Skip to main content

Astronomical Time Series, Complexity in

  • Reference work entry
Encyclopedia of Complexity and Systems Science
  • 201 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Dynamical system:

A mathematical or physical system of which the evolution forward in time is determined by certain laws of motion – deterministic, random, or a combination.

Deterministic system:

A dynamical system the future of which, except for noise, can be exactly predicted based on past data.

Chaotic system:

A dynamical system the future of which can be predicted for short times, but due to the exponential growth of noise (“sensitive dependence on initial conditions”) long term prediction is not possible.

Random system:

A dynamical system the future of which cannot be predicted, based on past data.

Linear system:

Consider a dynamical system described in part by two variables (representing forces, displacements, or the like), one of which is viewed as input and the other as output. The part of the system so described is said to be linear if the output is a linear function of the input. Examples: (a) a spring is linear in a small force applied to the spring, if the displacement is small; (b) the Fourier transform (output) of a time series (input) is linear. Example (b) is connected with the myth that a linear transform is not useful for “linear data.” (To describe given time series data as linear is an abuse of the term. The concept of linearity cannot apply to data, but rather to a model or model class describing the data. In general given data can be equally well described by linear and nonlinear models.)

Phase portrait:

A picture of the evolution of a dynamical system, in a geometrical space related to the phase space of the system. This picture consists of a sampling of points tracing out the system trajectory over time.

Stationary system:

If the statistical descriptors of a dynamical system do not change with time, the system is said to be stationary. In practice, with finite data streams, the mathematical definitions of the various kinds of stationarity cannot be implemented, and one is forced to consider local or approximate stationarity.

Bibliography

Primary Literature

  1. Abarbanel H, Brown R, Kadtke J (1989) Prediction and system identification in chaotic nonlinear systems: Time series with broadband spectra. Phys Lett A 138:401–408

    ADS  Google Scholar 

  2. Abraham R, Shaw C (1992) Dynamics, the Geometry of Behavior. Addison Wesley, Reading

    MATH  Google Scholar 

  3. Aikawa T (1987) The Pomeau–Manneville Intermittent Transition to Chaos in Hydrodynamic Pulsation Models. Astrophys Space Sci 139:218–293

    MathSciNet  Google Scholar 

  4. Aikawa T (1990) Intermittent chaos in a subharmonic bifurcation sequence of stellar pulsation models. Astrophys Space Sci 164:295

    MathSciNet  ADS  Google Scholar 

  5. Atmanspacher H, Scheingraber H, Voges W (1988) Global scaling properties of a chaotic attractor reconstructed from experimental data. Phys Rev A 37:1314

    ADS  Google Scholar 

  6. Badii R, Broggi G, Derighetti B, Ravani M, Cilberto S, Politi A, Rubio MA (1988) Dimension Increase in Filtered Chaotic Signals. Phys Rev Lett 60:979–982

    ADS  Google Scholar 

  7. Badii R, Politi A (1986) On the Fractal Dimension of Filtered Chaotic Signals. In: Mayer-Kress G (ed) Dimensions and Entropies in Chaotic Systems, Quantification of Complex Behavior. Springer Series in Synergetics, vol 32. Springer, New York

    Google Scholar 

  8. Bak P, Tang C, Wiesenfeld K (1987) Self‐organized criticality: An explanation of 1/f noise. Phys Rev Lett 59:381–384

    MathSciNet  ADS  Google Scholar 

  9. Buchler J, Eichhorn H (1987) Chaotic Phenomena in Astrophysics. Proceedings of the Second Florida Workshop in Nonlinear Astronomy. Annals New York Academy of Sciences, vol 497. New York Academy of Science, New York

    Google Scholar 

  10. Buchler J, Perdang P, Spiegel E (1985) Chaos in Astrophysics. Reidel, Dordrecht

    Google Scholar 

  11. Buchler JR, Goupil MJ, Kovács G (1987) Tangent Bifurcations and Intermittency in the Pulsations of Population II Cepheid Models. Phys Lett A 126:177–180

    Google Scholar 

  12. Buchler JR, Kovács G (1987) Period‐Doubling Bifurcations and Chaos in W Virginis Models. Ap J Lett 320:L57–62

    Google Scholar 

  13. Buchler JR, Regev O (1990) Chaos in Stellar Variability. In: Krasner S (ed) The Ubiquity of Chaos. American Association for the Advancement of Science, Washington DC, pp 218–222

    Google Scholar 

  14. Caswell WE, York JA (1986) Invisible Errors in Dimension Calculation: geometric and systematic effects. In: Mayer-Kress G (ed) Dimensions and Entropies in Chaotic Systems, Quantification of Complex Behavior. Springer Series in Synergetics, vol 32. Springer, New York

