Skip to main content

Definition of the Subject

Fractals occur in a wide range of biological applications:

  1. 1)

    In morphology when the shape of an organism (tree) or an organ(vertebrate lung) has a self‐similar brunching structure which can beapproximated by a fractal set (Sect. “Self‐Similar Branching Structures”).

  2. 2)

    Inallometry when theallometric power laws can be deduced from the fractal nature of thecirculatory system (Sect. “ FractalMetabolic Rates”).

  3. 3)

    Inecology whena colony or a habitat acquire fractal shapes due to some SOCprocesses such as diffusion limited aggregation (DLA) or percolation whichdescribes forest fires (Sects. “ Physical Models of BiologicalFractals”–“ Percolation and ForestFires”).

  4. 4)

    Inepidemiology whensome of the features of the epidemics is described by percolation which inturn leads to fractal behavior (Sect. “ Percolation and ForestFires”).

  5. 5)

    In behavioralsciences , when a trajectory of foraging animal...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A llometric laws:

Anallometric law describes the relationship between two attributes of livingorganisms y and x, and is usually expressed as a power-law:\( { y\sim x^\alpha } \), where α is thescaling exponent of the law. For example, xcan represent total body mass Mand y can represent the mass ofa brain m b. Inthis case \( { m_{\text{b}}\sim M^{3/4} }\). Another example of an allometric law:\( { B\sim M^{3/4} } \) where B is metabolic rate and M is body mass. Allometric laws can be also found inecology: the number of different species N found in a habitat of area A scales as \( { N\sim A^{1/4} }\).

Radial distribution function:

Radial distribution function g(r) describes howthe average density of points of a set behaves as function ofdistance r from a point of thisset. For an empirical set of N datapoints, the distances between all pair of points are computed and the numberof pairs \( { N_{\text{p}}(r) }\) such that their distance is lessthen r is found. Then\( M(r)=2N_{\text{p}}(r)/N \) gives the averagenumber of the neighbors (mass) of the set withina distance r. For a certaindistance bin \( { r_1<r<r_2 }\), we define \( g[(r_2+r_1)/2]=[M(r_2)-M(r_1)]/[V_d(r_2)-V_d(r_1)] \), where \( V_d(r) =2\pi^{d/2}r^d/[d\Gamma(d/2)] \) is thevolume/area/length of a d‑dimensional sphere/circle/interval ofradius r.

Fractal set:

We definea fractal set with the fractal dimension \( { 0<d_{\text{f}}<d }\) as a set for which\( {M(r)\sim r^{d_{\text{f}}} } \) for\( { r\to\infty } \). Accordingly, for sucha set g(r) decreases as a power law of the distance\( {g(r)\sim r^{-\chi} } \), where\( {\chi=d-d_{\text{f}} }\).

Correlation function:

For a superposition of a fractal set and a set with a finite density defined as\( \rho= \lim_{r\to \infty} M(r)/V_d(r) \),the correlation function is defined as \( { h(r) \equiv g(r)-\rho }\).

Long‐range power law correlations:

The set of points has long-rangepower law correlations (LRPLC) if \( h(r)\sim r^{-\chi} \) for \( { r\to \infty } \) with\( { 0<\chi<d } \). LRPLC indicate the presence of a fractal set with fractaldimension \( { d_{\text{f}} =d-\chi } \) superposed with a uniform set.

Critical point:

Critical point is defined as a point in the systemparameter space (e. g. temperature, \( { T=T_{\text{c}} } \), and pressure \( { P=P_{\text{c}} } \)),near which the system acquires LRPLC

$$h(r)\sim \frac{1}{r^{d-2+\eta}} \exp (r/\xi)\:,$$
(1)

where ξ is the correlation length which diverges near the criticalpoint as \( { \sim |T-T_{\text{c}}|^{-\nu} } \). Here \( { \eta > 0 } \) and \( { \nu > 0 } \) arecritical exponents which depend on the few system characteristics such asdimensionality of space. Accordingly, the system is characterized by fractaldensity fluctuations with \( { d_{\text{f}}=2-\eta } \).

Self‐organized criticality:

Self‐organized criticality (SOC) is a term which describesa system for which the critical behavior characterized by a largecorrelation length is achieved for a wide range of parameters and thusdoes not require special tuning. This usually occurs when a criticalpoint corresponds to an infinite value of a system parameter, such asa ratio of the characteristic time of the stress build up anda characteristic time of the stress release.

