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GLOSSARY

Homeomorphism, diffeomorphism. A homeomorphisns a continuous map: M — N
which is one-to-one and onto, and whose invefrsé: N — M is also continuous. It may
be seen as a global continuous change of coordinates. Wé aaliffeomorphismif, in
addition, both it and its inverse are smooth. Wihda= N, the iteratedh-fold composition
fo.n. of is denoted byf". By convention,f? is the identity map, and " = (f")~1 =
(f~1)" forn> 0.

Smooth flow. A flow ft: M — M is a family of diffeomorphisms depending in a smooth
fashion on a parametérc R and satisfyingfS™t = fSo f! for all s, t € R. This prop-
erty implies thatf® is the identity map. Flows usually arise as solutions of aotoous
differential equations: let— ¢ (v) denote the solution of

X =F(X), X(0)=v (1)

and assume solutions are defined for all times; then the fagnthus defined is a flow (at
least as smooth as the vector fiéldtself). The vector field may be recovered from the
flow, through the relatioiF (X) = 0;@ (X) |to-
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CX topology. Two maps admitting continuous derivatives are said t€beloseif they
are uniformly close, and so are their derivatives. More gahe given anyk > 1, we say
that two maps ar€X-closeif they admit continuous derivatives up to orderand their
derivatives of order are uniformly close, for everiy=0,1,...,k. This defines a topology
in the space of maps of cla€.

Foliation. A foliation is a partition of a subset of the ambient space® isinooth sub-
manifolds, that one calls leaves of the foliation, all witle tsame dimension and varying
continuously from one point to the other. For instance, thgttories of a vector field,
that is, the solutions of equatidn (1), form a 1-dimensidakdtion (the leaves are curves)
of the complement of the set of zerosFof The main examples of foliations in the context
of this work are the families of stable and unstable mangalfihyperbolic sets.

Attractor. A subset/ of the ambient spachl is invariant under a transformatiofi if
f~1(A) = A, thatis, a point is in\ if and only if its image isA is invariant under a flow if
itis invariant underf! for all t € R. An attractoris a compact invariant subsatsuch that
the trajectories of all points in a neighborhdddtonverge to\ as times goes to infinity,
andA is dynamically indecomposabfer transitive): there is some trajectory dense/in
Sometimes one asks convergence only for points in someg'iatghset of a neighborhood
U of A, and dynamical indecomposability can also be defined in sdraedifferent ways.
However, the formulations we just gave are fine in the unifgimyperbolic context.

Limit sets. Thew-limit setof a trajectoryf"(x), n € Z is the setw(x) of all accumulation
points of the trajectory as time goes to+. The a-limit setis defined analogously,
with n — —oo. The corresponding notions for continuous time systemw§fi@re defined
analogously. Thémit set L(f) (or L(f!), in the flow case) is the closure of the union of all
’-limit and all a-limit sets. Thenon-wandering se®(f) (or Q(f!), in the flow case) is
that set of points such that every neighborhtlodontains some point whose orbit returns
toU in future time (then some point returnslioin past time as well). When the ambient
space is compact all these sets are non-empty. Moreovéntiheet is contained in the
non-wandering set.

Invariant measure. A probability measurglin the ambient spadd is invariantunder a
transformationf if u(f~%(A)) = u(A) for all measurable subsets This means that the
“events”x € A and f(x) € A have equally probable. We sayis invariant under a flow
if it is invariant underf! for all t. An invariant probability measungis ergodicif every
invariant setA has either zero or full measure. An equivalently conditsthaty can not
be decomposed as a convex combination of invariant prahafniéasures, that is, one can
not havep = apy + (1 — a)pp with 0 < a < 1 andpy, pe invariant.

DEFINITION

In general terms, a smooth dynamical system is called hytierih the tangent space
over the asymptotic part of the phase space splits into twapbementary directions, one
which is contracted and the other which is expanded undeadtien of the system. In the
classical, so-called uniformly hyperbolic case, the adgtip part of the phase space is
embodied by the limit set and, most crucially, one requinesexpansion and contraction
rates to be uniform. Uniformly hyperbolic systems are noishfavell understood. They
may exhibit very complex behavior which, nevertheless, itslan very precise descrip-
tion. Moreover, uniform hyperbolicity is the main ingredidor characterizing structural
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stability of a dynamical system. Over the years the notiohygferbolicity was broad-
ened (non-uniform hyperbolicity) and relaxed (partial &stplicity, dominated splitting)
to encompass a much larger class of systems, and has becoanadigm for complex
dynamcial evolution.

1. INTRODUCTION

The theory of uniformly hyperbolic dynamical systems watsidated in the 1960’s
(though its roots stretch far back into the 19th century) bgi®ale, his students and col-
laborators, in the west, and D. Anosov, Ya. Sinai, V. Arnatdthe former Soviet Union.
It came to encompass a detailed description of a large clasgstems, often with very
complex evolution. Moreover, it provided a very precisereleterization of structurally
stable dynamics, which was one of its original main goals.

The early developments were motivated by the problem ofecttarizing structural sta-
bility of dynamical systems, a notion that had been intredlin the 1930’s by A. An-
dronov and L. Pontryagin. Inspired by the pioneering worlofPeixoto on circle maps
and surface flows, Smale introduced a clasgraflient-likesystems, having a finite num-
ber of periodic orbits, which should be structurally stadohel, moreover, should constitute
the majority (an open and dense subset) of all dynamicaésst Stability and openness
were eventually established, in the thesis of J. Palis. leweontemporary results of M.
Levinson, based on previous work by M. Cartwright and Jl&itbod, provided examples
of open subsets of dynamical systems all of which have anitefrumber of periodic
orbits.

In order to try and understand such phenomenon, Smale irteabla simple geometric
model, the now famous "horseshoe map”, for which infinitelgny periodic orbits exist
in a robust way. Another important example of structuratBbte system which is not
gradient like was R. Thom’s so-called "cat map”. The cruciainmon feature of these
models is hyperbolicity: the tangent space at each poiiifssiplto two complementar
directions such that the derivative contracts one of th@setibns and expands the other,
at uniform rates.

In global terms, a dynamical system is callediformly hyperbolic or Axiom A, if
its limit set has this hyperbolicity property we have jussdébed. The mathematical
theory of such systems, which is the main topic of this papearpw well developped and
constitutes a main paradigm for the behavior of "chaoticStegns. In our presentation
we go from local aspects (linear systems, local behavi@gifip examples) to the global
theory (hyperbolic sets, stability, ergodic theory). le final sections we discuss several
important extensions (strange attractors, partial hygaiby, non-uniform hyperbolicity)
that have much broadened the scope of the theory.

