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This article gives a brief overview of some of the ways in which number theory and
combinatorics interacts with ergodic theory. The main themes are illustrated by
examples related to recurrence, mixing, orbit counting, and Diophantine analysis.
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Glossary

Almost everywhere (abbreviated a.e.)

A property that makes sense for each point x in a measure space (X,B, µ) is said
to hold almost everywhere (or a.e.) if the set N ⊂ X on which it does not hold
satisfies N ∈ B and µ(N) = 0.

Čech–Stone compactification of N, βN
A compact Hausdorff space that containing N as a dense subset with the property
that any map from N to a compact Hausdorff space K extends uniquely to a
continuous map βN → K. This property and the fact that βN is a compact
Hausdorff space containing N characterizes βN up to homeomorphism.

Curvature

An intrinsic measure of the curvature of a Riemannian manifold depending only on
the Riemannian metric; in the case of a surface it determines whether the surface is
locally convex (positive curvature), locally saddle-shaped (negative) or locally flat
(zero).

Diophantine approximation

The author thanks Richard Sharp for useful comments on the draft version.
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Theory of the approximation of real numbers by rational numbers: how small can
the distance from a given irrational real number to a rational number be made in
terms of the denominator of the rational?

Equidistributed

A sequence is equidistributed if the asymptotic proportion of time it spends in an
interval is proportional to the length of the interval.

Ergodic

A measure-preserving transformation is ergodic if the only invariant functions are
equal to a constant a.e.; equivalently if the transformation exhibits the convergence
in the quasi-ergodic hypothesis.

Ergodic theory

The study of statistical properties of orbits in abstract models of dynamical systems;
more generally properties of measure-preserving (semi-)group actions on measure
spaces.

Geodesic (flow) The shortest path between two points on a Riemannian manifold;
such a geodesic path is uniquely determined by a starting point and the initial
tangent vector to the path (that is, a point in the unit tangent bundle). The
transformation on the unit tangent bundle defined by flowing along the geodesic
defines the geodesic flow.

Haar measure (on a compact group)

If G is a compact topological group, the unique measure µ defined on the Borel sets
of G with the property that µ(A + g) = µ(A) for all g ∈ G and µ(G) = 1.

Measure-theoretic entropy

A numerical invariant of measure-preserving systems that reflects the asymptotic
growth in complexity of measurable partitions refined under iteration of the map.

Mixing

A measure-preserving system is mixing if measurable sets (events) become asymp-
totically independent as they are moved apart in time (under iteration).

(Quasi) Ergodic hypothesis

The assumption that, in a dynamical system evolving in time and preserving a nat-
ural measure, there are some reasonable conditions under which the ‘time average’
along orbits of an observable (that is, the average value of a function defined on
the phase space) will converge to the ‘space average’ (that is, the integral of the
function with respect to the preserved measure).

Recurrence

Return of an orbit in a dynamical system close to its starting point infinitely often.

S-unit theorems

A circle of results stating that linear equations in fields of zero characteristic have
only finitely many solutions taken from finitely-generated multiplicative subgroups
of the multiplicative group of the field (apart from infinite families of solutions
arising from vanishing sub-sums).

Topological entropy
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A numerical invariant of topological dynamical systems that measures the asymp-
totic growth in the complexity of orbits under iteration. The variational principle
states that the topological entropy of a topological dynamical system is the supre-
mum over all invariant measures of the measure-theoretic entropies of the dynamical
systems viewed as measurable dynamical systems.

I. Definition of the Subject

Number theory is a branch of pure mathematics concerned with the properties
of numbers in general, and integers in particular. The areas of most relevance
to this article are Diophantine analysis (the study of how real numbers may be
approximated by rational numbers, and the consequences for solutions of equations
in integers); analytic number theory, and in particular asymptotic estimates for
the number of primes smaller than X as a function of X; equidistribution, and
questions about how the digits of real numbers are distributed. Combinatorics
is concerned with identifying structures in discrete objects; of most interest here
is that part of combinatorics connected with Ramsey theory, asserting that large
subsets of highly structured objects must automatically contain large replicas of
that structure. Ergodic theory is the study of asymptotic behavior of group actions
preserving a probability measure; it has proved to be a powerful part of dynamical
systems with wide applications.

II. Introduction

Ergodic theory, part of the mathematical study of dynamical systems, has perva-
sive connections with number theory and combinatorics. This article briefly surveys
how these arise through a small sample of results. Unsurprisingly, many details are
suppressed, and of course the selection of topics reflects the author’s interests far
more than it does the full extent of the flow of ideas between ergodic theory and
number theory. In addition the selection of topics has been chosen in part to be
complementary to those in related articles in the Encyclopedia. A particularly
enormous lacuna is the theory of arithmetic dynamical systems itself — the recent
monograph by Silverman [118] gives a comprehensive overview.

More sophisticated aspects of this connection – in particular the connections be-
tween ergodic theory on homogeneous spaces and Diophantine analysis – are cov-
ered in the articles “Ergodic Theory on Homogeneous Spaces and Metric Number
Theory” by Kleinbock and “Ergodic Theory: Rigidity” by Niţică; more sophisti-
cated overviews of the connections with combinatorics may be found in the article
“Ergodic Theory: Recurrence” by Frantzikinakis and McCutcheon.

III. Ergodic Theory

While the early origins of ergodic theory lie in the quasi-ergodic hypothesis of
classical Hamiltonian dynamics, the mathematical study of ergodic theory concerns
various properties of group actions on measure spaces, including but not limited to
several special branches:

(1) The classical study of single measure-preserving transformations.
(2) Measure-preserving actions of Zd; more generally of countable amenable

groups.
(3) Measure-preserving actions of Rd and more general amenable groups, called

flows.
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(4) Measure-preserving actions of lattices in Lie groups.
(5) Measure-preserving actions of Lie groups.

The ideas and conditions surrounding the quasi-ergodic hypothesis were eventually
placed on a firm mathematical footing by developments starting in 1890. For a sin-
gle measure-preserving transformation T : X → X of a probability space (X,B, µ),
Poincaré [66] showed a recurrence theorem: if E ∈ B is any measurable set, then
for a.e. x ∈ E there is an infinite set of return times, 0 < n1 < n2 < · · ·
with Tnj (x) ∈ E (of course Poincaré noted this in a specific setting, concerned
with a natural invariant measure for the “three-body” problem in planetary mo-
tion).