    Google Scholar 

  15. Chennaoui A, Pawelzik K, Liebert W, Schuster H, Pfister G (1988) Attractor reconstruction from filtered chaotic time series. Phys Rev A 41:4151–4159

    ADS  Google Scholar 

  16. Crutchfield J (1989) Inferring the dynamic, quantifying physical Complexity. In: Abraham N et al (eds) Measures of Complexity and Chaos. Plenum Press, New York

    Google Scholar 

  17. Crutchfield J, Kaneko K (1988) Are Attractors Relevant to Fluid Turbulence? Phys Rev Let 60:2715–2718

    MathSciNet  ADS  Google Scholar 

  18. Crutchfield J, McNamara B (1987) Equations of motion from a data series, Complex Syst 1:417–452

    MathSciNet  MATH  Google Scholar 

  19. Crutchfield J, Packard NH (1983) Symbolic Dynamics of Noisy Chaos. Physica D 7:201–223

    MathSciNet  ADS  Google Scholar 

  20. Crutchfield J, Young K (1989) Inferring Statistical Complexity. Phys Rev Lett 63:105–108

    MathSciNet  ADS  Google Scholar 

  21. Eckmann J-P, Kamphorst SO, Ruelle D, Ciliberto S (1986) Liapunov Exponents from Time Series. Phys Rev A 34:4971–4979

    MathSciNet  ADS  Google Scholar 

  22. Fang L-Z, Thews RL (1998) Wavelets in Physics. World Scientific, Singapore. A physics‐oriented treatment of wavelets, with several astronomical applications, mostly for spatial or spectral data

    Google Scholar 

  23. Farmer JD, Ott E, Yorke JA (1983) The dimension of chaotic attractors. Physica D 7:153–180

    MathSciNet  ADS  Google Scholar 

  24. Farmer JD, Sidorowich J (1987) Predicting chaotic time series. Phys Rev Lett 59:845–848

    MathSciNet  ADS  Google Scholar 

  25. Farmer JD, Sidorowich J (1988) Exploiting chaos to predict the future and reduce noise. In: Lee Y (ed) Evolution, Learning and Cognition. World Scientific Pub Co, Singapore

    Google Scholar 

  26. Flandrin P (1999) Time‐Frequency/Time-Scale Analysis. Academic Press, San Diego . Volume 10 in an excellent series, Wavelet Analysis and Its Applications. The approach adopted by Flandrin is well suited to astronomical and physical applications

    MATH  Google Scholar 

  27. Friedman JH, Tukey JW (1974) A Projection Pursuit Algorithm for Exploratory Data Analysis. IEEE Trans Comput 23:881–890

    MATH  Google Scholar 

  28. Froehling H, Crutchfield J, Farmer JD, Packard NH, Shaw R (1981) On Determining the Dimension of Chaotic Flows. Physica D 3:605–617. C Herculis. Astron Astrophys 259:215–226

    Google Scholar 

  29. Gillet D (1992) On the origin of the alternating deep and shallow light minima in RV Tauri stars: R Scuti and A. Astron Astrophys 259:215

    ADS  Google Scholar 

  30. Grassberger P, Procaccia I (1983) Characterization of strange attractors. Phys Rev Lett 50:346–349

    MathSciNet  ADS  Google Scholar 

  31. Grassberger P, Procaccia I (1983) Estimation of the Kolmogorov entropy from a chaotic signal. Phys Rev A 28:2591–2593

    ADS  Google Scholar 

  32. Harding A, Shinbrot T, Cordes J (1990) A chaotic attractor in timing noise from the VELA pulsar? Astrophys J 353:588–596

    ADS  Google Scholar 

  33. Hempelmann A, Kurths J (1990) Dynamics of the Outburst Series of SS Cygni. Astron Astrophys 232:356–366

    ADS  Google Scholar 

  34. Holzfuss J, Mayer-Kress G (1986) An Approach to Error‐Estimation in the Application of Dimension Algorithms. In: Mayer-Kress G (ed) Dimensions and Entropies in Chaotic Systems, Quantification of Complex Behavior. Springer Series in Synergetics, vol 32. Springer, New York

    Google Scholar 

  35. Jones MC, Sibson R (1987) What is Projection Pursuit? J Roy Statis Soc A 150:1–36

    Google Scholar 

  36. Klavetter JJ (1989) Rotation of Hyperion. I – Observations. Astron J 97:570. II – Dynamics. Astron J 98:1855

    ADS  Google Scholar 

  37. Kollath Z (1993) On the observed complexity of chaotic stellar pulsation. Astrophys Space Sci 210:141–143

    ADS  Google Scholar 

  38. Kostelich E, Yorke J (1988) Noise reduction in dynamical systems. Phys Rev A 38:1649–1652

    MathSciNet  ADS  Google Scholar 

  39. Kovács G and Buchler J R (1988) Regular and Irregular Pulsations in Population II Cepheids. Ap J 334:971–994

    Google Scholar 

  40. Lecar M, Franklin F, Holman M, Murray N (2001) Chaos in the Solar System. Ann Rev Astron Astrophys 39:581–631

    ADS  Google Scholar 

  41. Lissauer JJ (1999) Chaotic motion in the Solar System. Rev Mod Phys 71:835–845

    ADS  Google Scholar 

  42. Lissauer JJ, Murray CD (2007) Solar System Dynamics: Regular and Chaotic Motion. Encyclopedia of the Solar System, Academic Press, San Diego

