consisting in scaling up the value of the “easy” instance solution is performed
in order to meet the corresponding accuracy requirements.

It is known that in the sequential case, the only way to construct FPTAS uses rounding/scaling
and interval partition [6]. In general, both techniques can be parallelized, although sometimes the
details of the parallelization are non-trivial [1].

The Maximum Flow problem has a long history in computer Science. Here are recorded some
results about its parallel complexity. Goldschlager, Shaw and Staples showed that the Maximum
Flow problem is P-complete [3]. The P-completeness proof for Maximum Flow uses large capacities
on the edges; in fact the values of some capacities are exponential in the number of network vertices.
If the capacities are constrained to be no greater than some polynomial in the number of network
vertices the problem is in ZNC. In the case of planar networks it is known that the Maximum Flow
problem is in NC, even if arbitrary capacities are allowed [4].

3



4 OPEN PROBLEMS

The parallel complexity of the Maximum Weight Matching problem when the weight of the edges
are given in binary is still an open problem. However, as mentioned earlier, there is a randomized
NC algorithm to solve the problem in O(log2 n) parallel steps, when the weights of the edges are
given in unary. The scaling technique has been used to obtain fully randomized NC approximation
schemes, for the Maximum Flow and Maximum Weight Matching problems (see [10]). The result
appears to be the best possible in regard of full approximation, in the sense that the existence of
an FNCAS for any of the problems considered is equivalent to the existence of an NC algorithm
for perfect matching which is also still an open problem.

5 EXPERIMENTAL RESULTS

None is reported.

6 DATA SETS

None is reported.

7 URL to CODE

None is reported.

8 CROSS REFERENCES

Maximum Flow. Maximum Matching. Online Graph problems (Coloring, Matching). Online
Matching.

9 RECOMMENDED READING

[1] J. Dı́az, M. Serna, P.G. Spirakis, and J. Torán Paradigms for fast parallel approximation.
Cambridge International Series on Parallel Computation, 8. Cambridge University Press,
Cambridge, 1997.

[2] S. Even. Graph Algorithms. Computer Science Press, Potomac, Md, 1979.

[3] L.M. Goldschlager, R.A. Shaw, and J. Staples. The maximum flow problem is log-space
complete for P. Theoretical Computer Science, 21:105–111, 1982.

[4] D.B. Johnson and S.M. Venkatesan. Parallel algorithms for minimum cuts and maximum
flows in planar networks. Journal of the ACM, 34:950–967, 1987.

[5] R.M. Karp, E. Upfal, and A. Wigderson. Constructing a perfect matching is in Random NC.
Combinatorica, 6:35–48, 1986.

[6] B. Korte and R. Schrader. On the existence of fast approximation schemes. Nonlinear
Programming, 4:415–437, 1980.

[7] E.L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and
Winston, NY, 1976.

4



[8] C. Papadimitriou. Computational Complexity. Addison-Wesley, Reading, Mass., 1994.

[9] J.G. Peters and L. Rudolph. Parallel aproximation schemes for subset sum and knapsack
problems. Acta Informatica, 24:417–432, 1987.

[10] P. Spirakis. PRAM models and fundamental parallel algorithm techniques: Part II. In
A. Gibbons and P. Spirakis, editors, Lectures on Parallel Computation, pages 41–66. Cambrige
University Press, 1993.

5


