Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Cryosphere :

All forms of terrestrial snow and ice.

Newtonian viscous body :

A body whose stress at each point is linearly proportional to its strain rate at that point.

Bibliography

Primary Literature

  1. Anisimov OA, Nelson FE (1996) Permafrost distribution in the Northern Hemisphere under scenarios of climate change. Glob Planet Chang 14:59–72

    ADS  Google Scholar 

  2. Anisimov OA, Shiklomanov NI, Nelson FE (1997) Global warming and active‐layer thickness: results from transient general circulation models. Glob Planet Chang 15:61–77

    ADS  Google Scholar 

  3. Anisimov OA, Shiklomanov NI, Nelson FE (2002) Variability of seasonal thaw depth in permafrost regions: a stochastic modeling approach. Ecol Model 153:217–227

    Google Scholar 

  4. Armstrong RL, Brodzik MJ, Knowles K, Savoie M (2005) Global monthly EASE-Grid snow water equivalent climatology. Digital media. National Snow and Ice Data Center, Boulder

    Google Scholar 

  5. Barry RG (1996) The parameterization of surface albedo for sea ice and its snow cover. Progr Phys Geog 20:61–77

    Google Scholar 

  6. Barry RG (2002) The role of snow and ice in the global climate system: A review. Polar Geog 24:235–246

    Google Scholar 

  7. Bartelt P, Lehning M (2002) A physical SNOWPACK model for the Swiss Avalanche Warning Services. Part I: Numerical model. Cold Reg Sci Technol 35(3):123–145

    Google Scholar 

  8. Bitz CM, Lipscomb WH (1999) An energy‐conserving thermodynamic model of sea ice. J Geophys Res 105:15669–15677

    ADS  Google Scholar 

  9. Bovis MJ, Mears AI (1976) Statistical prediction of snow avalanche runout from terrain variables in Colorado. Arct Alp Res 8:115–120

    Google Scholar 

  10. Brun E, David P, Sudul M, Brunot G (1992) A numerical model to simulate snow cover stratigraphy for operational avalanche forecasting. J Glaciol 38:13–22

    Google Scholar 

  11. Budd WF, Jenssen D, Radok U (1971) Derived physical charcteristics of the Antarctic ice sheet. ANARE Interim Report Series A (IV) Glaciology Pobl

    Google Scholar 

  12. Campbell WJ (1965) The wind‐driven circulation of ice and water in a polar ocean. J Geophys Res 70:3279–3301

    ADS  Google Scholar 

  13. Coon MD, Knoke GS, Echert DS, Pritchard RS(1998) The architecture of anisotropic elastic‐plastic sea ice mechanics constitutive law. J Geophys Res 103(C10):21915–21925

    ADS  Google Scholar 

  14. Dozier J, Painter TH (2004) Multispectral and hyperspectral remote sensing of alpine snow properties. Annu Rev Earth Planet Sci 32:465–494

    ADS  Google Scholar 

  15. Ebert EE, Curry JA (1993) An intermediate one‐dimensional thermodynamic sea ice model for investigating ice‐atmosphere interactions. J Geophys Res 98(C6):10085–10110

    ADS  Google Scholar 

  16. Eisenman I, Untersteiner N, Wettlaufer JS (2007) On the reliability of simulated Arctic sea ice in global climate models. Geophys Res Lett 34:L10501, doi:10.1029/2007GL029914

    ADS  Google Scholar 

  17. Essery R, Yang Z-L (2001) An overview of models participating in the snow model intercomparison project (SnowMIP). In: 8th Scientific Assembly of IAMAS, Innsbruck. http://www.cnrm.meteo.fr/snowmip/. Accessed 22 Aug 2008

  18. Essery R, Long L, Pomeroy JW (1999) A distributed model of blowing snow over complex terrain. Hydrol Process 13:2423–2438