2. LINEAR SYSTEMS

Let us start by introducing the phenomenon of hyperbolititthe simplest possible
setting, that of linear transformations and linear flows.skaf what we are going to say
applies to both discrete time and continuous time systerasfairly analogous way, and
so at each point we refer to either one setting or the othedepth presentations can be
foundin e.g.[[8] and [6].

The general solution of a system of linear ordinary diff¢i@requations

X=AX, X(0)=v



4 VITOR ARAUJO AND MARCELO VIANA

whereA is a constant x nreal matrix ands € R" is fixed, is given by
X(t)=€é"v, teR,

whered? = 5> _(tA)"/nl. The linear flow is calledhyperbolicif A has no eigenvalues on
the imaginary axis. Then thexponentiamatrix e* has no eigenvalues with norm 1. This
property is very important for a number of reasons.

Stable and unstable spaceskor one thing it implies that all solutions have well-defined
asymptotic behavior: they either converge to zero or deeaginfinity as time goes to
+co, More precisely, let

e ES(stable subspagde the subspace &" spanned by the generalized eigenvector
associated to eigenvaluesAfvith negative real part.

e EY (unstable subspag®e the subspace @&" spanned by the generalized eigen-
vector associated to eigenvaluesfoliith positive real part

Then these subspaces are complementary, meaning'tkaE® ¢ EY, and every solution
A .vwith v ¢ ESUEY diverges to infinity both in the future and in the past. TheiSohs
with v € ES converge to zero as— +o and go to infinity ag — —o, and analogously
whenv € EY, reversing the direction of time.

Robustness and densityAnother crucial feature of hyperbolicity ibustnessany ma-
trix that is close to a hyperbolic one, in the sense that spoading coefficients are close,
is also hyperbolic. The stable and unstable subspaces péedincide, of course, but the
dimensions remain the same. In addition, hyperboliciyghse any matrix is close to a
hyperbolic one. That is because, up to arbitrarily small ificattions of the coefficients,
one may force all eigenvalues to move out of the imaginarg.axi

Stability, index of a fixed point. In addition to robustness, hyperbolicity also implies
stability. if B is close to a hyperbolic matri&, in the sense we have just described, then
the solutions o)X = BX have essentially the same behavior as the solutions-6fAX.
What we mean by “essentially the same behavior” is that theists a global continuous
change of coordinates, that is, a homeomorphis®" — R", that maps solutions of one
system to solutions of the other, preserving the time pandra&on:

h(é*-v) =€B.h(v) forall teR.

More generally, two hyperbolic linear flows are conjugatgdthomeomorphisrh if and

only if they have the samiadex that is, the same number of eigenvalues with negative real
part. In generalh can not be taken to be a diffeomorphism: this is possibledf@mly if

the two matrice#\ andB are obtained from one another via a change of basis. Notite th
in this case they must have the same eigenvalues, with the wantiplicities.

Hyperbolic linear flows. There is a corresponding notion of hiperbolicity for digere
time linear systems

Xnp1=CXn, Xo=V
with C an x nreal matrix. Namely, we say the systenhigoerbolicif C has no eigenvalue
in the unit circle. Thus a matriA is hyperbolic in the sense of continuous time systems if
and only if its exponential = €* is hyperbolic in the sense of discrete time systems. The
previous observations (well-defined behavior, robustraessseness and stability) remain
true in discrete time. Two hyperbolic matrices are conjadsta homeomorphism if and
only if they have the same index, that is, the same numbemgehealues with norm less
than 1, and they both either preserve or reverse orientation
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3. LOCAL THEORY

Now we move on to discuss the behavior of non-linear systdase do fixed or, more
generally, periodic trajectories. By non-linear system umelerstand the iteration of a
diffeomorphismf, or the evolution of a smooth floff, on some manifoldl. The general
philosophy is that the behavior of the system close to a ygerfixed point very much
resembles the dynamics of its linear part.

A fixed pointp € M of a diffeomorphismf : M — M is calledhyperbolicif the linear
partDfyp : ToM — TyM is a hyperbolic linear map, that is, i f, has no eigenvalue with
norm 1. Similarly, an equilibrium poinp of a smooth vector field is hyperbolicif the
derivativeDF (p) has no pure imaginary eigenvalues.

Hartman-Grobman theorem. This theorem asserts thatjifis a hyperbolic fixed point
of f : M — M then there are neighborhoddsof p in M andV of 0 in the tangent space
TpM such that we can find a homeomorphisimJ — V such that

hof=Dfpoh

whenever the composition is defined. This property meartshtin@aps orbits oD f (p)
close to zero to orbits of close top. We say thah is a (local)conjugacybetween the
non-linear systent and its linear parDfp. There is a corresponding similar theorem for
flows near a hyperbolic equilibrium. In either case, in gahlercan not be taken to be a
diffeomorphism.

Stable sets.Thestable sebf the hyperbolic fixed poinp is defined by
W3(p) = {xe M1 d(f(x), "(p)) ——— 0}
Givenp > 0 we also consider thHecal stable sebf size3 > 0, defined by

W (p) = {xe M :d(f"(x), f"(p)) < Bforalln>0}.

The image oWLlf under the conjugadyis a neighborhood of the origin insi&. It follows
that the local stable set is an embedded topological digk, e same dimension &S.
Moreover, the orbits of the points Wg(p) actually converges to the fixed point as time
goes to infinity. Therefore,

zeWs(p) < f"(2) € Wg(p) for somen > 0.

Stable manifold theorem. The stable manifold theorem asserts Mg(p) is actually a
smooth embedded disk, with the same order of differenttglai$ f itself, and it is tangent
to ES at the pointp. It follows thatWs3(p) is a smooth submanifold, injectively immersed
in M. In generalW5(p) is not embedded iM: in many cases it has self-accumulation
points. For these reasons one also referd/top) andWBS(p) as stablemanifoldsof p.
Unstable manifolds are defined analogously, replacingrtivesformation by its inverse.

Local stability. We callindexof a diffeomorphismf at a hyperbolic fixed poinp the
index of the linear part, that is, the number of eigenvalde § with negative real part.
By the Hartman-Grobman theorem and previous comments earlisystems, two dif-
feomorphisms are locally conjugate near hyperbolic fixeihtgaf and only if the stable
indices and they both preserve/reverse orientation. laratlords, the index together with
the sign of the Jacobian determinant form a complete setvafients for local topological
conjugacy.