Poincaré’s qualitative result was made quantitative in the 1930s, when von Neu-
mann [90] used the approach of Koopman [45] to show the mean ergodic theorem:
if f ∈ L2(µ) then there is some f ∈ L2(µ) for which∥∥∥∥∥ 1

N

N−1∑
n=0

f ◦ Tn − f

∥∥∥∥∥
2

−→ 0 as N −→∞;

clearly f then has the property that ‖f −f ◦T‖2 = 0 and
∫

f dµ =
∫

f dµ. Around
the same time, Birkhoff [9] showed the more delicate pointwise ergodic theorem: for
any g ∈ L1(µ) there is some g ∈ L1(µ) for which

1
N

N−1∑
n=0

g(Tnx) → g(x) a.e.;

again it is then clear that g(Tx) = g(x) a.e. and
∫

g dµ =
∫

g dµ.
The map T is called ergodic if the invariance condition forces the function (f

or g) to be equal to a constant a.e. Thus an ergodic map has the property that the
time or ergodic average (1/N)

∑N−1
n=0 f ◦ T j converges to the space average

∫
dµ.

An overview of ergodic theorems and their many extensions may be found in the
article “Ergodic Theorems” by del Junco.

Thus ergodic theory at its most basic level makes strong statements about the
asymptotic behavior of orbits of a dynamical system as seen by observables (mea-
surable functions on the space X). Applying the ergodic theorem to the indicator
function of a measurable set A shows that ergodicity guarantees that a.e. orbit
spends an asymptotic proportion of time in A equal to the volume µ(A) of that set
(as measured by the invariant measure). This points to the start of the pervasive
connections between ergodic theory and number theory – but as this and other
articles relate, the connections extend far beyond this.

IV. Frequency of Returns

In this section we illustrate the way in which a dynamical point of view may
unify, explain and extend quite disparate results from number theory.

IV.1. Normal numbers. Borel [11] showed (as a consequence of what became
the Borel–Cantelli Lemma in probability) that a.e. real number (with respect to
Lebesgue measure) is normal to every base: that is, has the property that any
block of k digits in the base-r expansion appears with asymptotic frequency r−k.
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IV.2. Continued fraction digits. Analogs of normality results for the continued
fraction expansion of real numbers were found by Khinchin, Kuz′min, Lévy and
others. Any irrational x ∈ [0, 1] has a unique expansion as a continued fraction

x =
1

a1(x) +
1

a2(x) +
1

a3(x) + · · ·
and, just as in the case of the familiar base-r expansion, it turns out that the
digits (an(x)) obey precise statistical rules for a.e. x. Gauss conjectured that the
appearance of individual digits would obey the law

1
N
|{k : 1 6 k 6 N, ak(x) = j}| −→ 2 log(1 + j)− log j − log(2 + j)

log 2
. (1)

This was eventually proved by Kuz′min [46] and Lévy [51], and the probability
distribution of the digits is the Gauss–Kuz′min law. Khinchin [43] developed this
further, showing for example that

lim
n→∞

(a1(x)a2(x) . . . an(x))1/n =
∞∏

n=1

(
(n + 1)2

n(n + 2)

)log n/ log 2

= 2.68545 · · · for a.e. x.

Lévy [52] showed that the denominator qn(x) of the nth convergent pn(x)
qn(x) (the

rational obtained by truncating the continued fraction expansion of x at the nth
term) grows at a specific exponential rate,

lim
n→∞

1
n

log qn(x) =
π2

12 log 2
for a.e. x.

IV.3. First digits. The astronomer Newcomb [59] noted that the first digits of
large collections of numerical data that are not dimensionless have a specific and
non-uniform distribution:

“The law of probability of the occurrence of numbers is such that
all mantissæ of their logarithms are equally probable.”

This is now known as Benford’s Law, following his popularization and possible re-
discovery of the phenomenon [5]. In both cases, this was an empirical observation
eventually made rigorous by Hill [35]. Arnold [96, App. 12] pointed out the dy-
namics behind this phenomena in certain cases, best illustrated by the statistical
behavior of the sequence 1, 2, 4, 8, 1, 3, 6, 1, . . . of first digits of powers of 2. Empiri-
cally, the digit 1 appears about 30% of the time, while the digit 9 appears about 5%
of the time.

IV.4. Equidistribution. Weyl [93] (and, separately, Bohl [10] and Sierpiński [82])
found an important instance of equidistribution. Writing {·} for the fractional part,
a sequence (an) of real numbers is said to be equidistributed modulo 1 if, for any
interval [a, b] ⊂ [0, 1),

1
N
|{k : 1 6 k 6 N, {ak} ∈ [a, b]}| → (b− a) as N →∞;

equivalently if
1
N

N∑
k=1

f(ak) →
∫ 1

0

f(t) dt as N →∞
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for all continuous functions f . Weyl showed that the sequence {nα} is equidis-
tributed if and only if α is irrational. This result was refined and extended in
many directions; for example, Hlawka [37] and others found rates for the conver-
gence in terms of the discrepancy of the sequence, Weyl [94] proved equidistribution
for {n2α}, and Vinogradov for {pnα} where pn is the nth prime.

IV.5. The ergodic context. All the results of this section are manifestations
of various kinds of convergence of ergodic averages. Borel’s theorem on normal
numbers is an immediate consequence of the fact that Lebesgue measure on [0, 1)
is invariant and ergodic for the map x 7→ bx modulo 1 with b > 2. The asymptotic
properties of continued fraction digits are all a consequence of the fact that the
Gauss measure defined by

µ(A) =
1

log 2

∫
A

dx

1 + x
for A ⊂ [0, 1]

is invariant and ergodic for the Gauss map x 7→
{

1
x

}
, and the orbit of an irrational

number under the Gauss map determine the digits appearing in the continued
fraction expansion much as the orbit under the map x 7→ bx (mod 1) determines
the digits in the base b expansion.

