Skip to main content

Telecommunications Network Design

  • Chapter

Abstract

Telecommunications networks are fundamental in any telecommunications system. The network has to meet a number of criteria for the performance to be satisfactory. Hence, when designing the network, one may pose a number of optimization problems whose solutions give networks that are, in some sense, optimally designed. As the networks have become increasingly complex, the aid of optimization techniques has also become increasingly important. This is a vast area, and this chapter considers an overview of the issues that arise as well as a number of specific optimization models and problems. Often the problems may be formulated as mixed-integer linear programs. Due to problem size and problem structure, in many cases specially tailored solution techniques need to be used in order to solve, or approximately solve, the problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows. Theory, Algorithms and Applications. Prentice Hall, Englewood Cliffs, New Jersey, 1993.

    Google Scholar 

  • A. Balakrishnan, T.L. Magnanti, and P. Mirchandani. A dual-based algorithm for multi-level network design. Management Science, 40:567–581, 1994a.

    Article  MATH  Google Scholar 

  • A. Balakrishnan, T.L. Magnanti, and P. Mirchandani. Modeling and heuristic worst-case performance analysis of the two-level network design problem. Management Science, 40:846–867, 1994b.

    Article  MATH  Google Scholar 

  • A. Balakrishnan, T.L. Magnanti, A. Shulman, and R.T. Wong. Models for planning capacity expansion in local access telecommunication networks. Annals of Operations Research, 33:239–284, 1991.

    Article  MATH  Google Scholar 

  • M.O. Ball, T.L. Magnanti, C.L. Monma, and G.L. Nemhauser, editors. Network Models, volume 7 of Handbooks in Operations Research and Management Science. Elsevier, 1995a.

    Google Scholar 

  • M.O. Ball, T.L. Magnanti, C.L. Monma, and G.L. Nemhauser, editors. Network Routing, volume 8 of Handbooks in Operations Research and Management Science. Elsevier, 1995b.

    Google Scholar 

  • F. Barahona. Network design using cut inequalities. SIAM J. Optimization, 6(3): 823–837, August 1996.

    Article  MATH  MathSciNet  Google Scholar 

  • A.W. Berger and Y. Kogan. Dimensioning bandwidth for elastic traffic in high-speed data networks. IEEE-ACM Transactions on Networking, 8:643–654, 2000.

    Article  Google Scholar 

  • D. Bertsekas and R. Gallager. Data Networks. Prentice Hall, 1992.

    Google Scholar 

  • D. Bienstock, S. Chopra, O. Günlük, and C.-Y. Tsai. Minimum cost capacity installation for multicommodity network flows. Math. Program., 81(2): 177–200, 1998.

    Article  Google Scholar 

  • S. Chen and K. Nahrstedt. An overview of quality of service routing for next-generation high-speed networks: Problems and solutions. IEEE Network, pages 64–79, November/December 1998.

    Google Scholar 

  • Cisco Systems Inc., San Jose, CA, USA. OSPF design guide, 2001.

    Google Scholar 

  • G. Dahl. The design of survivable directed networks. Telecommunication Systems, 2: 349–377, 1994.

    Article  Google Scholar 

  • G. Dahl and M. Stoer. A cutting plane algorithm for multicommodity survivable network design problems. INFORMS Journal on Computing, 10:1–11, 1998.

    Article  MathSciNet  Google Scholar 

  • S. E. Deering. Host extensions for IP multicasting. Request for Comments 1112, Internet Engineering Task Force, August 1989.

    Google Scholar 

  • E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269–271, 1959.

    Article  MATH  MathSciNet  Google Scholar 

  • Ericsson and Telia, editors. Understanding telecoummunications, vol. 1. Studentlitteratur, Lund, Sweden, 1997.

    Google Scholar 

  • Ericsson and Telia, editors. Understanding telecoummunications, vol. 2. Studentlitteratur, Lund, Sweden, 1998.

    Google Scholar 

  • B. Fortz and M. Thorup. Internet traffic engineering by optimizing OSPF weights. In Proceedings of IEEE INFOCOM’2000, pages 519–528. IEEE, 2000.

    Google Scholar 

  • M.S. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York, 1979.

    MATH  Google Scholar 

  • B. Gavish. Topological design of centralized computer networks-formulations and algorithms. Networks, 12:355–377, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  • F. Glover. Tabu search, part I. ORSA Journal on Computing, 1:190–206, 1989.