Let g be any diffeomorphisr@!-close tof. Theng has a unique fixed poirgy close to
p, and this fixed point is still hyperbolic. Moreover, the d&indices and the orientations
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of the two diffeomorphisms at the corresponding fixed poadicide, and so they are
locally conjugate. This is callelbcal stability near of diffeomorphisms hyperbolic fixed
points. The same kind of result holds for flows near hypededjuilibria.

4. HYPERBOLIC BEHAVIOR: EXAMPLES

Now let us review some key examples of (semi)global hypéclayinamics. Thorough
descriptions are available in e.g! [8]] [6] and [9].

A linear torus automorphism. Consider the linear transformatiérn R? — R? given by
the following matrix, relative to the canonical base of thene:

2 1
1 1)
The 2-dimensional toru? is the quotieniR? /Z? of the plane by the equivalence relation

(Xy1) ~ (X2,Y2) & (X1—Xo,y1—Y2) € Z2.

SinceA preserves the latticE? of integer vectors, that is, sind§Z?) = 72, the linear
transformation defines an invertible mép: T? — T? in the quotient space, which is an
example of linear automorphism @®. We call affine line inT? the projection under the
guotient map of any affine line in the plane.

The linear transformatioA is hyperbolic, with eigenvalues@ A1 < 1 < A2, and the
corresponding eigenspadesandE? have irrational slope. For each porg T2, letW(2)
denote the affine line throughand having the direction &', fori =1, 2:

o distances alon@/(z) are multiplied byA; < 1 under forward iteration ofa
o distances alon®k(z) are multiplied by A2 < 1 under backward iteration df.

Thus we calW;(z) stable manifoldandWs(z) unstable manifoldf z (notice we are not
assuming to be periodic). Since the slopes are irrational, stablewarsiable manifolds
are dense in the whole torus. From this fact one can dedutéthaeriodic points ofa
form a dense subset of the torus, and that there exist polmisewrajectories are dense in
T2. The latter property is callemiansitivity.

An important feature of this systems is that its behavioglelfally) stable under small
perturbations: given any diffeomorphisgn T2 — T2 sufficiently Cl-close tofa, there
exists a homeomorphisim: T? — T? such thathog = faoh. In particular,g is also
transitive and its periodic points form a dense subsétof

The Smale horseshoeConsider a stadium shaped reg®in the plane divided into three
subregions, as depicted in Figlite 1: two half digkandC, and a squardd. Next, consider
a mapf : D — D mappingD back inside itself as described in Figlile 1: the intersactio
betweenB and f(B) consists of two rectangle®, andR;, and f is affine on the pre-
image of these rectangles, contracting the horizontattie and expanding the vertical
direction.

The setA = Nz f"(B), formed by all the points whose orbits never leave the square
B is totally disconnected, in fact, it is the product of two @arsets. A description of the
dynamics oM\ may be obtained through the following coding of orbits. Facte point
ze A and every timen € Z the iteratef"(z) must belong to eitheRy or R;. We call
itinerary of zthe sequencés, }nez With values in the sef0,1} defined byf"(z) € R, for
alln € Z. The itinerary map

A — {Oa 1}27 Z— {S’I}nGZ
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FIGURE 1. Horseshoe map

is a homeomorphism, and conjugafe®stricted to\ to the so-calledghift mapdefined on
the space of sequences by

{0, 1}Z — {0, 1}Za {sn}tnez — {shi1}nez.

Since the shift map is transitive, and its periodic pointsfa dense subset of the domain,
it follows that the same is true for the horseshoe mapon

From the definition off we get that distances along horizontal line segments troug
points of A are contracted at a uniform rate under forward iteration dodlly, distances
along vertical line segments through points/ofare contracted at a uniform rate under
backward iteration. Thus, horizontal line segments arallstable sets and vertical line
segments are local unstable sets for the points. of

A striking feature of this system is the stability of its dymias: given any diffeomor-
phismg sufficiently C!-close tof, its restriction to the sehg = Nnezg"(B) is conjugate
to the restriction off to the set\ = At (and, consequently, is conjugate to the shift map).
In addition, each point of\g has local stable and unstable sets which are smooth curve
segments, respectively, approximately horizontal andapmately vertical.

The solenoid attractor. Thesolid torusis the product spacgS x D, whereSS = R /Z
is the circle and) = {ze C: |z < 1} is the unit disk in the complex plane. Consider the
mapf : S$ x D — SS x D given by

(0,2) — (26,0z+ Be9/?),

0 € R/Z anda, B € R with a+f < 1. The latter condition ensures that the image
f(SS x D) is strictly contained ir8S x D. Geometrically, the image is a long thin domain
going around the solid torus twice, as described in Fiflireh&n, for anyn > 1, the cor-
responding iteraté"(SS x D) is an increasingly thinner and longer domain that wintls 2
times aroun®S x . The maximal invariant set

A =Nnsof"(SS x D)

is calledsolenoid attractor Notice that the forward orbit undérof every pointinSS x
accumulates oA. One can also check that the restrictionfdb the attractor is transitive,
and the set of periodic points défis dense im\.
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FIGURE 2. The solenoid attractor

In addition/\ has a dense subset of periodic orbits and also a dense orbitover
every point in a neighborhood @f converges to\ and this is why this set is called an
attractor.

5. HYPERBOLIC SETS

The notion we are now going to introduce distillates the i@iueature common to the
examples presented previously. A detailed presentatigivé in e.g. [8] and [10]. Let
f : M — M be a diffeomorphism on a manifold. A compact invariant seh C M is a
hyperbolic sefor f if the tangent bundle ovekx admits a decomposition

TAM = EYa ES,

invariant under the derivative and such thatf —* | EY|| < A and||Df | ES|| < A for some
constanf < 1 and some choice of a Riemannian metric on the manifold. Vitrexists,
such a decomposition is necessarily unique and continudescall ES the stable bundle
andEY the unstable bundle df on the sef\.

The definition of hyperbolicity for an invariant set of a snttoflow containing no equi-
libria is similar, except that one asks for an invariant depositionTA\AM = EY & E? @ ES,
whereE" andES are as before ari is a line bundle tangent to the flow lines. An invariant
set that contains equilibria is hyperbolic if and only it s@ts of a finite number of points,
all of them hyperbolic equilibria.