The results on equidistribution and the frequency of first digits are related to
ergodic averaging of a different sort. For example, writing Rα(t) = t + α modulo 1
for the circle rotation by α, the first digit of 2n is the digit j if and only if

log10 j 6 Rlog10(2)
(0) < log10(j + 1).

Thus the asymptotic frequency of appearance concerns the orbit of a specific point.
In order to see what this means, consider a continuous map T : X → X of a
compact metric space (X, d). The space M(T ) of Borel probability measures on the
Borel σ-algebra of (X, d) is a non-empty compact convex set in the weak*-topology,
each extreme point is an ergodic measure for T , and these ergodic measures are
mutually singular. If M(T ) is not a singleton and µ1, µ2 ∈ M(T ) are distinct
ergodic measures, then for a continuous function f with

∫
X

f dµ1 6=
∫

X
f dµ2 it

is clear that the ergodic averages 1
N

∑N−1
n=0 f(Tnx) must converge to

∫
X

f dµ1 a.e.
with respect to µ1 and to

∫
X

f dµ2 a.e. with respect to µ2. Thus the presence of
many invariant measures for a continuous map means that ergodic averages along
the orbits of specific points need not converge to the space average with respect to
a chosen invariant measure.

In the extreme situation of unique ergodicity (a single invariant measure, which is
necessarily an extreme point ofM(T ) and hence ergodic) the convergence of ergodic
averages is much more uniform. Indeed, if T is uniquely ergodic with M(T ) = {µ}
then, for any continuous function f : X → R,

1
N

N−1∑
n=0

f(Tnx) −→
∫

X

f dµ uniformly in x

(see Oxtoby [61]). The circle rotation Rα is uniquely ergodic for irrational α, leading
to the equidistribution results.

The ergodic viewpoint on equidistribution also places equidistribution results
in a wider context. Weyl’s result that {n2α} (indeed, the fractional part of any
polynomial with at least one irrational coefficient) is equidistributed for irrational α
was given another proof by Furstenberg [24] using the notion of unique ergodicity.
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These methods were then used in the study of nilsystems (translations on quotients
of nilpotent Lie groups) by Auslander, Green and Hahn [3] and Parry [62], and
these nilsystems play an essential role for polynomial (and other non-conventional)
ergodic averaging (see Host and Kra [38] and Leibman [50] in the polynomial case;
Host and Kra [39] in the multiple linear case). Remarkably, nilsystems are starting
to play a role within combinatorics – an example is the work on the asymptotic
number of 4-step arithmetic progressions in the primes by Green and Tao [34].
Pointwise ergodic theorems have also been found along sequences other than N;
notably for integer-valued polynomials and along the primes for L2 functions by
Bourgain [13], [12]. For more details, see the survey paper of del Junco [102] on
ergodic theorems.

V. Ergodic Ramsey Theory and Recurrence

In 1927 van der Waerden proved a conjecture attributed to Baudet: if the natural
numbers are written as a disjoint union of finitely many sets,

N = C1 t C2 t · · · t Cr, (2)

then there must be one set Cj that contains arbitrarily long arithmetic progressions.
That is, there is some j ∈ {1, . . . , r} such that for any k > 1 there are a > 1
and n > 1 with

a, a + n, a + 2n, . . . , a + (k − 1)n ∈ Cj .

The original proof appears in van der Waerden’s paper [89], and there is a discussion
of how he found the proof in [123].

Work of Furstenberg and Weiss [28] and others placed the theorem of van der
Waerden in the context of topological dynamics, giving alternative proofs. Specifi-
cally, van der Waerden’s theorem is a consequence of topological multiple recurrence:
the return of points under iteration in a topological dynamical system close to their
starting point along finite sequences of times. The same approach readily gives
dynamical proofs of Rado’s extension [69] of van der Waerden’s theorem, and of
Hindman’s theorem [36]. The theorems of Rado and Hindman introduce a new
theme: given a set A = {n1, n2, . . . } of natural numbers, write FS(A) for the set
of numbers obtained as finite sums ni1 + · · · + nij with i1 < i2 < · · · < ij . Rado
showed that for any large n there is some Cs containing some FS(A) for a set A of
cardinality n. Hindman showed that there is some Cs containing some FS(A) for
an infinite set A.

In the theorem of van der Waerden, it is clear that for any reasonable notion
of “proportion” or “density” one of the sets Cj must occupy a positive proportion
of N. A set A ⊂ N is said to have positive upper density if there are sequences (Mi)
and (Ni) with Ni −Mi →∞ as i →∞ such that

lim
i→∞

1
Ni −Mi

|{a ∈ A : Mi < a < Ni}| > 0.

Erdős and Turán [21] conjectured the stronger statement that any subset of N with
positive upper density must contain arbitrary long arithmetic progressions. This
statement was shown for arithmetic progressions of length 3 by Roth [72] in 1952,
then for length 4 by Szemerédi [86] in 1969. The general result was eventually
proved by Szemerédi [87] in 1975 in a lengthy and extremely difficult argument.
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Furstenberg saw that Szemerédi’s Theorem would follow from a deep extension of
the Poincaré recurrence phenomena described in Section III and proved that exten-
sion [25] (see also the survey article by Furstenberg, Katznelson and Ornstein [106]).
The multiple recurrence result of Furstenberg says that for any measure-preserving
system (X,B, µ, T ) and set A ∈ B with µ(A) > 0, and for any k ∈ N,

lim inf
N−M→∞

1
N −M + 1

N∑
n=M

µ
(
A ∩ T−nA ∩ T−2nA ∩ · · · ∩ T−knA

)
> 0.

An immediate consequence is that in the same setting there must be some n > 1
for which

µ
(
A ∩ T−nA ∩ T−2nA ∩ · · · ∩ T−knA

)
> 0. (3)

A general correspondence principle, due to Furstenberg, shows that statements in
combinatorics like Szemerédi’s Theorem are equivalent to statements in ergodic
theory like (3).

This opened up a significant new field of ergodic Ramsey theory, in which meth-
ods from dynamical systems and ergodic theory are used to produce new results
in infinite combinatorics. For an overview, see the articles “Ergodic Theory on
Homogeneous Spaces and Metric Number Theory” by Kleinbock, “Ergodic The-
ory: Rigidity” by Niţică, “Ergodic Theory: Recurrence” by Frantzikinakis and
McCutcheon and the survey articles of Bergelson [97], [98], [99]. The field is too
large to give an overview here, but a few examples will give a flavor of some of the
themes.