    Google Scholar 

  43. Mandelbrot B (1989) Multifractal Measures, Especially for the Geophysicist. Pure Appl Geophys 131:5–42

    ADS  Google Scholar 

  44. Mandelbrot B (1990) Negative Fractal Dimensions and Multifractals. Physica A 163:306–315

    MathSciNet  ADS  MATH  Google Scholar 

  45. Mayer-Kress G (ed) (1986) Dimensions and Entropies in Chaotic Systems, Quantification of Complex Behavior. Springer Series in Synergetics, vol 32. Springer, New York

    Google Scholar 

  46. Mineshige S, Takeuchi M, Nishimori H (1994) Is a Black Hole Accretion Disk in a Self‐Organized Critical State. ApJ 435:L12

    Google Scholar 

  47. Mitschke F, Moeller M, Lange W (1988), Measuring Filtered Chaotic Signals. Phys Rev A 37:4518–4521

    ADS  Google Scholar 

  48. Moskalik P, Buchler JR (1990) Resonances and Period Doubling in the Pulsations of Stellar Models. Ap J 355:590–601

    ADS  Google Scholar 

  49. Norris JP, Matilsky TA (1989) Is Hercules X-1 a Strange Attractor? Ap J 346:912–918

    ADS  Google Scholar 

  50. Osborne AR, Provenzale A (1989) Finite correlation dimension for stochastic systems with power-law spectra. Physica D 35:357–381

    MathSciNet  ADS  MATH  Google Scholar 

  51. Packard NH, Crutchfield JP, Farmer JD, Shaw RS (1980) Geometry from a Time Series. Phys Rev Lett 45:712–716

    ADS  Google Scholar 

  52. Paoli P, Politi A, Broggi G, Ravani M, Badii R (1988) Phase Transitions in Filtered Chaotic Signals. Phys Rev Lett 62:2429–2432

    MathSciNet  ADS  Google Scholar 

  53. Provenzale A, Smith LA, Vio R, Murante G (1992) Distinguishing between low‐dimensional dynamics and randomness in measured time series. Physica D 58:31

    ADS  Google Scholar 

  54. Ramsey JB, Yuan H-J (1990) The Statistical Properties of Dimension Calculations Using Small Data Sets. Nonlinearlity 3:155–176

    MathSciNet  ADS  MATH  Google Scholar 

  55. Regev O (1990) Complexity from Thermal Instability. In: Krasner S (ed) The Ubiquity of Chaos. American Association for the Advancement of Science, Washington DC, pp 223–232. Related work in press, MNRAS

    Google Scholar 

  56. Regev O (2006) Chaos and complexity in astrophysics, Cambridge University Press, Cambridge

    Google Scholar 

  57. Ruelle D (1990) Deterministic Chaos: The Science and the Fiction (the Claude Bernard Lecture for 1989). Proc Royal Soc London Ser A Math Phys Sci 427(1873):241–248

    MathSciNet  MATH  Google Scholar 

  58. Ruelle D, Eckmann J-P (1992) Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems. Physica B 56:185–187

    MathSciNet  MATH  Google Scholar 

  59. Scargle JD (1989) An introduction to chaotic and random time series analysis. Int J Imag Syst Tech 1:243–253

    Google Scholar 

  60. Scargle JD (1989) Random and Chaotic Time Series Analysis: Minimum Phase‐Volume Deconvolution. In: Lam L, Morris H (eds) Nonlinear Structures in Physical Systems. Proceedings of the Second Woodward Conference. Springer, New York, pp 131–134

    Google Scholar 

  61. Scargle JD (1990) Astronomical Time Series Analysis: Modeling of Chaotic and Random Processes. In: Jaschek C, Murtagh F (eds) Errors, Bias and Uncertainties in Astronomy. Cambridge U Press, Cambridge, pp 1–23

    Google Scholar 

  62. Scargle JD (1990) Studies in astronomical time series analysis. IV: Modeling chaotic and random processes with linear filters. Ap J 343:469–482

    MathSciNet  ADS  Google Scholar 

  63. Scargle JD (1992) Predictive deconvolution of chaotic and random processes. In: Brillinger D, Parzen E, Rosenblatt M (eds) New Directions in Time Series Analysis. Springer, New York