Morphogenesis:

Morphogenesis is a branch of developmental biologyconcerned with the shapes of organs and the entire organisms. Several types ofmolecules are particularly important during morphogenesis. Morphogens aresoluble molecules that can diffuse and carry signals that control celldifferentiation decisions in a concentration‐dependent fashion. Morphogenstypically act through binding to specific protein receptors. An importantclass of molecules involved in morphogenesis are transcription factor proteinsthat determine the fate of cells by interacting with DNA. The morphogenesis ofthe branching fractal‐like structures such as lungs involves a dozen ofmorphogenes. The mechanism for keeping self‐similarity of the branches atdifferent levels of branching hierarchy is not yet fully understood. Theexperiments with transgenic mice with certain genes knocked‐out produce micewithout limbs and lungs or without terminal buds.

Bibliography

  1. Aiello L, Dean C (1990) An Introduction to Human Evolutionary Anatomy. Academic Press, London

    Google Scholar 

  2. Albert R, Barabási A-L (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97

    Google Scholar 

  3. Alencar AM, Buldyrev SV, Majumdar A, Stanley HE, Suki B (2003) Perimeter growth of a branched structure: application to crackle sounds in the lung. Phys Rev E 68:11909

    ADS  Google Scholar 

  4. Arneodo A, Bacry E, Graves PV, Muzy JF (1995) Characterizing long-range correlations in DNA sequences from wavelet analysis. Phys Rev Lett 74:3293–3296

    ADS  Google Scholar 

  5. Arneodo A, D'Aubenton‐Carafa Y, Audit B, Bacry E, Muzy JF, Thermes C (1998) What can we learn with wavelets about DNA sequences. Physica A 249:439–448

    Google Scholar 

  6. Ashkenazy Y, Hausdorff JM, Ivanov PC, Stanley HE (2002) A stochastic model of human gait dynamics. Physica A 316:662–670

    MathSciNet  ADS  MATH  Google Scholar 

  7. Bak P, Sneppen K (1993) Punctuated equilibrium and criticality in a simple model of evolution. Phys Rev Lett 71:4083–4086

    ADS  Google Scholar 

  8. Bak P, Tang C, Wiesenfeld K (1987) Self‐organized criticality: an explanation of \( { 1/f } \) noise. Phys Rev Lett 59:381–384

    MathSciNet  ADS  Google Scholar 

  9. Banavar JR, Green JL, Harte J, Maritan A (1999) Finite sizescaling in ecology. Phys Rev Lett 83:4212–4214

    ADS  Google Scholar 

  10. Banavar JR, Damuth J, Maritan A, Rinaldo A (2002) Supply‐demandbalance and metabolic scaling. Proc Natl Acad Sci USA 99:10506–10509 (2002)

    ADS  MATH  Google Scholar 

  11. Banavar JR, Damuth J, Maritan A, Rinaldo A (2003) Allometric cascades. Nature 421:713–714

    ADS  Google Scholar 

  12. Barabási A-L (2005) The origin of bursts and heavy tails in humandynamics. Nature 435:207–211

    Google Scholar 

  13. BarabásiA-L,Stanley HS (1995) Fractal Concepts in Surface Growth. Cambridge UniversityPress, Cambridge

    Google Scholar 

  14. Bassingthwaighte JB, Liebovitch L, West BJ (1994) FractalPhysiology. Oxford University Press, Oxford

    Google Scholar 

  15. Ben Jacob E, Aharonov Y, Shapira Y (2005) Bacteria harnessingcomplexity. Biofilms 1:239–263

    Google Scholar 

  16. Bernaola‐Galvan P, Ivanov PC, Amaral LAN, Stanley HE (2001)Scale invariance in the nonstationarity of human heart rate. Phys Rev Lett87:168105

    Google Scholar 

  17. Bhaskar KR, Turner BS, Garik P, Bradley JD, Bansil R, Stanley HE, LaMont JT (1992) Viscous fingering of HCl through gastric mucin. Nature 360:458–461