    MATH  MathSciNet  Google Scholar 

  • F. Glover, E. Taillard, and D. de Werra. A user’s guide to tabu search. Annals of Operations Research, 41:3–28, 1993.

    Article  MATH  Google Scholar 

  • M.X. Goemans and D.P. Williamson. A primal-dual method for approximation algorithms and its application to network design problems. In D.S. Hochbaum, editor, Approximation Algorithms for NP-hard Problems. PWS Publishing Company, 1997.

    Google Scholar 

  • E. Gourdin, M. Labbé, and H. Yaman. Telecommunication and location. Technical report, Service de Mathematiques de la Gestion, Université Libre de Bruxelles, 2001.

    Google Scholar 

  • O. Günlük. A branch-and-cut algorithm for capacitated network design problems. Math. Program., 86:17–39, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  • J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms II, Advanced Theory and Bundle Methods. Springer-Verlag, 1993.

    Google Scholar 

  • D.S. Hochbaum and A. Segev. Analysis of a flow problem with fixed charges. Networks, 19:291–312, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  • K. Holmberg and D. Yuan. A Lagrangean approach to network design problems. International Transactions in Operational Research, 5:529–539, 1998.

    Article  Google Scholar 

  • K. Holmberg and D. Yuan. A Lagrangean heuristic based branch-and-bound approach for the capacitated network design problem. Operations Research, 48:461–481, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  • D.S. Johnson, J.K. Lenstra, and A.H.G. Rinnooy Kan. The complexity of the network design problem. Networks, 8:279–285, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Jones and D. Mitchell. JUNOS Internet Software Configuration Guide: Routing and Routing Protocols, Release 4.3. Juniper Networks Inc., Sunnyvale, CA, USA, 2001.

    Google Scholar 

  • F.P. Kelly. Notes on effective bandwidths. In Stochastic Networks, pages 141–168. Clarendon Press, Oxford, 1996.

    Google Scholar 

  • A. Kershenbaum. Telecommunications network design algorithms. McGraw Hill, 1993.

    Google Scholar 

  • K. Kilkki. Differentiated services for the Internet. Macmillan technical publishing, 1999.

    Google Scholar 

  • S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated annealing. Science, 220:671–680, 1983.

    Article  MathSciNet  Google Scholar 

  • C. Long. IP Network Design. Osborne/McGraw-Hill, 2001.

    Google Scholar 

  • T.L. Magnanti and R.T. Wong. Network design and transportation planning: models and algorithms. Transportation Science, 18:1–55, 1984.

    Article  Google Scholar 

  • M. Minoux. Network synthesis and optimum network design problems: models, solution methods and applications. Networks, 19:313–360, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  • P. Mirchandani. Projections of the capacitated network loading problem. European J. Open Res, 122:534–560, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Moy. OSPF: Anatomy of an Internet routing protocol. Addison Wesley, 1998a.

    Google Scholar 

  • J. Moy. OSPF version 2. Request for Comments 2328, Internet Engineering Task Force, April 1998b.

    Google Scholar 

  • G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. Wiley, 1988.

    Google Scholar 

  • V. Paxson and S. Floyd. Wide-area traffic: The failure of poisson modeling. IEEE/ACM Transactions on Networking, 3:226–244, 1995.

    Article  Google Scholar 

  • M. Prytz and A. Forsgren. Dimensioning multicast-enabled communications networks. Networks, 39:216–231, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  • B. Quinn and K. Almeroth. IP multicast applications: Challenges and solutions. Request for Comments 3170, Internet Engineering Task Force, September 2001.

    Google Scholar 

  • C.R. Reeves. Modern Heuristic Techniques for Combinatorial Problems. Wiley, 1993.

    Google Scholar 

  • W. Stallings. High-Speed Networks, TCP/IP and ATM Design Principles. Prentice Hall, 1998.

    Google Scholar 

  • B. Williamson. Developing IP Multicast Networks: The Definitive Guide to Designing and Deploying CISCO IP Multicast Networks. Cisco Press, 2000.

    Google Scholar 

  • D. Yuan. Optimization models and methods for communication network design and routing. PhD thesis, Division of Optimization, Department of Mathematics, Linköping University, Linköping, Sweden, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Forsgren, A., Prytz, M. (2006). Telecommunications Network Design. In: Resende, M.G.C., Pardalos, P.M. (eds) Handbook of Optimization in Telecommunications. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30165-5_11

Download citation

Publish with us

Policies and ethics