Call a set R ⊂ Z a set of recurrence if, for any finite measure-preserving in-
vertible transformation T of a finite measure space (X,B, µ) and any set A ∈ B
with µ(A) > 0, there are infinitely many n ∈ R for which µ(A ∩ T−nA) > 0.
Thus Poincaré recurrence is the statement that N is a set of recurrence. Fursten-
berg and Katznelson [26] showed that if T1, · · · , Tk form a family of commuting
measure-preserving transformations and A is a set of positive measure, then

lim inf
N→∞

1
N

N−1∑
n=0

µ(T−n
1 A ∩ · · · ∩ T−n

k A) > 0.

This remarkable multiple recurrence implies a multi-dimensional form of Szemerédi’s
theorem. Recently, Gowers has found a non-ergodic proof of this [32].

Furstenberg also gave an ergodic proof of Sárközy’s theorem [73]: if p ∈ Q[t] is a
polynomial with p(Z) ⊂ Z and p(0) = 0, then {p(n)}n>0 is a set of recurrence. This
was extended to multiple polynomial recurrence by Bergelson and Leibman [7].

V.1. Topology and coloring theorems. The existence of idempotent ultrafil-
ters in the Čech–Stone compactification βN gives rise to an algebraic approach to
many questions in topological dynamics (this notion has its origins in the work
of Ellis [104]). Using these methods, results like Hindman’s finite sums theorem
find elegant proofs, and many new results in combinatorics have been found. For
example, in the partition (2) there must be one set Cj containing a triple x, y, z
solving x− y = z2.

A deeper application is to improve a strengthening of Kronecker’s theorem. To
explain this, recall that a set S is called IP if there is a sequence (ni) of natural
numbers (which do not need to be distinct) with the property that S contains all
the terms of the sequence and all finite sums of terms of the sequence with distinct
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indices. A set S is called IP ∗ if it has non-empty intersection with every IP set,
and a set S is called IP ∗

+ if there is some t ∈ Z for which S − t is IP ∗. Thus
being IP ∗ (or IP ∗

+) is an extreme form of ‘fatness’ for a set. Now let 1, α1, . . . , αk

be numbers that are linearly independent over the rationals, and for any d ∈ N
and kd non-empty intervals Iij ⊂ [0, 1] (1 6 i 6 d, 1 6 j 6 k), let

D = {n ∈ N : {niαj} ∈ Iij for all i, j}.
Kronecker showed that if d = 1 then D is non-empty; Hardy and Littlewood showed
that D is infinite, and Weyl showed that D has positive density. Bergelson [6] uses
these algebraic methods to improve the result by showing that D is an IP ∗

+ set.

V.2. Polynomialization and IP -sets. As mentioned above, Bergelson and Leib-
man [7] extended multiple recurrence to a polynomial setting. For example, let

{pi,j : 1 6 i 6 k, 1 6 j 6 t}
be a collection of polynomials with rational coefficients and pi,j(Z) ⊂ Z, pi,j(0) = 0.
Then if µ(A) > 0, we have

lim inf
N→∞

1
N

N∑
n=1

µ
( k⋂

i=1

( t∏
j=1

T
pi,j(n)
j

)−1

A
)

> 0.

Using the Furstenberg correspondence principle, this gives a multi-dimensional
polynomial Szemerédi theorem: If P : Zr → Z` is a polynomial mapping with the
property that P (0) = 0, and F ⊂ Zr is a finite configuration, then any set S ⊂ Z` of
positive upper Banach density contains a set of the form u+P (nF ) for some u ∈ Z`

and n ∈ N.
In a different direction, motivated in part by Hindman’s theorem, the multiple

recurrence results generalize to IP -sets. Furstenberg and Katznelson [27] proved
a linear IP -multiple recurrence theorem in which the recurrence is guaranteed to
occur along an IP -set. A combinatorial proof of this result has been found by Nagle,
Rödl and Schacht [58]. Bergelson and McCutcheon [8] extended these results by
proving a polynomial IP -multiple recurrence theorem. To formulate this, make the
following definitions. Write F for the family of non-empty finite subsets of N, so
that a sequence indexed by F is an IP -set. More generally, an F-sequence (nα)α∈F
taking values in an abelian group is called an IP -sequence if nα∪β = nα + nβ

whenever α ∩ β = ∅. An IP -ring is a set of the form F (1) = {
⋃

i∈β αi : β ∈ F}
where α1 < α2 < · · · is a sequence in F , and α < β means a < b for all a ∈ α, b ∈ β;
write Fm

< for the set of m-tuples (α1, · · · , αm) from Fm with αi < αj for i < j.
Write PE(m, d) for the collection of all expressions of the form T (α1, · · · , αm) =∏r

i=1 T
pi((n

(b)
αj

)16b6k, 16j6m)

i , (α1, · · · , αm) ∈ (F ∪∅)m
< , where each pi is a polynomial

in a k×m matrix of variables with integer coefficients and zero constant term with
degree 6 d. Then for every m, t ∈ N, there is an IP -ring F (1), and an a =
a(A,m, t, d) > 0, such that, for every set of polynomial expressions {S0, · · · , St} ⊂
PE(m, d),

→
(α1,··· ,αm)∈(F(1))m

<

IP − limµ
( t⋂

i=0

Si(α1, · · · , αm)−1A
)

> 0.

There are a large number of deep combinatorial consequences of this result, not all
of which seem accessible by other means.
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V.3. Sets of Primes. In a remarkable development, Szemerédi’s theorem and
some of the ideas behind ergodic Ramsey theory joined results of Goldston and
Yıldırım [31] in playing a part in Green and Tao’s proof [33] that the set of primes
contains arbitrarily long arithmetic progressions. This profound result is surveyed
from an ergodic point of view in the article of Kra [111]. As with Szemerédi’s
theorem itself, this result has been extended to a polynomial setting by Tao and
Ziegler [88]. Given integer-valued polynomials f1, . . . , fk ∈ Z[t] with

f1(0) = · · · = fk(0) = 0

and any ε > 0, Tao and Ziegler proved that there are infinitely many integers x,m
with 1 6 m 6 xε for which x + f1(m), . . . , x + fk(m) are primes.