Cone fields. The definition of hyperbolic set is difficult to use in coneaituations, be-
cause, in most cases, one does not know the stable and enistatalles explicitly. For-
tunately, to prove that an invariant set is hyperbolic ifisef to have some approximate
knowledge of these invariant subbundles. That is the césmtfthe invariant cone field
criterion: a compact invariant set is hyperbolic if and offilthere exists some continu-
ous (not necessarily invariant) decomposifigM = E* @ E? of the tangent bundle, some
constani < 1, and some cone field aroufd

Clx)={v=vi+w e E}@EZ: |vo|| <a|w1]|}, xe€A

which is
(a) forward invariantD f,(C3(x)) C C,(f(x)) and
(b) expanded by forward iteratiofiD fx(v)|| > A~1||v|| for everyv € CL(x)

and there exists a cone fieBf(x) aroundE? which is backward invariant and expanded
by backward iteration.
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Robustness.An easy, yet very important consequence is that hyperbeti are robust
under small modifications of the dynamics. Indeed, suppgose a hyperbolic set for

f :M — M, and letC}(x) andCZ(x) be invariant cone fields as above. The (non-invariant)
decompositiorE® @ E? extends continuously to some small neighborhbodf A, and
then so do the cone fields. By continuity, conditions (a) di)dabove remain valid od,
possibly for a slightly larger constaht Most important, they also remain valid whérns
replaced by any other diffeomorphisgrwhich is sufficientlyCl-close to it. Thus, using
the cone field criterion once more, every compacikset U which is invariant undeg is

a hyperbolic set fog.

Stable manifold theorem. Let A be a hyperbolic set for a diffeomorphisht M — M.
Assumef is of classCX. Then there existo > 0 and 0< A < 1 and, for each & € < g
andx € A, thelocal stable manifold of size

WS (x) = {y e M : dist(f"(y), f"(x)) < e for all n > 0}
and thdocal unstable manifold of size
W (x) = {y e M :dist(f "(y), f "(x)) <eforalln>0}

areC* embedded disks, tangenbatio ES andEY, respectively, and satisfying
FWE(x)) € WE(f (x)) and f~H(WE'(x)) € WE(FH(x));

dist(f (x), f(y)) < Adist(x,y) for all y € WS(x)

dist(f~2(x), f~1(y)) < Adist(x,y) for all y € WY(x)

WS(x) andWY(x) vary continuously with the point, in theCK topology.

Then, theglobal stable and unstable manifoldéx,

W) = | F " WS(F"(x))  and WH(x) = [ M WH(E (),

n>0 n>0

are smoothly immersed submanifoldsvdf and they are characterized by

WS(x) = {y e M : dist(f"(y), f"(x)) — 0 asn — oo}
WY(x) = {y € M : dist(f "(y), f"(x)) — 0 ash — =}.

Shadowing property. This crucial property of hyperbolic sets means that possibiall
“errors” in the iteration of the map close to the set are, iIms®ense, unimportant: to the
resulting “wrong” trajectory, there corresponds a nearbyugne orbit of the map. Let us
give the formal statement. Recall that a hyperbolic set ispact, by definition.

Givend > 0, ad-pseudo-orbibf f : M — M is a sequencéxn }nez such that

dist(Xh41, f(Xn)) <& forallneZ.

Givene > 0, one says that a pseudo-orbitishadowedy the orbit of a poinz € M if
dist(f"(2),xn) < € for all n € Z. Theshadowing lemmaays that for ang > 0 one can find
0> 0 and a neighborhodd of the hyperbolic sef\ such that everg-pseudo-orbitirJ is
e-shadowed by some orbit ld. Assuminge is sufficiently small, the shadowing orbit is
actually unique.
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Local product structure. In general, these shadowing orbits need not be inside thrhype
bolic setA. However, that is indeed the caseNfis a maximal invariant setthat is, if
it admits some neighborhoadl such that\ coincides with the set of points whose orbits
never leaveJ:

AN=[)f"U).

nez

A hyperbolic set is a maximal invariant set if and only if itshhe local product structure
property stated in the next paragraph.

Let A be a hyperbolic set aradbe small. Ifx andy are nearby points in then the local
stable manifold ok intersects the local unstable manifoldyoét a unique point, denoted
[x,y], and this intersection is transverse. This is because tia $table manifold and the
local unstable manifold of every point are transverse, aegd local invariant manifolds
vary continuously with the point. We say thathaslocal product structuref there exists
0 > 0 such thafx,y] belongs to\ for everyx, y € A with dist(x,y) < 8.

Stability. The shadowing property may also be used to prove that hyperbets are
stable under small perturbations of the dynamics\ i& a hyperbolic set foff then for
anyCl-close diffeomorphisng there exists a hyperbolic sa close toA and carrying the
same dynamical behavior.

The key observation is that every orlbit(x) of f insideA is ad-pseudo-orbits fog in
a neighborhootll, whered is small if g is close tof and, hence, it is shadowed by some
orbitg"(z) of g. The correspondendgx) = z thus defined is injective and continuous.

For any diffeomorphisng close enough td, the orbits ofx in the maximalg-invariant
set/\g(U) insideU are pseudo-orbits fof. Therefore the shadowing property above en-
ables one to bijectively associajerbits of Ag(U ) to f-orbits inA. This provides a home-
omorphismh : Ag(U) — A which conjugateg and f on the respective hyperbolic sets:
f oh = hog. Thushyperbolic maximal sets are structurally stabthe persistent dynam-
ics in a neighborhood of these sets is the same for all neaapgm

If A\'is a hyperbolic maximal invariant set férthen its hyperbolic continuation for any
nearby diffeomorphismg is also a maximal invariant set fgr

Symbolic dynamics. The dynamics of hyperbolic sets can be described througima sy
bolic coding obtained from a convenient discretizationhaf phase space. In a few words,
one partitions the set into a finite number of subsets andrs$d a generic point in the
hyperbolic set its itinerary with respect to this partitioDynamical properties can then
be read out from a shift map in the space of (admissible)riines. The precise notion
involved is that of Markov partition.