    ADS  Google Scholar 

  18. Bishop M, Michels JPJ (1985) The shape of ring polymers. J Chem Phys 82:1059–1061

    ADS  Google Scholar 

  19. Buldyrev SV (2006) Power Law Correlations in DNA Sequences. In:Koonin EV, Karev G, Wolf Yu (eds) Power Laws, Scale-Free Networks and GenomeBiology. Springer, Berlin, pp 123–164

    Google Scholar 

  20. Buldyrev SV, Goldberger AL, Havlin S, Peng C-K, Stanley HE(1994) Fractals in Biology and Medicine: From DNA to the Heartbeat. In: BundeA, Havlin S (eds) Fractals in Science. Springer, Berlin, pp 48–87

    Google Scholar 

  21. Buldyrev SV, Goldberger AL, Havlin S, Mantegna RN, Matsa ME,Peng C-K, Simons M, Stanley HE (1995) Long-range correlation properties ofcoding and noncoding DNA sequences: GenBank analysis. Phys Rev E 51:5084–5091

    ADS  Google Scholar 

  22. Buldyrev SV, Cruz L, Gomez-Isla T, Havlin S, Stanley HE, UrbancB, Hyman BT (2000) Description of microcolumnar ensembles in associationcortex and their disruption in alzheimer and lewy body dementia. Proc NatlAcad Sci USA 97:5039–5043

    ADS  Google Scholar 

  23. Buldyrev SV, Havlin S, Kazakov AY, da Luz MGE, Raposo EP, StanleyHE, Viswanathan GM (2001) Average time spent by levy flights and walks on aninterval with absorbing boundaries. Phys Rev E 64:041108

    ADS  Google Scholar 

  24. Buldyrev SV, Gitterman M, Havlin S, Kazakov AY, da Luz MGE,Raposo EP, Stanley HE, Viswanathan GM (2001) Properties of Levy fights on aninterval with absorbing boundaries. Physica A 302:148–161

    ADS  MATH  Google Scholar 

  25. Buldyrev SV, Pammolli F, Riccaboni M, Yamasaki K, Fu D-F, MatiaK, Stanley HE (2007) Generalized preferential attachment model for businessfirms growth rates II. Eur Phys J B 57:131–138

    MathSciNet  ADS  MATH  Google Scholar 

  26. Bunde A, Havlin S (eds) (1996) Fractals and Disordered Systems,2nd edn. Springer, New York

    MATH  Google Scholar 

  27. Bunde A, Havlin S, Kantelhardt J, Penzel T, Peter J-H, Voigt K(2000) Correlated and uncorrelated regions in heart-rate fluctuations duringsleep. Phys Rev Lett 85:3736–3739

    ADS  Google Scholar 

  28. Calder WA 3rd (1984) Size, Function and Life History. Harvard University Press, Cambridge

    Google Scholar 

  29. Caserta F, Eldred WD, Fernández E, Hausman RE, Stanford LR,Bulderev SV, Schwarzer S, Stanley HE (1995) Determination of fractal dimensionof physiologically characterized neurons in two and threedimensions. J Neurosci Meth 56:133–144

    Google Scholar 

  30. Clar S, Drossel B, Schwabl F (1996) Self‐organized criticalityin forest‐fire models and elsewhere. Review article. J Phys C 8:6803

    Google Scholar 

  31. D'Arcy WT, John TB (ed) (1992) On Growth and Form. Cambridge University Press, Cambridge

    Google Scholar 

  32. Darveau C-A, Suarez RK, Andrews RD, Hochachka PW (2002)Allometric cascade as a unifying principle of body mass effects onmetabolism. Nature 417:166–170

    ADS  Google Scholar 

  33. Darveau C-A, Suarez RK, Andrews RD, Hochachka PW (2003)Allometric cascades – Reply. Nature 421:714–714

    ADS  Google Scholar 

  34. De Gennes PG (1979) Scaling Concepts in Polymer Physics. CornellUniversity Press, Ithaca

    Google Scholar 

  35. De Gennes PG (2004) Organization of a primitive memory: Olfaction. Proc Natl Acad Sci USA 101:15778–15781

    ADS  Google Scholar 

  36. De Gennes PG (2007) Collective neuronal growth and selforganization of axons. Proc Natl Acad Sci USA 104:4904–4906

    ADS  Google Scholar 

  37. De Gennes PG, Puech PH, Brochard‐Wyart F (2003) Adhesioninduced by mobile stickers: A list of scenarios. Langmuir 19:7112–7119