VI. Orbit-counting as an Analogous Development

Some of the connections between number theory and ergodic theory arise through
developments that are analogous but not directly related. A remarkable instance
of this concerns the long history of attempts to count prime numbers laid alongside
the problem of counting closed orbits in dynamical systems.

VI.1. Counting orbits and geodesics. Consider first the fundamental arith-
metic function π(X) = |{p 6 X : p is prime}|. Tables of primes prepared by
Felkel and Vega in the 18th century led Legendre to suggest that π(X) is ap-
proximately x/(log(X) − 1.08). Gauss, using both computational evidence and a
heuristic argument, suggested that π(X) is approximated by

li(X) =
∫ X

2

dt

log t
.

Both of these suggestions imply the well-known asymptotic formula

π(X) ∼ X

log X
. (4)

Riemann brought the analytic ideas of Dirichlet and Chebyshev (who used the
zeta function to find a weaker version of (4) with upper and lower bounds for the
quantity π(X) log(X)

X ) to bear by proposing that the zeta function

ζ(s) =
∞∑

n=1

1
ns

=
∏
p

(
1− p−s

)−1
, (5)

already studied by Euler, would connect properties of the primes to analytic meth-
ods. An essential step in these developments, due to Riemann, is the meromorphic
extension of ζ from the region <(s) > 1 in (5) to the whole complex plane and a
functional equation relating the value of the extension at s to the value at 1 − s.
Moreover, Riemann showed that the extension has readily understood real zeros,
and that all the other zeros he could find were symmetric about <(s) = 1

2 . The
Riemann hypothesis asserts that zeros in the region 0 < <(s) < 1 all lie on the
line <(s) = 1

2 , and this remains open.
Analytic properties of the Riemann zeta function were used by Hadamard and

de la Vallée Poussin to prove (4), the Prime Number Theorem, in 1896. Tauberian
methods developed by Wiener and Ikehara [95] later gave different approaches to
the Prime Number Theorem.
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These ideas initiated the widespread use of zeta functions in several parts of
mathematics, but it was not until the middle of the 20th century that Selberg [79]
introduced a zeta function dealing directly with quantities arising in dynamical
systems: the lengths of closed geodesics on surfaces of constant curvature −1. The
geodesic flow acts on the unit tangent bundle to the surface by moving a point
and unit tangent vector at that point along the unique geodesic they define at unit
speed. Closed geodesics are then in one-to-one correspondence with periodic orbits
of the associated geodesic flow on the unit tangent bundle, and it is in this sense
that the quantities are dynamical. The function defined by Selberg takes the form

Z(s) =
∏
τ

∞∏
k=0

(
1− e−(s+k)|τ |

)
,

in which τ runs over all the closed geodesics, and |τ | denotes the length of the
geodesic. In a direct echo of the Riemann zeta function, Selberg found an analytic
continuation to the complex plane, and showed that the zeros of Z lie on the real
axis or on the line <(s) = 1

2 (the analogue of the Riemann hypothesis for Z; see also
the paper of Hejhal [108]). The zeros of Z are closely connected to the eigenvalues
for the Laplace–Beltrami operator, and thus give information about the lengths
of closed geodesics via Selberg’s trace formula in the same paper. Huber [40] and
others used this approach to give an analogue of the prime number theorem for
closed geodesics – a prime orbit theorem.

Sinai [83] considered closed geodesics on a manifold M with negative curvature
bounded between −R2 and −r2, and found the bounds

(dim(M)− 1)r 6 lim inf
T→∞

log π(T )
T

6 lim sup
T→∞

log π(T )
T

6 (dim(M)− 1)R

for the number π(T ) of closed geodesics of multiplicity one with length less than T ,
analogous to Chebyshev’s result.

The essential dynamical feature behind the geodesic flow on a manifold of neg-
ative curvature is that it is an example of an Anosov flow [2]. These are smooth
dynamical R-actions (equivalently, first-order differential equations on Riemannian
manifolds) with the property that the tangent bundle has a continuously varying
splitting into a direct sum Eu⊕Es⊕Eo and the action of the differential of the flow
acts on Eu as an exponential expansion, on Es as an exponential contraction, Eo is
the one-dimensional bundle of vectors that are tangent to orbits, and the expansion
and contraction factors are bounded. In the setting of Anosov flows, the natural
orbit counting function is π(X) = |{τ : τ a closed orbit of length |τ | 6 X}|. Mar-
gulis [54], [55] generalized the picture to weak-mixing Anosov flows by showing a
prime orbit theorem of the form

π(X) ∼ ehtopX

htopX
(6)

for the counting function π(X) = |{τ : τ a closed orbit of length |τ | 6 X}| where
as before htop denotes the topological entropy of the flow. Integral to Margulis’
work is a result on the spatial distribution of the closed geodesics reflected in a
flow-invariant probability measure, now called the Margulis measure.

Anosov also studied discrete dynamical systems with similar properties: dif-
feomorphisms of compact manifolds with a similar splitting of the tangent space
(though in this setting Eo disappears). The archetypal Anosov diffeomorphism is
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a hyperbolic toral automorphism of the sort considered in Section VII.1; for such
automorphisms of the 2-torus Adler and Weiss [1] constructed Markov partitions,
allowing the dynamics of the toral automorphism to be modeled by a topological
Markov shift, and used this to determine when two such automorphisms are mea-
surably isomorphic. Sinai [84], Ratner [70], Bowen [14], [16] and others developed
the construction of Markov partitions in general for Anosov diffeomorphisms and
flows.

Around the same time, Smale [85] introduced a more permissive hyperbolicity
axiom for diffeomorphisms, Axiom A. Maps satisfying Axiom A are diffeomorphisms
satisfying the same hypothesis as that of Anosov diffeomorphisms, but only on the
set of points that return arbitrarily close under the action of the flow (or iteration
of the map).