A setR C A is arectangleif [x,y] € Rfor eachx,y € R. A rectangle isproperif it is
the closure of its interior relative th. A Markov partitionof a hyperbolic sef\ is a cover
R ={Ry,...,Rn} of A by proper rectangles with pairwise disjoint interiorsatele toA,
and such

WU(f (X)) NR; € FWU(X)NR) and f(WS(x)NR) € WS(f(x)) R,

for everyx € intA(R)) with f(X) € inta(R;). The key fact is thaany maximal hyperbolic
set/A admits Markov partitions with arbitrarily small diameter

Given a Markov partitior® with sufficiently small diameter, and a sequenee(jn)nez
in {1,...,m}, there exists at most one poit h(j) such that

f"(x) eR;, foreachne Z.
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We say tha} is admissible if such a poitdoes exist and, in this case, we sadmitsj as

an itinerary. It is clear that o h = ho g, whereo is the shift (left-translation) in the space
of admissible itineraries. The mdys continuous and surjective, and it is injective on the
residual set of points whose orbits never hit the bounddradative toA) of the Markov
rectangles.

6. UNIFORMLY HYPERBOLIC SYSTEMS

A diffeomorphismf : M — M is uniformly hyperboli¢or satisfies théxiom A if the
non-wandering se®(f) is a hyperbolic set fof and the set Péf) of periodic points is
dense inQ(f). There is an analogous definition for smooth floft\sM — M, t € R. The
reader can find the technical details in elLg. [6], [8] &nd [10]

Dynamical decomposition. The so-called “spectral’ decomposition theorem of Smale al
lows for the global dynamics of a hyperbolic diffeomorphismbe decomposed into ele-
mentary building blocks. It asserts that the non-wandestgsplits into a finite number
of pairwise disjoinbasic pieceshat are compact, invariant, and dynamically indecompos-
able. More precisely, the non-wandering SKtf) of a uniformly hyperbolic diffeomor-
phismf is a finite pairwise disjoint union

Q(f) =NU---UAN

of f-invariant, transitive setd;, that are compact and maximal invariant sets. Moreover,
thea-limit set of every orbit is contained in sorg and so is theo-limit set.

Geodesic flows on surfaces with negative curvaturedistorically, the first important
example of uniform hyperbolicity was the geodesic fléivon Riemannian manifolds of
negative curvatur®l. This is defined as follows.

Let M be a compact Riemannian manifold. Given any tangent vectety, : R — TM
be the geodesic with initial condition= y,(0). We denote by (t) the velocity vector at
timet. Since||w(t)|| = ||v|| for all t, it is no restriction to consider only unit vectors. There
is an important volume form on the unit tangent bundle, glwethe product of the volume
element on the manifold by the volume element induced on glaehby the Riemannian
metric. By integration of this form, one obtains thinuville mesureon the unit tangent
bundle, which is a finite measure if the manifold itself hastdivolume (including the
compact case). Thgeodesic flovis the flowG! : T'M — T1M on the unit tangent bundle
T1M of the manifold, defined by

G'(V) = (1)
An important feature is that this flow leaves invariant theuiille measure. By Poincaré
recurrence, this implies th&(G) = TM.

A major classical result in Dynamics, due to Anosov, states if M has negative
sectional curvature then this measure is ergodic for the float is, any invariant set has
zero or full Liouville measure. The special case wivkis a surface, had been dealt before
by Hedlund and Hopf.

The key ingredient to this theorem is to prove that the geodiesv is uniformly hyper-
bolic, in the sense we have just described, when the settanature is negative. In the
surface case, the stable and unstable invariant subbuaidiedifferentiable, which is no
longer the case in general in higher dimensions. This foalm@lobstacle was overcome by
Anosov through showing that the corresponding invarialiafions retain, nevertheless, a
weaker form of regularity property, that suffices for theqfrd_et us explain this.
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Absolute continuity of foliations. The invariant spaces; andEy of a hyperbolic system
depend continuously, and even Holder continuously, ob#se poink. However, in gen-
eral this dependence is not differentiable, and this faat the origin of several important
difficulties. Related to this, the families of stable andtabte manifolds are, usually, not
differentiable foliations: although the leaves themsglaee as smooth as the dynamical
system itself, the holonomy maps often fail to be differebie. By holonomy maps we
mean the projections along the leaves between two gives-a@dions to the foliation.

However, Anosov and Sinai observed that if the system isat vice differentiable
then these foliations absolutely continuougheir holonomy maps send zero Lebesgue
measure sets of one cross-section to zero Lebesgue measuoéthe other cross-section.
This property is crucial for proving that any smooth measuhéch is invariant under a
twice differentiable hyperbolic system is ergodic. For dgmcal systems that are only
once differentiable the invariant foliations may fail toddesolutely continuous. Ergodicity
still is an open problem.

Structural stability. A dynamical system istructurally stableif it is equivalent to any
other system in &£ neighborhood, meaning that there exists a global homedmgp
sending orbits of one to orbits of the other and preservirgdinection of time. More
generally, replacing! by C' neighborhoods, any > 1, one obtains the notion @'
structural stability. Notice that, in principle, this prmby gets weaker asincreases.

The Stability Conjecture of Palis-Smale proposed a coragiebmetric characteriza-
tion of this notion: for any > 1, C" structurally stable systems should coincide with the
hyperbolic systems having the property of strong transliys that is, such that the stable
and unstable manifolds of any points in the non-wanderihgigetransversal. In particu-
lar, this would imply that the property @' structural stability does not really depend on
the value ofr.

That hyperbolicity and strong transversality suffice foustural stability was proved
in the 1970’s by Robbin, de Melo, Robinson. It is compardyieasy to prove that strong
transversality is also necessary. Thus, the heart of tHecime is to prove that structurally
stable systems must be hyperbolic. This was achieved byéNtafthe 1980’s, foICt
diffeomorphisms, and extended about ten years later by $tayar C! flows. Thusa C!
diffeomorphism, or flow, on a compact manifold is structiyratable if and only if it is
uniformly hyperbolic and satisfies the strong transvetgalondition.

Q-stability. A weaker property, calle@-stability is defined requiring equivalence only
restricted to the non-wandering set. TQeStability Conjecture of Palis-Smale claims
that, for anyr > 1, Q-stable systems should coincide with the hyperbolic systeith no
cyclesthat is, such that no basic pieces in the spectral decotignoare cyclically related
by intersections of the corresponding stable and unstaide s

The Q-stability theorem of Smale states that these propertiesaificient forC" Q-
stability. Palis showed that the no-cycles condition i® alecessary. Much later, based on
Mafié’s aforementioned result, he also proved thaCfadiffeomorphisms hyperbolicity is
necessary fof-stability. This was extended ©' flows by Hayashi in the 1990’s.