    ADS  Google Scholar 

  19. Flato GM (2004) Sea-ice modelling. In: Bamber JL, Payne AJ (eds) Mass balance of the cryosphere: Observations and modelling of contemporary and future change. Cambridge University Press, Cambridge, pp 367–390

    Google Scholar 

  20. Frei A, Robinson DA (1995) Evaluation of snow extent and its variability in the Atmospheric Model Intercomparison Project. J Geophys Res 103(D8):8859–8871

    ADS  Google Scholar 

  21. Frei A, Miller JA, Robinson DA (2003) Improved simulations of snow extent in the second phase of the Atmospheric Model Intercomparison Project (AMIP-2). J Geophys Res 108(D12):4369, doi:10.1029/2002JD003030

    Google Scholar 

  22. Gerdes R, Koeberle C (2007) Comparison of Arctic sea ice thickness variability in IPCC Climate of the 20th Century experiments and in ocean–sea ice hindcasts. J Geophys Res 112(C4)C04S13

    Google Scholar 

  23. Glen J (1955) The creep of polycrystalline ice. Proc Roy Soc Lond A228:519–538

    ADS  Google Scholar 

  24. Goodrich LE (1982) The influence of snow cover on the ground thermal regime. Can Geotech J 19:421–432

    Google Scholar 

  25. Hedstrom N, Pomeroy JW (1998) Measurements and modelling of snow interception in the boreal forest Hydrol. Processes 12:1611–1525

    Google Scholar 

  26. Heil P, Hibler WD III (2002) Modeling the high‐frequency component of Arctic sea ice drift and deformation. J Phys Oceanogr 32:3039–3057

    ADS  Google Scholar 

  27. Hibler WD III (1979) A dynamic‐thermodynamic sea ice model. J Phys Oceanogr 9:815–846

    ADS  Google Scholar 

  28. Hibler WD III (2004) Modelling the dynamic response of sea ice. In: Bamber JL, Payne AJ (eds) Mass balance of the cryosphere: Observations and modelling of contemporary and future change. Cambridge University Press, Cambridge, pp 227–334

    Google Scholar 

  29. Hibler WD III, Flato GM (1992): Sea ice models. In: Trenberth K (ed) Climate System Modeling. Cambridge University Press, New York, pp 413–436

    Google Scholar 

  30. Hibler WD III, Schulson EM (2000) On modeling the anisotropic failure and flow of flawed sea ice. J Geophys Res 105(C7):17105–17120

    ADS  Google Scholar 

  31. Hoelzle M, Mittaz C, Etzelmueller B, Haeberli W (2001) Surface energy fluxes and distribution models of permafrost in European mountain areas: An overview of current developments. Permafr Periglac Process 12:53–68

    Google Scholar 

  32. Holland MM, Bitz CM, Tremblay H (2006) Future abrupt reductions in the summer Arctic sea ice. Geophys Res Lett 33:L23503. doi:10.1029/2006GL028024

    ADS  Google Scholar 

  33. Hopkins MA (1996) On the mesoscale interaction of lead ice and floes. J Geophys Res 101:18315–18326

    ADS  Google Scholar 

  34. Humlum O (2007) Modeling energy balance, surface temperatures, active layer depth and permafrost thickness around Longyeardalen, Svalbard. http://www.unis.no/research/geology/Geo_research/Ole/Modelling.htm. Accessed 22 Aug 2008

  35. Hunke EC, Dukowicz JK (1997) An elastic–viscous–plastic model for sea ice dynamics. J Phys Oceanogr 27:1849–1867

    ADS  Google Scholar 

  36. Hunke EC, Holland MM (2007) Global atmospheric forcing data for Arctic ice-ocean modeling. J Geophys Res 112:C04S14

    Google Scholar 

  37. Huybrechts P, de Wolde J (1999) The dynamic response of the Greenland and Antarctic ice sheets to multiple‐century climatic warming. J Climate 12:2169–2188