Thus Markov partitions, and with them associated transfer operators became a
substitute for the geometrical Laplace–Beltrami operators of the setting considered
by Selberg. Bowen [15] extended the uniform distribution result of Margulis to this
setting and found an analogue of Chebychev’s theorem for closed orbits. Parry [63]
(in a restricted case) and Parry and Pollicott [65] went on to prove the prime
orbit theorem in this more general setting. The methods are an adaptation of the
Ikehara–Wiener Tauberian approach to the prime number theorem.

Thus many facets of the prime number theorem story find their echoes in the
study of closed orbits for hyperbolic flows: the role played by meromorphic exten-
sions of suitable zeta functions, Tauberian methods, and so on. Moreover, related
results from number theory have analogues in dynamics, for example Mertens’ the-
orem [57] in the work of Sharp [80] and Noorani [60] and Dirichlet’s theorem in
work of Parry [64].

The “elementary” proof (not using analytic methods) of the prime number the-
orem by Erdös [20] and Selberg [78] (see the survey by Goldfeld [30] for the back-
ground to the results and the unfortunate priority dispute) has an echo in some
approaches to orbit-counting problems from an elementary (non-Tauberian) per-
spective, including work of Lalley [48] on special flows and Everest, Miles, Stevens
and the author [22] in the algebraic setting.

In a different direction Lalley [47] found orbit asymptotics for closed orbits sat-
isfying constraints in the Axiom A setting without using Tauberian theorems. His
more direct approach is still analytic, using complex transfer operators (the same
objects used to by Parry and Pollicott to study the dynamical zeta function at
complex values) and indeed somewhat parallels a Tauberian argument.

Further resonances with number theory arise here. For example, there are results
on the distribution of closed orbits for group extensions (analogous to Chebotarev’s
theorem) and for orbits with homological constraints (see Sharp [81], Katsuda and
Sunada [42]).

Of course the great diversity of dynamical systems subsumed in the phrase
“prime orbit theorem” creates new problems and challenges, and in particular if
there is not much geometry to work with then the reliance on Markov partitions
and transfer operators makes it difficult to find higher-order asymptotics.

Dolgopyat [18] has nonetheless managed to push the Markov methods to obtain
uniform bounds on iterates of the associated transfer operators to the region <(s) >
σ0 with σ0 < 1. This result has wide implications; an example most relevant to
the analogy with number theory is the work of Pollicott and Sharp [67] in which
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Dolgopyat’s result is used to show that for certain geodesic flows there is a two-term
prime orbit theorem of the form

π(X) = li
(
ehtopX

)
+ O

(
ecX

)
for some c < htop.

For non-positive curvature manifolds less is known: Knieper [44] finds upper
and lower bounds for the function counting closed geodesics on rank-1 manifolds of
non-positive curvature of the form

A
ehX

X
6 π(X) 6 BehX

for constants A,B > 0.

VI.2. Counting orbits for group endomorphisms. A prism through which to
view some of the deeper issues that arise in Section VI.1 is provided by group endo-
morphisms. The price paid for having simple closed formulas for all the quantities
involved is of course a severe loss of generality, but the diversity of examples illus-
trates many of the phenomena that may be expected in more general settings when
hyperbolicity is lost.

Consider an endomorphism T : X → X of a compact group with the property
that Fn(T ) < ∞ for all n > 1. The number of closed orbits of length n under T is
then

On(T ) =
1
n

∑
d|n

µ(n/d) Fd(T ). (7)

In simple situations (hyperbolic toral automorphisms for example) it is straightfor-
ward to show that

πT (X) = |{τ : τ a closed orbit under T of length 6 X}| ∼ e(X+1)htop(T )

X
. (8)

Waddington [91] considered quasihyperbolic toral automorphisms, showing that
the asymptotic (8) in this case is multiplied by an explicit almost-periodic function
bounded away from zero and infinity.

This result has been extended further into non-hyperbolic territory, which is most
easily seen via the so-called connected S-integer dynamical systems introduced by
Chothi, Everest and the author [17]. Fix an algebraic number field K with set of
places P (K) and set of infinite places P∞(K), an element of infinite multiplicative
order ξ ∈ K∗, and a finite set S ⊂ P (K) \ P∞(K) with the property that |ξ|w 6 1
for all w /∈ S ∪ P∞(K). The associated ring of S-integers is

RS = {x ∈ K : |x|w 6 1 for all w /∈ S ∪ P∞(K)}.

Let X be the compact character group of RS , and define the endomorphism T :
X → X to be the dual of the map x 7→ ξx on RS . Following Weil [125], write Kw

for the completion at w, and for w finite, write rw for the maximal compact subring
of Kw. Notice that if S = P then RS = K and Fn(T ) = 1 for all n > 1 by the
product formula for A-fields. As the set S shrinks, more and more periodic orbits
come into being, and if S is as small as possible (given ξ) then the resulting system
is (more or less) hyperbolic or quasi-hyperbolic.

For S finite, it turns out that there are still sufficiently many periodic orbits to
have the growth rate result (10), but the asymptotic (8) is modified in much the
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same way as Waddington observed for quasi-hyperbolic toral automorphisms:

lim inf
X→∞

XπT (X)
e(X+1)htop(T )

> 0 (9)

and there is an associated pair (X∗, aT ), where X∗ is a compact group and aT ∈ X∗,
with the property that if a

Nj

T converges in X∗ as j →∞, then there is convergence
in (9).

A simple special case will illustrate this. Taking K = Q, ξ = 2 and S = {3} gives
a compact group endomorphism T with

Fn(T ) = (2n − 1)|2n − 1|3.

For this example the results of [17] are sharper: The expression in (9) converges
along (Xj) if and only if 2Xj converges in the ring of 3-adic integers Z3, the ex-
pression has uncountably many limit points, and the upper and lower limits are
transcendental.

Similarly, the dynamical analogue of Mertens’ theorem found by Sharp may be
found for S-integer systems with S finite. Writing

MT (N) =
∑
|τ |6N

1
eh(T )|τ | ,

it is shown in [17] that for an ergodic S-integer map T with K = Q and S finite,
there are constants kT ∈ Q and CT such that

MT (N) = kT log N + CT + O(1/N) .

Without the restriction that K = Q, it is shown that there are constants kT ∈ Q, CT

and δ > 0 with
MT (N) = kT log N + CT + O(N−δ).