7. ATTRACTORS AND PHYSICAL MEASURES

A hyperbolic basic piecd, is ahyperbolic attractoiif the stable set

WS(Aj) = {xe M :w(x) C A\i}
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contains a neighborhood &f. In this case we callvS(A;) thebasinof the attractor\; ,
and denote iB(/A\). When the uniformly hyperbolic system is of cla3% a basic piece is
an attractor if and only if its stable set has positive Lelbesgeasure. Thus, the union of
the basins of all attractors is a full Lebesgue measure sobs&. This remains true for a
residual (dens6;) subset ofc! uniformly hyperbolic diffeomorphisms and flows.

The following fundamental result, due to Sinai, Ruelle, Bovshows that, no matter
how complicated it may be, the behavior of typical orbits lie thasin of a hyperbolic
attractor is well-defined at the statistical levahy hyperbolic attracton of a C? diffeo-
morphism (or flow) supports a unique invariant probabilitgasure p such that

1 n—-1 )
im =3 6(11(2) = [ o ()
n—oo N J;)
for every continuous functiofand Lebesgue almost every poirg B(A). The standard
reference here i§[3].

Property[(?) also means that the Sinai-Ruelle-Bowen megsuay be “observed”: the
weights of subsets may be found with any degree of precisi®tthe sojourn-time of any
orbit picked “at random” in the basin of attraction:

u(V) = fraction of time the orbit ok spends iV

for typical subsetd/ of M (the boundary ol should have zerq-measure), and for
Lebesgue almost any point B(A). For this reasomp is called aphysical measure

It also follows from the construction of these physical mgas on hyperbolic attrac-
tors that they depend continuously on the diffeomorphisnti{e flow). Thisstatistical
stability is another sense in which the asymptotic behavior is staideperturbations of
the system, distinct from structural stability.

There is another sense in which this measure is “physical'tiaat is that is the zero-
noise limit of the stationary measures associated to thehagtic processes obtained by
adding small random noise to the system. The idea is to reglanuine trajectories by
“random orbits”(z,)n, where eaclz,, 1 is chosere-close tof (z,). We speak oktochastic
stability if, for any continuous functiog, the random time average

1 n—1

lim =Y ¢(z)

n—oo N J;

is close tof ¢ dpufor almost all choices of the random orbit.

One way to construct such random orbits is through randomitiupbed iterations, as
follows. Consider a family of probability measuresin the space of diffeomorphisms,
such that eachy, is supported in the-neighborhood off. Then, for each initial state,
definezyy1 = fni1(z1), where the diffeomorphismf, are independent random variables
with distribution lawve. A probability measure) on the basirB(A) is stationaryif it
satisfies

ne(E) = [ ne(g () dve(@)

Stationary measures always exist, and they are often ufiagqueach smalk > 0. Then
stochastic stability corresponds to havimgconverging weakly tqu when the noise level
€ goes to zero.

The notion of stochastic stability goes back to Kolmogonas &inai. The first results,
showing that uniformly hyperbolic systems are stochaliyictable, on the basin of each
attractor, were proved in the 1980's by Kifer and Young.
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Let us point out that physical measures need not exist foemggisystems. A simple
counter-example, attributed to Bowen, is described in ffeigu time averages diverge over
any of the spiraling orbits in the region bounded by the saddhnections. Notice that the
saddle connections are easily broken by arbitrarily sneliysbations of the flow. Indeed,
no robust examples are known of systems whose time-avedaggge on positive volume
sets.

FIGURE 3. A planar flow with divergent time averages

8. OBSTRUCTIONS TO HYPERBOLICITY

Although uniform hyperbolicity was originally intended émcompass a residual or, at
least, dense subset of all dynamical systems, it was sotime@hat this is not the case:
many important examples fall outside its realm. There acerh@in mechanisms that yield
robustly non-hyperbolic behavior, that is, whole open sétson-hyperbolic systems.

Heterodimensional cycles.Historically, the first such mechanism was the coexisteffice o
periodic points with different Morse indices (dimensiorfstee unstable manifolds) in-
side the same transitive set. See Fidudre 4. This is how theeftamples ofCl-open
subsets of non-hyperbolic diffeomorphisms were obtainedtraham, Smale on mani-
folds of dimensiord > 3. It was also the key in the constructions by Shub and Mdfé o
non-hyperbolic, yet robustly transitive diffeomorphisiimat is, such that every diffeomor-
phism in aC! neighborhood has dense orbits.

/pz
q

FIGURE 4. A heterodimensional cycle

For flows, this mechanism may assume a novel form, becaube d@ifterplay between
regular orbits and singularities (equilibrium points).ats, robust non-hyperbolicity may
stem from the coexistence of regular and singular orbitsérsame transitive set. The first,
and very striking example was the geometric Lorenz attrgamtoposed by Afraimovich,
Bykov, Shil'nikov and Guckenheimer, Williams to model thehlawvior of the Lorenz equa-
tions, that we shall discuss later.
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Homoclinic tangencies. Of course, heterodimensional cycles may exist only in disiemn

3 or higher. The first robust examples of non-hyperboliedifiorphisms on surfaces were
constructed by Newhouse, exploiting the second of thesentechanisms: homoclinic
tangencies, or non-transverse intersections betweetdabie snd the unstable manifold of
the same periodic point. See Figlie 5.

A0V
N CH)
p Nk

FIGURE 5. Homoclinic tangencies

Neo)

\l/

It is important to observe that individual homoclinic tanges are easily destroyed
by small perturbations of the invariant manifolds. To comst open examples of surface
diffeomorphisms witlsometangency, Newhouse started from systems where the tangency
is associated to a periodic point inside an invariant hyplégtset with rich geometric
structure. This is illustrated on the right hand side of F&fl. His argument requires a
very delicate control of distortion, as well as of the depaat of the fractal dimension
on the dynamics. Actually, for this reason, his construcisorestricted to th€" topology
forr > 2. A very striking consequence of this construction is thase open sets exhibit
coexistence of infinitely many periodic attractofsr each diffeomorphism on a residual
subset. A detailed presentation of his result and consegséas given in[[9].

Newhouse’s conclusions have been extended in two wayst, By<Palis, Viana, for
diffeomorphisms in any dimension, still in ti@& topology withr > 2. Then, by Bonatti,
Diaz, forC! diffeomorphisms in any dimension larger or equal than 3. T4se ofC!
diffeomorphisms on surfaces remains open. As a matter of ifathis setting it is still
unknown whether uniform hyperbolicity is dense in the spafcal diffeomorphisms.