    Google Scholar 

  38. Devaney RL (1989) An Introduction to Chaotic Dynamical Systems,2nd edn. Addison‐Wesley, Redwood City

    MATH  Google Scholar 

  39. Edwards AM, Phillips RA, Watkins NW, Freeman MP, Murphy EJ,Afanasyev V, Buldyrev SV, da Luz MGE, Raposo EP, Stanley HE, Viswanathan GM(2007) Revisiting Levy flight search patterns of wandering albatrosses,bumblebees and deer. Nature 449:1044–1047

    ADS  Google Scholar 

  40. Falconer K (2003) Fractal Geometry: Mathematical Foundations andApplications. Wiley, Hoboken

    MATH  Google Scholar 

  41. Feder J (1988) Fractals. Plenum, New York

    MATH  Google Scholar 

  42. Feller W (1970) An introduction to ptobability theory and itsapplications, vol 1–2. Wiley, New York

    Google Scholar 

  43. Fleury V, Gouyet J-F, Leonetti M (eds) (2001) Branching inNature: Dynamics and Morphogenesis. Springer, Berlin

    Google Scholar 

  44. Flory PJ (1955) Principles of Polymer Chemistry. Cornell University Press, Ithaca

    Google Scholar 

  45. Fortin MJ, Dale MRT (2005) Spatial analysis: a guide forecologists. Cambridge Univ Press, Cambridge

    Google Scholar 

  46. Gerstein GL, Mandelbrot B (1964) Random walk models for the spikeactivity of a single neuron. Biophys J 4:41–68

    Google Scholar 

  47. Goldberger AL, Amaral LAN, Hausdorff JM, Ivanov PC, Peng C-K,Stanley HE (2002) Fractal dynamics in physiology: Alterations with disease andaging. Proc Natl Acad Sci USA 99:2466–2472

    ADS  Google Scholar 

  48. Gonzalez MC, Barabási A-L (2007) Complex networks – From data tomodels. Nature Phys 3:224–225

    Google Scholar 

  49. Gonzalez MC, Hidalgo CA, Barabási A-L (2008) Understandingindividual human mobility patterns. Nature 453:779–782

    Google Scholar 

  50. Grassberger P, Procaccia I (1983) Measuring the strangeness ofstrange attractors. Physica D 9:189–208

    MathSciNet  ADS  MATH  Google Scholar 

  51. Grey F, Kjems JK (1989) Aggregates, broccoli andcauliflower. Physica D 38:154–159

    ADS  Google Scholar 

  52. Grosberg A, Rabin Y, Havlin S, Neer A (1993) Crumpled globulemodel of three‐dimensional structure of DNA. Europhys Lett 23:373–378

    ADS  Google Scholar 

  53. Grosberg A, Rabin Y, Havlin S, Neer A (1993) Self‐similarity inthe structure of DNA: why are introns needed? Biofizika 38:75–83

    Google Scholar 

  54. Halley JM, Hartley S, Kallimanis AS, Kunin WE, Lennon JJ,Sgardelis SP (2004) Uses and abuses of fractal methodology in ecology. EcolLett 7:254–271

    Google Scholar 

  55. Hausdorff JM, Ashkenazy Y, Peng CK, Ivanov PC, Stanley HE,Goldberger AL (2001) When human walking becomes random walking: Fractalanalysis and modeling of gait rhythm fluctuations. Physica A 302:138–147

    ADS  MATH  Google Scholar 

  56. Horsfield K, Thurlbeck A (1981) Relation between diameter andflow in branches of the bronchial tree. Bull Math Biol 43:681–691

    MathSciNet  MATH  Google Scholar 

  57. Hu K, Ivanov PC, Hilton MF, Chen Z, Ayers RT, Stanley HE, SheaSA (2004) Endogenous circadian rhythm in an index of cardiac vulnerabilityindependent of changes in behavior. Proc Natl Acad Sci USA 101:18223–18227

    ADS  Google Scholar 

  58. Hughes BD (1995) Random Walks and Random Environments, vol 1:Random Walks. Clarendon Press, Oxford

    MATH  Google Scholar 

  59. HwuRH, Roberts JW, Dawidson EH, et al. (1986) Insertion and/or deletion of manyrepeated DNA sequences in human and higher apes evolution. Proc NatlAcad Sci 83:3875–3879