VII. Diophantine Analysis as a Toolbox

Many problems in ergodic theory and dynamical system exploit ideas and results
from number theory in a direct way; we illustrate this by describing a selection of
dynamical problems that call on particular parts of number theory in an essential
way. The example of mixing in Section VII.2 is particularly striking for two rea-
sons: the results needed from number theory are relatively recent, and the ergodic
application directly motivated a further development in number theory.

VII.1. Orbit growth and convergence. The analysis of periodic orbits – how
their number grows as the length grows and how they spread out through space –
is of central importance in dynamics (see Katok [41] for example). An instance of
this is that for many simple kinds of dynamical systems T : X → X (where T is a
continuous map of a compact metric space (X, d)) the logarithmic growth rate of
the number of periodic points exists and coincides with the topological entropy h(T )
(an invariant giving a quantitative measure of the average rate of growth in orbit
complexity under T ). That is, writing

Fn(T ) = |{x ∈ X : Tnx = x}|,

we find
1
n

log Fn(T ) −→ htop(T ) (10)



ERGODIC THEORY: INTERACTIONS WITH COMBINATORICS AND NUMBER THEORY 15

for many of the simplest dynamical systems. For example, if X = Tr is the r-
torus and T = TA is the automorphism of the torus corresponding to a matrix A
in GLr(Z), then TA is ergodic with respect to Lebesgue measure if and only if no
eigenvalue of A is a root of unity. Under this assumption, we have

Fn(TA) =
r∏

i=1

|λn
i − 1|

and

htop(TA) =
r∑

i=1

log max{1, |λi|} (11)

where λ1, . . . , λr are the eigenvalues of A. It follows that the convergence in (10)
is clear under the assumption that TA is hyperbolic (that is, no eigenvalue has
modulus one). Without this assumption the convergence is less clear: for r > 4
the automorphism TA may be ergodic without being hyperbolic. That is, while
no eigenvalues are unit roots some may have unit modulus. As pointed out by
Lind [53] in his study of these quasihyperbolic automorphisms, the convergence (10)
does still hold for these systems, but this requires a significant Diophantine result
(the theorem of Gel′fond [29] suffices; one may also use Baker’s theorem [4]). Even
further from hyperbolicity lie the family of S-integer systems [17], [92]; their orbit-
growth properties are intimately tied up with Artin’s conjecture on primitive roots
and prime divisors of linear recurrence sequences.

VII.2. Mixing and additive relations in fields. The problem of higher-order
mixing for commuting group automorphisms provides a striking example of the
dialogue between ergodic theory and number theory, in which deep results from
number theory have been used to solve problems in ergodic theory, and questions
arising in ergodic theory have motivated further developments in number theory.

An action T of a countable group Γ on a probability space (X,B, µ) is called k-
fold mixing or mixing on (k + 1) sets if

µ
(
A0 ∩ T−g1A1 ∩ · · · ∩ T−gkAk

)
−→ µ(A0) · · ·µ(Ak) (12)

as
gig

−1
j −→∞ for i 6= j

with the convention that g0 = 1Γ, for any sets A0, . . . , Ak ∈ B; gn →∞ in Γ means
that for any finite set F ⊂ Γ there is an N with n > N =⇒ gn /∈ F . For k = 1
the property is called simply mixing. This notion for single transformations goes
back to the foundational work of Rohlin [71], where he showed that ergodic group
endomorphisms are mixing of all orders (and so the notion is not useful for dis-
tinguishing between group endomorphisms as measurable dynamical systems). He
raised the (still open) question of whether any measure-preserving transformation
can be mixing without being mixing of all orders.

A class of group actions that are particularly easy to understand are the al-
gebraic dynamical systems studied systematically by Schmidt [115]: here X is a
compact abelian group, each T g is a continuous automorphism of X, and µ is the
Haar measure on X. Schmidt [75] related mixing properties of algebraic dynamical
systems with Γ = Zd to statements in arithmetic, and showed that a mixing action
on a connected group could only fail to mix in a certain way. Later Schmidt and
the author [76] showed that for X connected, mixing implies mixing of all orders.
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The proof proceeds by showing that the result is exactly equivalent to the follow-
ing statement: if K is a field of characteristic zero, and G is a finitely generated
subgroup of the multiplicative group K×, then the equation

a1x1 + · · ·+ anxn = 1 (13)

for fixed a1, . . . , an ∈ K× has a finite number of solutions x1, . . . , xn ∈ G for which
no subsum

∑
i∈I aixi with I ( {1, . . . , n} vanishes. The bound on the number of

solutions to (13) follows from the profound extensions to W. Schmidt’s subspace
theorem in Diophantine geometry [77] by Evertse and Schlickewei (see [23], [68], [74]
for the details).

The argument in [76] may be cast as follows: failure of k-fold mixing in a con-
nected algebraic dynamical system implies (via duality) an infinite set of solutions
to an equation of the shape (13) in some field of characteristic zero. The S-unit
theorem means that this can only happen if there is some proper subsum that
vanishes infinitely often. This infinite family of solutions to a homogeneous form
of (13) with fewer terms can then be translated back via duality to show that the
system fails to mix for some strictly lower order, proving that mixing implies mixing
of all orders by induction.

Mixing properties for algebraic dynamical systems without the assumption of
connectedness are quite different, and in particular it is possible to have mixing ac-
tions that are not mixing of all orders. This is a simple consequence of the fact that
the constituents of a disconnected algebraic dynamical system are associated with
fields of positive characteristic, where the presence of the Frobenius automorphism
can prevent higher-order mixing. Ledrappier [49] pointed this out via examples of
the following shape. Let

X =
{

x ∈ FZ2

2 : x(a+1,b) + x(a,b) + x(a,b+1) = 0 (mod 2)
}

and define the Z2-action T to be the natural shift action,

(T (n,m)x)(a,b) = x(a+n,b+m).

