Skip to main content

Sorting Signed Permutations by Reversal (Reversal Sequence)

2004; Tannier, Sagot

  • Reference work entry
  • 183 Accesses

Keywords and Synonyms

Sorting by inversions          

Problem Definition

signed permutation π of size n is a permutation over \( { \{-n,\dots,-1,1\dots n\} } \), where \( { \pi_{-i}=-\pi_i } \) for all i.

The reversal \( { \rho=\rho_{i,j} } \) (\( { 1\le i\le j\le n } \)) is an operation that reverses the order and flips the signs of the elements \( { \pi_i,\dots,\pi_j } \) in a permutation π:

$$ \pi\cdot\rho = (\pi_{1},\dots,\pi_{i-1},-\pi_{j},\dots,-\pi_{i},\pi_{j+1},\dots,\pi_{n})\;. $$

If \( { \rho_1,\dots,\rho_k } \) is a sequence of reversals, it is said to sort a permutation π if \( { \pi \cdot \rho_1 \cdots \rho_k = Id } \), where \( { Id=(1,\dots,n) } \) is the identity permutation. The length of a shortest sequence of reversals sorting π is called the reversal distance of π, and is denoted by d(π).

If the computation of d(π) is solved in linear time [2] (see the entry “reversal distance”), the computation of a sequence of size d(π) that sorts π is more complicated and no linear...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   399.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Recommended Reading

  1. Ajana, Y., Lefebvre, J.-F., Tillier, E., El-Mabrouk, N.: Exploring the Set of All Minimal Sequences of Reversals – An Application to Test the Replication-Directed Reversal Hypothesis, Proceedings of the Second Workshop on Algorithms in Bioinformatics. Lecture Notes in Computer Science, vol. 2452, pp. 300–315. Springer, Berlin (2002)

    Google Scholar 

  2. Bader, D.A., Moret, B.M.E., Yan, M.: A Linear-Time Algorithm for Computing Inversion Distance between Signed Permutations with an Experimental Study. J. Comput. Biol. 8(5), 483–491 (2001)

    Article  Google Scholar 

  3. Bergeron, A., Chauve, C., Hartman, T., St-Onge, K.: On the properties of sequences of reversals that sort a signed permutation. Proceedings of JOBIM'02, 99–108 (2002)

    Google Scholar 

  4. Bergeron, A., Mixtacki, J., Stoye, J.: The inversion distance problem. In: Gascuel, O. (ed.) Mathematics of evolution and phylogeny. Oxford University Press, USA (2005)

    Google Scholar 

  5. Berman, P., Hannenhalli, S.: Fast Sorting by Reversal, proceedings of CPM '96. Lecture notes in computer science 1075, 168–185 (1996)

    Google Scholar 

  6. Braga, M.D.V., Sagot, M.F., Scornavacca, C., Tannier, E.: The Solution Space of Sorting by Reversals. In: Proceedings of ISBRA'07. Lect. Notes Comp. Sci. 4463, 293–304 (2007)

    Google Scholar 

  7. Diekmann, Y., Sagot, M.F., Tannier, E.: Evolution under Reversals: Parsimony and Conversation of Common Intervals. IEEE/ACM Transactions in Computational Biology and Bioinformatics, 4, 301–309, 1075 (2007)

    Google Scholar 

  8. Han, Y.: Improving the Efficiency of Sorting by Reversals, Proceedings of The 2006 International Conference on Bioinformatics and Computational Biology. Las Vegas, Nevada, USA (2006)

    Google Scholar 

  9. Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip (polynomial algorithm for sorting signed permutations by reversals). J. ACM 46, 1–27 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kaplan, H., Shamir, R., Tarjan, R.E.: Faster and simpler algorithm for sorting signed permutations by reversals. SIAM J. Comput. 29, 880–892 (1999)

    Article  MathSciNet  Google Scholar 

  11. Kaplan, H., Verbin, E.: Efficient data structures and a new randomized approach for sorting signed permutations by reversals. In: Proceedings of CPM'03. Lecture Notes in Computer Science 2676, 170–185

    Google Scholar 

  12. Moret, B.M.E., Tang, J., Warnow, T.: Reconstructing phylogenies from gene-content and gene-order data. In: Gascuel, O. (ed.) Mathematics of Evolution and Phylogeny. pp. 321–352, Oxford Univ. Press, USA (2005)

    Google Scholar 

  13. Murphy, W., et al.: Dynamics of Mammalian Chromosome Evolution Inferred from Multispecies Comparative Maps. Science 309, 613–617 (2005)

    Article  Google Scholar 

  14. Ozery-Flato, M., Shamir, R.: Two notes on genome rearrangement. J. Bioinf. Comput. Biol. 1, 71–94 (2003)

    Article  Google Scholar 

  15. Pevzner, P., Tesler, G.: Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution. PNAS 100, 7672–7677 (2003)

    Article  Google Scholar 

  16. Siepel, A.C.: An algorithm to enumerate sorting reversals for signed permutations. J. Comput. Biol. 10, 575–597 (2003)

    Article  Google Scholar 

  17. Tannier, E., Sagot, M.-F.: Sorting by reversals in subquadratic time. In: Proceedings of CPM'04. Lecture Notes Comput. Sci. 3109, 1–13

    Google Scholar 

  18. Tannier, E., Bergeron, A., Sagot, M.-F.: Advances on Sorting by Reversals. Discret. Appl. Math. 155, 881–888 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Tannier, E. (2008). Sorting Signed Permutations by Reversal (Reversal Sequence). In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30162-4_384

Download citation

Publish with us

Policies and ethics