9. PARTIAL HYPERBOLICITY

Several extensions of the theory of uniform hyperboliciayd been proposed, allow-
ing for more flexibility, while keeping the core idea: spiity of the tangent bundle into
invariant subbundles. We are going to discuss more closg\stich extensions.

On the one hand, one may allow for one or more invariant sutilesralong which
the derivative exhibits mixed contracting/neutral/exgtiag behavior. This is generically
referred to apartial hyperbolicity and a standard reference is the badk [5]. On the other
hand, while requiring all invariant subbundles to be eitlwguanding or contraction, one
may relax the requirement of uniform rates of expansion amdraction. This is usually
callednon-uniform hyperbolicityA detailed presentation of the fundamental results about
this notion is available e.g. inl[6]. In this section we dissthe first type of condition. The
second one will be dealt with later.
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Dominated splittings. Let f : M — M be a diffeomorphism on a closed maniféitland
K be anyf-invariant set. A continuous splittinGM = E;(x) & - - - & Ex(X), x € K of the
tangent bundle oveK is dominatedif it is invariant under the derivativ®f and there
exists? € N such that for every < j, everyx € K, and every pair of unit vectorse E;(x)
andv € Ej(x), one has
IDfe-ul 1
DV <2 ©
and the dimension d&;(x) is independent of € K for everyi € {1,...,k}. This definition
may be formulated, equivalently, as follows: there eRist 0 and\ < 1 such that for every
pair of unit vectoras € E;j(x) andv € Ej(x), one has
[Df2-Ul _ y N
IDfo-v] <CA" foralln>1.
Let f be a diffeomorphism an be anf-invariant set having a dominated splitting
T«M =E1 & --- @ Ex. We say that the splitting and the $éare

e partially hyperbolicthe derivative either contracts uniform{ or expands uni-
formly Ey: there exist? € N such that

. 1 1
either||Df | E1| < 5 or (D | B 7Y < >

e volume hyperbolid the derivative either contracts volume uniformly aloggor
expands volume uniformly alori: there existd € N such that

either|det(fo|El)|<% or |detDf’|Ey)|> 2.

The diffeomorphisnt is partially hyperbolic/volume hyperboli€ the ambient space
M is a partially hyperbolic/volume hyperbolic set for

Invariant foliations. An crucial geometric feature of partially hyperbolic systeis the
existence of invariant foliations tangent to uniformly exging or uniformly contracting
invariant subbundlesissuming the derivative contract$ Eniformly, there exists a unique
family 75 = { #5(x) : x € K} of injectively ¢ immersed submanifolds tangent tb & ev-
ery point of K, satisfying fFS(x)) = #5(f(x)) for all x € K, and which are uniformly
contracted by forward iterates of fhis is calledstrong-stable foliatiorof the diffeomor-
phism orK. Strong-unstable foliations are defined in the same waggiaito the invariant
subbundldey, when it is uniformly expanding.

As in the purely hyperbolic setting, a crucial ingredienttie ergodic theory of par-
tially hyperbolic systems is the fact that strong-stabld attong-unstable foliations are
absolutely continuous, if the system is at least twice thiféiable.

Robustness and partial hyperbolicity. Partially hyperbolic systems have been studied
since the 1970’s, most notably by Brin, Pesin and HirschhP8ub. Over the last decade
they attracted much attention as the key to characteripibgstness of the dynamics. More
precisely, letA be a maximal invariant set of some diffeomorphism

N= ﬂ f"(U) for some neighborhodd of A.
nez
The set/ is robust or robustly transitiveif its continuation\g = Nhezg"(U) is transitive
for all gin a neighborhood of. There is a corresponding notion for flows.
As we have already seen, hyperbolic basic pieces are rolugte 1970’'s, Mafié ob-
served that the converse is also true whkis a surface, but not anymore if the dimension
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of M is at least 3. Counter-examples in dimension 4 had been @igéare by Shub. A
series of results of Bonatti, Diaz, Pujals, Ures in the 19@0rified the situation in all
dimensions: robust sets always admit some dominatedisglitthich is volume hyper-
bolic; in general, this splitting needs not be partially bgtolic, except when the ambient
manifold has dimension 3.

Lorenz-like strange attractors. Parallel results hold for flows on 3-dimensional mani-
folds. The main motivation are the so-called Lorenz-likastie attractors, inspired by the
famous differential equations

X= —0X+ oy 0=10
y=pX—y—Xxz p=28 4)
z=xy—PBz B=8/3

introduced by E. N. Lorenz in the early 1960’s. Numericallgsia of these equations
led Lorenz to realize that sensitive dependence of trajiest@n the initial conditions is
ubiquitous among dynamical systems, even those with sisyaition laws.

The dynamical behavior of 4) was first interpreted by meafnseotain geometric
models, proposed by Guckenheimer, Williams and Afraimioyigykov, Shil’nikov in the
1970’s, where the presence of strange attractors, bothtiserand fractal, could be proved
rigorously. It was much harder to prove that the originalaipns[(4) themselves have such
an attractor. This was achieved just a few years ago, by Tublkeneans of a computer
assisted rigorous argument.

An important point is that Lorenz-like attractors cannothyperbolic, because they
contain an equilibrium point accumulated by regular orlrigsde the attractor. Yet, these
strange attractors are robust, in the sense we defined al#owmeathematical theory of
robustness for flows in 3-dimensional spaces was recenibloiged by Morales, Pacifico,
and Pujals. In particular, this theory shows that uniforimiperbolic attractors and Lorenz-
like attractors are the only ones which are robust. Inddeely prove thaiany robust
invariant set of a flow in dimensiaBis singular hyperbolic Moreover,if the robust set
contains equilibrium points then it must be either an attoaior a repeller A detailed
presentation of this and related results is givem in [1].

An invariant setA of a flow in dimension 3 isingular hyperbolidf it is a partially
hyperbolic set with splittings* & E2 such that the derivative is volume contracting along
E! and volume expanding alorfg?. Notice that one of the subbundI&8 or E? must
be one-dimensional, and then the derivative is, actuallyeenorm contracting or norm
expanding along this subbundle. Singular hyperbolic sétsowt equilibria are uniformly
hyperbolic: the 2-dimensional invariant subbundle s@igghe sum of the flow direction
with a uniformly expanding or contracting one-dimensidnahriant subbundle.

10. NON-UNIFORM HYPERBOLICITY - LINEAR THEORY

In its linear form, the theory of non-uniform hyperbolicijpes back to Lyapunov, and
is founded on the multiplicative ergodic theorem of Oseledeet us introduce the main
ideas, whose thorough development can be found in[€.gg¥and [7].