It is readily seen that this action is mixing with respect to the Haar measure. The
condition x(a+1,b) + x(a,b) + x(a,b+1) = 0 (mod 2) implies that, for any k > 1,

x(0,2k) =
2k∑

j=0

(
2k

j

)
x(j,0) = x(0,0) + x(2k,0) (mod 2) (14)

since every entry in the 2kth row of Pascal’s triangle is even apart from the first
and the last. Now let A = {x ∈ X : x(0,0) = 0} and let x∗ ∈ X be any element
with x(0,0) = 1. Then X is the disjoint union of A and A + x∗, so

µ(A) = µ(A + x∗) = 1
2 .

However, (14) shows that

x ∈ A ∩ T−(2k,0)A =⇒ x ∈ T−(0,2k)A,

so
A ∩ T−(2k,0)A ∩ T−(0,2k)(A + x∗) = ∅

for all k > 1, which shows that T cannot be mixing on three sets.
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The full picture of higher-order mixing properties on disconnected groups is
rather involved; see Schmidt’s monograph [115]. A simple illustration is the con-
struction by Einsiedler and the author [19] of systems with any prescribed order of
mixing. When such systems fail to be mixing of all orders, they fail in a very specific
way – along dilates of a specific shape (a finite subset of Zd). In the example above,
the shape that fails to mix is {(0, 0), (1, 0), (0, 1)}. This gives an order of mixing
as detected by shapes; computing this is in principle an algebraic problem. On
the other hand, there is a more natural definition of the order of mixing, namely
the largest k for which (12) holds; computing this is in principle a Diophantine
problem. A conjecture emerged (formulated explicitly by Schmidt [116]) that for
any algebraic dynamical system, if every set of cardinality r > 2 is a mixing shape,
then the system is mixing on r sets.

This question motivated Masser [56] to prove an appropriate analogue of the S-
unit theorem on the number of solutions to (13) in positive characteristic as follows.
Let H be a multiplicative group and fix n ∈ N. An infinite subset A ⊂ Hn is called
broad if it has both of the following properties:

• if h ∈ H and 1 6 j 6 n, then there are at most finitely many (a1, . . . , an)
in A with aj = h;

• if n > 2, h ∈ H and 1 6 i < j 6 n then there are at most finitely
many (a1, . . . , an) ∈ H with aia

−1
j = h.

Then Masser’s theorem says the following. Let K be a field of characteristic p > 0,
let G be a finitely-generated subgroup of K× and suppose that the equation

a1x1 + · · ·+ anxn = 1

has a broad set of solutions (x1, . . . , xn) ∈ Gn for some constants a1, . . . , an ∈ K×.
Then there is an m 6 n, constants b1, . . . , bm ∈ K× and some (g1, . . . , gm) ∈ Gm

with the following properties:
• gj 6= 1 for 1 6 j 6 m;
• gig

−1
j 6= 1 for 1 6 i < j 6 m;

• there are infinitely many k for which

b1g
k
1 + b2g

k
2 + · · ·+ bmgk

m = 1.

The proof that shapes detect the order of mixing in algebraic dynamics then pro-
ceeds much as in the connected case.

VIII. Future Directions

The interaction between ergodic theory, number theory and combinatorics con-
tinues to expand rapidly, and many future directions of research are discussed in
the articles “Ergodic Theory on Homogeneous Spaces and Metric Number Theory”
by Kleinbock, “Ergodic Theory: Rigidity” by Niţică and “Ergodic Theory: Recur-
rence” by Frantzikinakis and McCutcheon. Some of the directions most relevant to
the examples discussed in this article include the following.

The recent developments mentioned in Section V.3 clearly open many exciting
prospects involving finding new structures in arithmetically significant sets (like the
primes). The original conjecture of Erdős and Turán [21] asked if

∑
a∈A⊂N

1
a = ∞

is sufficient to force the set A to contain arbitrary long arithmetic progressions,
and remains open. This would of course imply both Szemerédi’s theorem [87] and
the result of Green and Tao [33] on arithmetic progressions in the primes. More
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generally, it is clear that there is still much to come from the dialogue subsuming
the four parallel proofs of Szemerédis: one by purely combinatorial methods, one by
ergodic theory, one by hypergraph theory, and one by Fourier analysis and additive
combinatorics. For an overview, see the survey papers of Tao [119], [120], [121].

In the context of the orbit-counting results in Section VI, a natural problem is to
on the one hand obtain finer asymptotics with better control of the error terms, and
on the other to extend the situations that can be handled. In particular, relaxing the
hypotheses related to hyperbolicity (or negative curvature) is a constant challenge.
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metic progressions. J. Analyse Math., 31:204–256, 1977.
26. H. Furstenberg and Y. Katznelson. An ergodic Szemerédi theorem for commuting transfor-
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58. B. Nagle, V. Rödl, and M. Schacht. The counting lemma for regular k-uniform hypergraphs.

Random Structures Algorithms, 28(2):113–179, 2006.
59. S. Newcomb. Note on the frequency of the use of digits in natural numbers. Amer. J. Math.,

4(1):39–40, 1881.

60. M. S. Md. Noorani. Mertens’ theorem and closed orbits of ergodic toral automorphisms. Bull.
Malaysian Math. Soc. (2), 22(2):127–133, 1999.

61. J. C. Oxtoby. Ergodic sets. Bull. Amer. Math. Soc., 58:116–136, 1952.

62. W. Parry. Ergodic properties of affine transformations and flows on nilmanifolds. Amer. J.
Math., 91:757–771, 1969.

63. W. Parry. An analogue of the prime number theorem for closed orbits of shifts of finite type

and their suspensions. Israel J. Math., 45(1):41–52, 1983.
64. W. Parry. Bowen’s equidistribution theory and the Dirichlet density theorem. Ergodic Theory

Dynam. Systems, 4(1):117–134, 1984.
65. W. Parry and M. Pollicott. An analogue of the prime number theorem for closed orbits of

Axiom A flows. Ann. of Math. (2), 118(3):573–591, 1983.
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83. Ja. G. Sinăı. Asymptotic behavior of closed geodesics on compact manifolds with negative
curvature. Izv. Akad. Nauk SSSR Ser. Mat., 30:1275–1296, 1966.
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Birkhäuser Verlag, Basel, 1995.

116. K. Schmidt. The dynamics of algebraic Zd-actions. In European Congress of Mathematics,

Vol. I (Barcelona, 2000), volume 201 of Progr. Math., pages 543–553. Birkhäuser, Basel,
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