    ADS  Google Scholar 

  38. Iken A, Roethlisberger H, Flotron A, Haeberli W (1983) The uplift of the Unteraargletscher at the beginning ot the melt season – a consequence of water storage at the bed. J Glaciol 30:15–25

    Google Scholar 

  39. Jin J, Gao X, Yang Z-L, Bales RC, Sorooshian S, Dickinson RE, Sun SF, Wu GX (1999) Comparative analyses of physically based snowmelt models for climate simulations. J Climate 12:2643–2657

    ADS  Google Scholar 

  40. Johnson M, Gaffigan S, Hunke E, Gerdes R (2007) A comparison of Arctic Ocean sea ice concentration among the coordinated AOMIP model experiments. J Geophys Res 112:C04S11

    Google Scholar 

  41. Jordan R (1991) A one‐dimensional temperature model for a snow cover. Technical documentation for SNTHERM Special Technical Report 91-16. US Army Cold Regions Research and Engineering Laboratory, Hanover

    Google Scholar 

  42. Kudryavtsev VA et al (1974) Fundamentals of frost forecasting in geological engineering investigations. Nauka, Moscow (in Russian). English translation US Armt Cold Regions Res Engr Lan, Hannover, Draft translation 1977

    Google Scholar 

  43. Kwok R, Cunningham GF, Hibler III WD (2003) Sub-daily sea ice motion and deformation from RADARSAT observations. Geophys Res Lett 30(23):2218 doi:10.1029/2003GL018723

    ADS  Google Scholar 

  44. Lawrence DM, Slater AG (2007) A projection of severe near‐surface permafrost degradation during the 21st century. Geophys Res Lett 32:L24401

    ADS  Google Scholar 

  45. Lindsay RW, Stern HL (2005) A new Lagrangian model of Arctic sea ice. J Phys Oceanogr 34:272–283

    ADS  Google Scholar 

  46. Ling F, Zhang T-J (2004) A numerical model for surface energy balance and thermal regime of the active layer and permafrost containing unfrozen water. Cold Regions Sci Technol 38:1–15

    Google Scholar 

  47. Liston GE, Hall DK (1995) An energy‐balance model of lake-ice evolution. J Glaciol 41(138):373–382

    Google Scholar 

  48. Lunardini V (1988) Freezing of soil with an unfrozen water content and variable thermal properties. US Army Cold Regions Res Engineering Lab, Hanover, p 31

    Google Scholar 

  49. MacAyeal DR et al (1996) An ice-shelf model test based on the Ross ice shelf. Antarct Ann Glaciol 23:46–51

    ADS  Google Scholar 

  50. Martin Y, Gerdes R (2007) Sea ice drift variability in Arctic Ocean Model Intercomparison Project models and observations. J Geophys Res 112(C4):C04S10

    Google Scholar 

  51. Maykut G, Untersteiner N (1971) Some results from a time‐dependent thermodynamic mode; of sea ice. J Geophys Res 76:1550–75

    ADS  Google Scholar 

  52. McClung D, Schaerer P(2006) The Avalanche Handbook. The Mountaineers, Seattle

    Google Scholar 

  53. Meehl GA, Boer GA, Covet C, Latif M, Stouffer RJ (1997) Intercomparison makes for a better climate model. EOS 78:445–446

    ADS  Google Scholar 

  54. Morgan VI, Jacka TH, Akermasn GJ, Clarke AL (1982) Outlet glacier and mass budget studies in Enderby, Kemp and MacRobertson Lands, Antarctica. Ann Glaciol 3L:204–210

    ADS  Google Scholar 

  55. Nelson FE, Outcalt DSI (1987) A computational method for prediction and regionalization of permafrrost. Arct Alp Res 19:279–88

    Google Scholar 

  56. Nelson FE et al (1997) Estimating Active‐Layer Thickness over a Large Region: Kuparuk River Basin, Alaska, USA. Arct Alp Res 29:367–378