    Google Scholar 

  64. Scargle JD, Steiman‐Cameron T, Young K, Donoho D, Crutchfield J, Imamura J (1993) The quasi‐periodic oscillations and very low frequency noise of Scorpius X-1 as transient chaos – A dripping handrail? Ap J Lett 411(part 2):L91–94

    Google Scholar 

  65. Serre T, Buchler JR, Goupil M-J (1991) Predicting White Dwarf Light Curves. In: Vauclair G, Sion E (eds) Proceedings of the 7th European Workshop. NATO Advanced Science Institutes (ASI) Series C, vol 336. Kluwer, Dordrecht, p 175

    Google Scholar 

  66. Shaw R (1984) The Dripping Faucet as a Model Chaotic System. Aerial Press, Santa Cruz

    Google Scholar 

  67. Sprott JC (2003) Chaos and Time‐Series Analysis, Oxford University Press, Oxford. This is a comprehensive and excellent treatment, with some astronomical examples

    MATH  Google Scholar 

  68. Steiman‐Cameron T, Young K, Scargle J, Crutchfield J, Imamura J, Wolff M, Wood K (1994) Dripping handrails and the quasi‐periodic oscillations of the AM Herculis. Ap J 435:775–783

    Google Scholar 

  69. Sugihara G, May R (1990) Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344:734

    ADS  Google Scholar 

  70. Takens F (1981) Detecting strange attractors in turbulence. In: Rand DA, Young L-S (eds) Dynamical Systems and Turbulence, Lecture Notes in Mathematics, vol 898. Springer, pp 366–381

    Google Scholar 

  71. Theiler J (1986) Spurious Dimension from Correlation Algorithms Applied to Limited Time‐series data. Phys Rev A 34:2427–2432

    ADS  Google Scholar 

  72. Theiler J (1990) Statistical Precision of Dimension Estimators. Phys Rev A 41:3038–3051

    ADS  Google Scholar 

  73. van den Berg JC (1998) Wavelets in Physics, Cambridge University Press, Cambridge. A physics‐oriented treatment of wavelets, with a chapter by A Bijaoui on astrophysical applications, some relating to complex systems analysis

    MATH  Google Scholar 

  74. Vio R, Cristiani S, Lessi O, Provenzale A (1992) Time Series Analysis in Astronomy: An Application to Quasar Variability Studies. Ap J 391:518–530

    ADS  Google Scholar 

  75. Wiggins S (2003) Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edn. Springer, New York

    MATH  Google Scholar 

  76. Wisdom J (1981) The origin of the Kirkwood gaps: A mapping for asteroidal motion near the 3/1 commensurability. The resonance overlap criterion and the onset of stochastic behavior in the restricted three-body problem. Ph D Thesis, California Inst of Technology

    Google Scholar 

  77. Wisdom J, Peale SJ, Mignard F (1984) Icarus 58:137

    ADS  Google Scholar 

  78. Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining Lyapunov exponents from a time series, Physica D 16:285–317

    MathSciNet  ADS  MATH  Google Scholar 

  79. Young K, Scargle J (1996) The Dripping Handrail Model: Transient Chaos in Accretion Systems. Ap J 468:617

    ADS  Google Scholar 

Books and Reviews

  1. Heck A, Perdang JM (eds) (1991) Applying Fractals in Astronomy. Springer, New York. A collection of 10 papers

    Google Scholar 

  2. Jaschek C, Murtagh F (eds) (1990) Errors, Bias and Uncertainties in Astronomy. Cambridge U Press, Cambridge

    Google Scholar 

  3. Lowen SB, Teich MC (2005) Fractal‐Based Point Processes, Wiley‐Interscience, Hoboken. An excellent treatment of the unusual subject of fractal characteristics of event data generated by complex processes

    MATH  Google Scholar 

  4. Maoz D, Sternverg A, Leibowitz EM (1997) Astronomical Time Series, Kluwer, Dordrecht. Proceedings of the Florence and George Wise Observatory 25th Anniversary Symposium

    Google Scholar 

  5. Ruelle D (1989) Chaotic Evolution and Strange Attractors: The Statistical Analysis of Time Series for Deterministic Nonlinear Systems. Cambridge U Press, Cambridge

    MATH  Google Scholar 

  6. Statistical Challenges in Modern Astronomy, a series of books derived from the excellent Penn State conference series, with many papers on time series or related topics. http://astrostatistics.psu.edu/scma4/index.html

  7. Subba Rao T, Priestly MB, Lessi O (eds) (1997) Applications of Time Series Analysis in Astronomy and Meteorology. Chapman & Hall, London. Conference proceedings; sample data were available to the participants

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Scargle, J.D. (2009). Astronomical Time Series, Complexity in. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_25

Download citation

Publish with us

Policies and ethics