    ADS  Google Scholar 

  60. Karlin S, Brandel V (1993) Patchiness and correlations in DNAsequences. Science 259:677–680

    ADS  Google Scholar 

  61. Kenah E, Robins MJ (2007) Second look at the spread of epidemicson networks. Phys Rev E 76:036113

    MathSciNet  ADS  Google Scholar 

  62. Kermack WO, McKendrick AG (1927) Contribution to the MathematicalTheory of Epidemics. Proc R Soc A 115:700–721

    ADS  MATH  Google Scholar 

  63. Khokhlov AR, Grosberg AY (2002) Statistical physics ofmacromolecules. AIP, Woodbury

    Google Scholar 

  64. Kim S-H (2005) Fractal structure of a white cauliower. J KoreanPhys Soc 46:474–477

    Google Scholar 

  65. Kings M, Geisert H, Schmitz RW, Krainitzki H, Pääbo S (1999) DNAsequence of the mitochondrial hypervariable region II from the neandertal typespecimen. Proc Natl Acad Sci USA 96:5581–5585

    Google Scholar 

  66. Kitaoka H, Suki B (1997) Branching design of the bronchial treebased on a diameter‐flow relationship. J Appl Physiol 82:968–976

    Google Scholar 

  67. Koonin EV, Karev G, Wolf Yu (eds) (2006) Power Laws, Scale-FreeNetworks and Genome Biology. Springer, Berlin

    Google Scholar 

  68. Larralde H, Trunfio PA, Havlin S, Stanley HS, Weiss GH (1992)Territory covered by N diffusing particles. Nature 355:423–426

    ADS  Google Scholar 

  69. Li W (1997) The study of correlation structures of DNAsequences: a critical review. Comput Chem 21:257–271

    Google Scholar 

  70. Li W, Kaneko K (1992) Long-range correlation and partial\( { 1/F } \)-alpha spectrum in a noncoding DNA‐sequence. Europhys Lett 17:655–660

    ADS  Google Scholar 

  71. Liljeros F, Edling CR, Amaral LAN, Stanley HE, Aberg Y (2001) The web of human sexual contacts. Nature 411:907–908

    ADS  Google Scholar 

  72. Lo C-C, Amaral LAN, Havlin S, Ivanov PC, Penzel T, Peter J-H,Stanley HE (2002) Dynamics of sleep-wake transitions during sleep. EurophysLett 57:625–631

    ADS  Google Scholar 

  73. Lo C-C, Chou T, Penzel T, Scammell T, Strecker RE, Stanley HE,Ivanov PC (2004) Common scale‐invariant pattern of sleep-wake transitionsacross mammalian species. Proc Natl Acad Sci USA 101:17545–17548

    ADS  Google Scholar 

  74. Losa GA, Merlini D, Nonnenmacher TF, Weibel ER (eds) (1998)Fractals in Biology and Medicine, vol II. Birkhäuser Publishing, Berlin

    Google Scholar 

  75. Losa GA, Merlini D, Nonnenmacher TF, Weibel ER (eds) (2002)Fractals in Biology and Medicine, vol III. Birkhäuser Publishing, Basel

    Google Scholar 

  76. Losa GA, Merlini D, Nonnenmacher TF, Weibel ER (eds) (2005)Fractals in Biology and Medicine, vol IV. Birkhäuser Publishing, Basel

    Google Scholar 

  77. Majumdar A, Alencar AM, Buldyrev SV, Hantos Z, Lutchen KR,Stanley HE, Suki B (2005) Relating airway diameter distributions to regularbranching asymmetry in the lung. Phys Rev Lett 95:168101

    ADS  Google Scholar 

  78. Malamud BD, Morein G, Turcotte DL (1998) Forest fires: an exampleof self‐organized critical behavior. Science 281:1840–1841