    ADS  Google Scholar 

  57. Nick EM, van derr Veen CJ, Oerlemans J (2007) Controls on advance of tidewater glaciers: Results from numerical modeling applied to Columbia Glavier. J Geophys Res 112:G03S24

    Google Scholar 

  58. Nicolsky DJ, Romanovsky VE, Alexeev VA, Lawrence DM (2007) Improved modeling of permafrost dynamics in a GCM Land Surface Scheme. Geophys Res Lett 34(8):L08591

    Google Scholar 

  59. Nye J (1951) The flow of glaciers and ice sheets as a problem in plasticity. Proc Roy Soc Lond A 207:554–572

    ADS  Google Scholar 

  60. Nye J (1965) The flow of a glacier in a channel of rectangular, elliptic or parabolic cross‐section. J Glaciol 5:661–690

    Google Scholar 

  61. Oerlemans J (2005) Extracting a climate signal from 169 glacier records. Science 308:675–677

    ADS  Google Scholar 

  62. Oelke C et al (2003) Regional‐scale modeling of soil freeze/thaw over the Arctic drainage basin. J Geophys Res 108(D10):4314

    Google Scholar 

  63. Oelke C, Zhang T-J (2004) A model study of circum‐Arctic soil temperatures. Permafr Periglac Process 15:103–121

    Google Scholar 

  64. Orowan E (1949) Remarks at the joint meeting of the British Glaciological Society, the British Rheologists Club and the Institute of Metals. J Glaciol 1:231–236

    Google Scholar 

  65. Overland JE, McNutt SL, Salo S, Groves J, Li S (1998) Arctic sea ice as a granular plastic. J Geophys Res 104(C10):21845–21867

    ADS  Google Scholar 

  66. Parkinson CL, Washington WM (1979) A large-scale numerical model of sea ice. J Geophys Res 84:311–337

    ADS  Google Scholar 

  67. Paterson WSB (1994) The physics of glaciers. Pergamon, Elsevier Science, New York, p 480

    Google Scholar 

  68. Payne AJ et al (2000) Results from the EISMINT Phase 2 simplofoed geometry experiments: the effevts of thermomechanical coupling. J Glaciol 46(153):227–238

    Google Scholar 

  69. Perla RI (1980) Avalanche release, motion, and impact. In: Colbeck SC (ed) Dynamics of snow and ice masses. Academic Press, New York, pp 397–462

    Google Scholar 

  70. Pomeroy JW, Parviainen J, Hedstrom N, Gray DM (1998) Coupled modelling of forest snow interception and sublimation. Hydrol Process 12:2317–2337

    ADS  Google Scholar 

  71. Pritchard RS, Coon M, McPhee MG, Leavitt E (1977) Winter ice dynamics in the nearshore Beaufort Sea. AIDJEX Bull.37, Applied Physics Lab, University of Washington, Seattle, pp 37–93

    Google Scholar 

  72. Raymond CF (1980) Temperate valley glaciers. In: Colbeck SC (ed) Dynamics of snow and ice masses. New York. Academic Press, pp 79–139

    Google Scholar 

  73. Romanovsky VE, Osterkamp TE, Duzbury NS (1997) An evaluation of three numerical models used in simulations of the active layer and permafrost temperature regimes. Cold Regions Sci Technol 26:195–201

    Google Scholar 

  74. Saito K, Kimoto M, Zhang T, Takata K, Emori S (2007) Evaluating a high‐resolution climate model: Simulated hydrothermal regimes in frozen ground regions and their change under the global warming scenario. J Geophys Res 112:F02S11

    Google Scholar 

  75. Sazonava TS, Romanovsky V (2003) A model for regional‐scale estimation of temporal and spatial variability of active layer thickness and mean annual ground temperatures. Permafr Periglac Proc 14:125–139

    Google Scholar 

  76. Schoof C (2007) Ice sheet grounding line dynamics: Steady states, stability, and hysteresis. J Geophys Res 112:F03S28

    Google Scholar 

  77. Shiklomanov NI et al (2007) Comparison of model‐produced active layer fields: Results for northern Alaska. J Geophys Res 112(F2):F02S10

    Google Scholar 

  78. Shiklomanov NI, Nelson FE (1999) Analytic representation of the active layer thickness field, Kuparuk River Basin, Alaska. Eccol Model 123:105–125

    Google Scholar 

  79. Shiklomanov NI, Nelson FE (2002) Active‐layer mapping at regional scales: a 13-year spatial time series for the Kuparuk region, north‐central Alaska. Permafrost Periglac Proc 13:219–230

    Google Scholar 

  80. Steele M, Flato GM (2000) Sea ice growth and modeling: A survey. In: Lewis EL et al (eds) The freshwater budget of the Arctic. Kluwer, Dordrecht, pp 549–587

    Google Scholar 

  81. Stroeve J et al (2007) Arctic sea ice decline: Faster than forecast. Geophys Res Lett 34:L09501, doi:10.1029/2007GL029703

    ADS  Google Scholar 

  82. Thomas RH (1979) The dynamics of marine ice sheets. J Glaciol 24:167–177

    Google Scholar 

  83. Tremblay L-B, Mysak LA (1997) Modeling sea ice as a granular material, including the dilatancy effect. J Phys Oceanogr 27:2342–2360

    ADS  Google Scholar 

  84. Trujillo E, Ramirez JA, Elder KJ (2007) Topographic, meteorologic and canopy controls on the scaling characteristics if the spatial distribution of snow depth fields. Water Resour Res 43:W07409

    ADS  Google Scholar 

  85. van der Veen CJ, Payne AJ (2004) Modelling land-ice dynamics. In: Bamber JL, Payne AJ (eds) Mass balance of the cryosphere: Observations and modelling of contemporary and future change. Cambridge University Press, Cambridge, pp 169–225

    Google Scholar 

  86. Washington WM, Meehl GA (1996) High‐latitude climate change in a global coupled ocean‐atmosphere‐sea ice model with increased atmospheric CO2. J Geophys Res 101(D8):12795–12802

    ADS  Google Scholar 

  87. Washington WM, Semtner AJ, Parkinson C, Morrison L (1976) On the development of a seasonal change sea-ice model. J Oceanogr 6:679–685

    ADS  Google Scholar 

  88. Weertman J (1957) On the sliding of glaciers. J Glaciol 5:287–303

    Google Scholar 

  89. Williams PJ, Smith MW (1989} The frozen earth. Cambridge University Press, Cambridge, p 306

    Google Scholar 

  90. Winstral A, Marks D (2002) Simulating wind fields and snow redistribution using terrain‐based parameters to model snow accumulation and melt over a semi-arid mountain catchment. Hydrol Process 16:3585–3603

    ADS  Google Scholar 

  91. World Meteorological Organization (2007) WMO sea ice nomenclature, no 269. WMO, Geneva

    Google Scholar 

  92. Zhang T-J, Armstrong RL, Smith J (2003) Investigation of the near‐surface soil freeze‐thaw cycle in the contiguous United States: Algorithm development and validation. J Geophys Res 108(D22):8860, GCP 21-1 – 21-14

    Google Scholar 

  93. Zhang T-J et al (2005) Spatial and temporal variability in active layer thickness over the Russian Arctic drainage basin. J Geophys Res 110:D16101

    ADS  Google Scholar 

  94. Joint Commission on Oceanography and Marine Meteorology (2007) http://www.ipy-ice-portal.org/. Accessed 22 Aug 2008

Books and Reviews

  1. Bamber JL, Payne AJ (eds) (2004) Mass balance of the cryosphere: Observations and modelling of contemporary and future change. Cambridge University Press, Cambridge, p 644

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Barry, R.G. (2009). Cryosphere Models . In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_110

Download citation

Publish with us

Policies and ethics