    ADS  Google Scholar 

  79. Mandelbrot BB (1982) The Fractal Geometry of Nature. Freeman WHand Co., New York

    MATH  Google Scholar 

  80. MarkDM (1984) Fractal dimension of a coral‐reef at ecologicalscales – a discussion. Mar Ecol Prog Ser 14:293–294

    Google Scholar 

  81. May RM (1975) In: Cody ML, Diamond JM (eds) Ecology and Evolutionof Communities. Belknap Press, Cambridge, pp 81–120

    Google Scholar 

  82. May RM (1976) Simple mathematical models with very complicated dynamics. Nature 261:459–467

    ADS  Google Scholar 

  83. Meakin P (1998) Fractals, Scaling and Growth Far fromEquilibrium. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  84. Menshutin AY, Shchur LN, Vinokur VM (2007) Probing surfacecharacteristics of diffusion‐limited‐aggregation clusters with particles ofvariable size. Phys Rev E 75:010401

    ADS  Google Scholar 

  85. MetzgerRJ, Krasnow MA (1999) Genetic Control of Branching MorphogenesisScience 284:1635–1639

    Google Scholar 

  86. Newman MEJ (2002) Spread of epidemic disease on networks. PhysRev E 66:016128

    MathSciNet  ADS  Google Scholar 

  87. Niklas KJ (2007) Sizing up life and death. PNAS 104:15589–15590

    ADS  Google Scholar 

  88. Nonnenmacher TF, Losa GA, Weibel ER (eds) (1994) Fractals inBiology and Medicine, vol I. Birkhäuser Publishing, Basel

    Google Scholar 

  89. Olami Z, Feder HJS, Christensen K (1992) Self‐organizedcriticality in a continuous, nonconservative cellular automaton modelingearthquakes. Phys Rev Lett 68:1244–1247

    ADS  Google Scholar 

  90. Oliveira JG, Barabási A-L (2005) Human dynamics: Darwin andEinstein correspondence patterns. Nature 437:1251–1251

    Google Scholar 

  91. Ossadnik SM, Buldyrev SV, Goldberger AL, Havlin S, Mantegna RN,Peng C-K, Simons M, Stanley HE (1994) Correlation approach to identify codingregions in DNA sequences. Biophys J 67:64–70

    Google Scholar 

  92. Paczuski M, Maslov S, Bak P (1996) Avalanche dynamics inevolution, growth, and depinning models. Phys Rev E 53:414–343

    ADS  Google Scholar 

  93. Panico J, Sterling P (1995) Retinal neurons and vessels are notfractal but space‐filling. J Comparat Neurol 361:479–490

    Google Scholar 

  94. Peitgen H-O, Saupe D (ed) (1988) The Science of Fractal Images.Springer, Berlin

    MATH  Google Scholar 

  95. Peitgen H-O, Jiirgens H, Saupe D (1992) Chaos andFractals. Springer, New York

    Google Scholar 

  96. Peng C-K, Buldyrev SV, Goldberger A, Havlin S, Sciortino F,Simons M, Stanley HE (1992) Long-range correlations in nucleotidesequences. Nature 356:168–171

    ADS  Google Scholar 

  97. Peng C-K, Mietus J, Hausdorff JM, Havlin S, Stanley HE,Goldberger AL (1993) Long-range anticorrelations and non‐gaussian behavior ofthe heartbeat. Phys Rev Lett 70:1343–1347

    ADS  Google Scholar 

  98. Peng C-K, Buldyrev SV, Havlin S, Simons M, Stanley HE,Goldberger AL (1994) Mosaic organization of DNA nucleotides. Phys Rev E49:1685–1689

    ADS  Google Scholar 

  99. Peng C-K, Buldyrev SV, Hausdorff JM, Havlin S, Mietus JE, SimonsM, Stanley HE, Goldberger AL (1994) Non‐equilibrium dynamics as anindispensable characteristic of a healthy biological system. Integr PhysiolBehav Sci 29:283–293

    Google Scholar 

  100. Peng C-K, Havlin S, Stanley HE, Goldberger AL (1995)Quantification of scaling exponents and crossover phenomena in nonstationaryheartbeat time series. Chaos 5:82–87

    ADS  Google Scholar 

  101. Pocock MJO, Hartley S, Telfer MG, Preston CD, Kunin WE (2006) Ecological correlates ofrange structure in rare and scarce British plants. J Ecol 94:581–596

    Google Scholar 

  102. Ramchandani R, Bates JHT, Shen X, Suki B, Tepper RS (2001) Airwaybranching morphology of mature and immature rabbit lungs. J Appl Physiol90:1584–1592

    Google Scholar 

  103. Ramos‐Fernandez G, Meteos JL, Miramontes O, Cocho G, Larralde H,Ayala‐Orozco B (2004) Lévy walk patterns in the foraging movements of spidermonkeys (Ateles geoffroyi). Behav Ecol Sociobiol 55:223–230

    Google Scholar 

  104. Redner S (2001) A Guide to First-Passage Processes. CambridgeUniversity Press, Cambridge

    MATH  Google Scholar 

  105. Reich PB, Tjoelker MG, Machado J-L, Oleksyn J (2006) Universalscaling of respiratory metabolism, size and nitrogen in plants. Nature439:457–461

    ADS  Google Scholar 

  106. Reiss MJ (2006) Allometry of Growth and Reproduction. CambridgeUniversity Press, Cambridge

    Google Scholar 

  107. Richter JP (ed) (1970) The Notebooks of Leonardo da Vinci. DoverPublications, New York

    Google Scholar 

  108. Rosenzweig ML (1995) Species Diversity in Space and Time.Cambridge University Press, Cambridge

    Google Scholar 

  109. Santullia A, Telescaa L (2005) Time‐clustering analysis offorest‐fire sequences in southern Italy Rosa Lasaponaraa. Chaos Solitons Fractals 24:139–149

    ADS  Google Scholar 

  110. Savage VM, Allen AP, Brown JH, Gillooly JF, Herman AB, Woodruff WH, West GB (2007) Scaling of number, size, and metabolic rate of cells with body size in mammals. Proc Natl Acad Sci 104:4718–4723

    ADS  Google Scholar 

  111. Schenk K, Drossel B, Schwabl F (2002) The self‐organizedcritical forest‐fire model on large scales. Phys Rev E 65:026135

    ADS  Google Scholar 

  112. Schmidt‐Nielsen K (1984) Scaling: Why is Animal Size soImportant? Cambridge University Press, Cambridge

    Google Scholar 

  113. Schulte‐Frohlinde V, Ashkenazy Y, Ivanov PC, Glass L,Goldberger AL, Stanley HE (2001) Noise effects on the complex patterns ofabnormal heartbeats. Phys Rev Lett 87:068104

    Google Scholar 

  114. Scott FG (2006) Developmental Biology, 8th edn. SinauerAssociates, Sunderland

    Google Scholar 

  115. Shao J, Buldyrev SV, Cohen R, Kitsak M, Havlin S, Stanley HE(2008) Fractal boundaries of complex networks. Preprint

    Google Scholar 

  116. Shlesinger MF (1986) In: Stanley HE, Ostrowsky N (eds) On Growth and Form. Nijhoff, Dordrecht

    Google Scholar 

  117. Shlesinger MF, West BJ (1991) Complex fractal dimension of the bronchial tree. Phys Rev Lett 67:2106–2109

    ADS  Google Scholar 

  118. Shlesinger MF, Zaslavsky G, Frisch U (eds) (1995) Lévy Flights and Related Topics in Physics. Springer, Berlin

    MATH  Google Scholar 

  119. Sims DW et al (2008) Scaling laws in marine predator searchbehavior. Nature 451:1098–1102

    ADS  Google Scholar 

  120. Song C, Havlin H, Makse H (2005) Self‐similarity of complexnetworks. Nature 433:392–395

    ADS  Google Scholar 

  121. Song C, Havlin S, Makse HA (2006) Origins of fractality in thegrowth of complex networks. Nature Phys 2:275–281

    ADS  Google Scholar 

  122. Sornette D (2003) Critical Phenomena in Natural Sciences. Chaos,Fractals, Selforganization and Disorder: Concepts and Tools, 2ndedn. Springer, Berlin

    Google Scholar 

  123. Sprott JC (2003) Chaos and Time‐Series Analysis. OxfordUniversity Press

    MATH  Google Scholar 

  124. Stanley HE (1971) Introduction to Phase Transitions and CriticalPhenomena. Oxford University Press, New York

    Google Scholar 

  125. Stanley HE, Ostrowsky N (eds) (1986) On Growth and Form. Nijhoff,Dordrecht

    MATH  Google Scholar 

  126. Stanley HE, Buldyrev SV, Goldberger AL, Goldberger ZD, Havlin S,Mantegna RN, Ossadnik SM, Peng C-K, Simons M (1994) Statistical mechanics inbiology – how ubiquitous are long-range correlations. Physica A 205:214–253

    ADS  Google Scholar 

  127. Stauffer D, Aharony A (1992) Introduction to percolationtheory. Taylor & Francis, Philadelphia

    Google Scholar 

  128. Suki B, Barabási A-L, Hantos Z, Petak F, Stanley HE (1994)Avalanches and power law behaviour in lung inflation. Nature 368:615–618

    Google Scholar 

  129. Suki B, Alencar AM, Frey U, Ivanov PC, Buldyrev SV, Majumdar A,Stanley HE, Dawson CA, Krenz GS, Mishima M (2003) Fluctuations, noise, andscaling in the cardio‐pulmonary system. Fluct Noise Lett 3:R1–R25

    Google Scholar 

  130. Turcotte DL (1997) Fractals and Chaos in Geology andGeophysics. Cambridge University Press, Cambridge

    Google Scholar 

  131. Viscek T, Shlesinger MF, Matsushita M (eds) (1994) Fractals inNatural Sciences. World Scientific, New York

    Google Scholar 

  132. Viswanathan GM, Afanasyev V, Buldyrev SV, Murphy EJ, Prince PA,Stanley HE (1996) Levy flight search patterns of wandering albatrosses. Nature381:413–415

    ADS  Google Scholar 

  133. Viswanathan GM, Buldyrev SV, Havlin S, da Luz MGE, Raposo E,Stanley HE (1999) Optimizing the success of random searches. Nature401:911–914

    ADS  Google Scholar 

  134. Vogel H (1979) A better way to construct the sunflower head. MathBiosci 44:179–189

    Google Scholar 

  135. Voss RF, Clarke J (1975) \( { 1/f } \) noise in music and speech. Nature 258:317–318

    ADS  Google Scholar 

  136. Voss RF, Clarke J (1978) \( { 1/f } \) noise in music: Music from \( { 1/f } \) noise. J Acoust Soc Am 63:258–263

    ADS  Google Scholar 

  137. Voss RF, Wyatt J (1993) Multifractals and the Local Connected Fractal Dimension: Classification of Early Chinese Landscape Paintings. In: Crilly AJ, Earnshaw RA, Jones H (eds) Applications of Fractals and Chaos. Springer, Berlin

    Google Scholar 

  138. Warburton D, Schwarz M, Tefft D, Flores‐Delgado F, Anderson KD,Cardoso WV (2000) The molecular basis of lung morphogenesis. Mech Devel92:55–81

    Google Scholar 

  139. Watson JD, Gilman M, Witkowski J, Zoller M (1992) RecombinantDNA. Scientific American Books, New York

    Google Scholar 

  140. Weibel ER (2000) Symmorphosis: On Form and Function in ShapingLife. Harvard University Press, Cambridge

    Google Scholar 

  141. Weiss GH (1994) Aspects and applications of the randomwalk. North-Holland, New York

    MATH  Google Scholar 

  142. West GB, Brown JH, Enquist BJ (1997) A general model for theorigin of allometric scaling laws in biology. Science 276:122–126

    Google Scholar 

  143. West GB, Woodruff WH, Brown JH (2002) Allometric scaling ofmetabolic rate from molecules and mitochondria to cells and mammals. Proc NatlAcad Sci 99:2473–2478

    ADS  Google Scholar 

  144. West GB, Savage VM, Gillooly J, Enquist BJ, Woodruff WH, Brown JH(2003) Why does metabolic rate scale with body size? Nature 421:713–713

    ADS  Google Scholar 

  145. Witten TA, Sander LM (1981) Phys Rev Lett 47:1400–1404

    ADS  Google Scholar 

  146. Zipf GK (1949) Human Behavior and the Principle ofLeast–Effort. Addison‐Wesley, Cambridge

    Google Scholar 

  147. Zolotarev VM, Uchaikin VV (1999) Chance and Stability: StableDistributions and their Applications. VSP BV, Utrecht

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Buldyrev, S.V. (2009). Fractals in Biology . In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_222

Download citation

Publish with us

Policies and ethics