The Lyapunov exponentsf a sequencgA",n > 1} of square matrices of dimension
d > 1, are the values of

A(v) = Iimsup%logHArVVH (5)
n—oo

over all non-zero vectors € RY. For completeness, skf0) = —o. It is easy to see that
A(cv) = A(v) andA(v+V) < max{A(v),A(V)} for any non-zero scalarand any vectors
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v, V. It follows that, given any constaat the set of vectors satisfyingv) < ais a vector
subspace. Consequently, there are at rddstapunov exponents, henceforth denoted by
A < -+ < M1 < A, and there exists a filtratiofy € Fy C --- C Fe_1 C R = RY into
vector subspaces, such that

A(v)=Aiforallve R\ F_1
and every = 1,... k (write Fp = {0}). In particular, the largest exponent s given by

A= Iimsup% log||A"]| . (6)
N—oo

One calls dinfj — dimF_1 themultiplicity of each Lyapunov exponeht.

There are corresponding notions for continuous familiemafricesA', t € (0, ), tak-

ing the limit ast goes to infinity in the relation§5) anld (6).
Lyapunov stability. Consider the linear differential equation

v(t) =B(t) - v(t) ()
whereB(t) is a bounded function with values in the space efd matrices, defined for all
t € R. The theory of differential equations ensures that thergt®afundamental matrix
Al, t € R such that

v(t) =A v

is the unique solution of{7) with initial condition0) = vo.

If the Lyapunov exponents of the family, t > 0 are all negative then the trivial solution
v(t) = 0 is asymptotically stable, and even exponentially stablee stability theorem of
A. M. Lyapunov asserts that, under an additional regulaatydition, stability is still valid
for non-linear perturbations

w(t) = B(t) -w+F(t,w)
with ||F (t,w)|| < const|w||**¢, ¢ > 0. That is, the trivial solutiomv(t) = 0 is still expo-
nentially asymptotically stable.

The regularity condition means, essentially, that thetlimi{E) does exist, even if one
replaces vectors by elements/; A --- A v of anylth exterior power ofRY, 1 <1 < d.
By definition, the norm of an-vectorvi A --- AV is the volume of the parallelepiped
determined by the vectosxs, ..., V. This condition is usually tricky to check in specific
situations. However, the multiplicative ergodic theorefiVol. Oseledets asserts that,
for very general matrix-valued stationary random procgssegularity is an almost sure
property.

Multiplicative ergodic theorem. Let f : M — M be a measurable transformation, pre-
serving some measuge and letA: M — GL(d,R) be any measurable function such that
log||A(x)|| is p-integrable. The Oseledets theorem states that Lyapunmenexts exist
for the sequencA”(x) = A(f"1(x))--- A(f(x)) A(x) for p-almost everk € M. More pre-
cisely, forp-almost everyi € M there existk = k(x) € {1,...,d}, afiltration

FPcRlc- cFfFlcR =R,
and numbera(x) < --- < Ag(x) such that
lim ~log |A"() ]| = A (x)

forallve F}\Fl~tandi € {1,...,k}. More generally, this conclusion holds for any vector
bundle automorphisr’ — 4/ over the transformatiom, with A : %4 — 7%, denoting
the action of the automorphism on the fibexof
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The Lyapunov exponentfs(x), and their numbek(x), are measurable functions »f
and they are constant on orbits of the transformafiomn particular, if the measungis
ergodic therk and the\; are constant on a full-measure set of points. The subspaggs
also depend measurably on the poiatnd are invariant under the automorphism:

A(X) - Fe=F{ -

Itis in the nature of things that, usually, these objectaatelefined everywhere and they
depend discontinuously on the base paint

When the transformatiof is invertible one obtains a stronger conclusion, by applyin
the previous result also to the inverse automorphism: aisgpiimat log|A(x)~1|| is also in
LY(p), one gets that there exists a decomposition

%:E)}@...@Eﬁ(ﬂ

defined at almost every point and such tAat) - E; = E{ ,, and
.
JNim_— log[|A(x) - V]| = Ai(x)

for all v € E! different from zero and all€ {1,...,k}. TheseOseledets subspace$ &e
related to the subspacEsthrough

Rl =&lE.

Hence, dinEl, = dimF, — dimF} ! is the multiplicity of the Lyapunov exponent(x).
The angles between any two Oseledets subspaces decaymeatally along orbits
of f:

1 i -
Jim,_ - logangle( () Egny . D Engy) =0
il j¢l
foranyl C {1,...,k} and almost every point. These facts imply the regularitydition
mentioned previously and, in particular,

1 R
nLI»rEooﬁ log|detA"(x)| = i;)\.(x)dex

Consequently, if de&(x) = 1 at every point then the sum of all Lyapunov exponents,
counted with multiplicity, is identically zero.

11. NON-UNIFORMLY HYPERBOLIC SYSTEMS

The Oseledets theorem applies, in particular, wheM — M is aC! diffeomorphism
on some compact manifold am(x) = Dfyx. Notice that the integrability conditions are
automatically satisfied, for anfrinvariant probability measung since the derivative of
and its inverse are bounded in norm.

Lyapunov exponents yield deep geometric information ondyreamics of the diffeo-
morphism, especially when they do not vanish. We padl hyperbolic measuréf all
Lyapunov exponents are non-zerguealmost every point. Byion-uniformly hyperbolic
systemwe shall mean a diffeomorphisiin: M — M together with some invariant hyper-
bolic measure.

A theory initiated by Pesin provides fundamental geometriiermation on this class
of systems, especially existence of stable and unstabléfoidmat almost every point
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which form absolutely continuous invariant laminationgr Fost results, one needs the
derivativeDf to be Holder continuous: there exists- 0 such that

|Dfx—Dfy| < constd(x,y)°.

These notions extend to the context of flows essentiallyowuitithange, except that one
disregards the invariant line bundle given by the flow dimt{whose Lyapunov exponent
is always zero). A detailed presentation can be found in[é]g.

Stable manifolds. An essential tool is the existence of invariant familiesaxfdl stable
sets and local unstable sets, definegi-almost every point. Assumg is a hyperbolic
measure. LeE} andES be the sums of all Oseledets subspaces corresponding tv@osi
respectively negative, Lyapunov exponents, and,jet 0 be a lower bound for the norm
of every Lyapunov exponent &t

Pesin’s stable manifold theorem states tfatp-almost every x M, there exists a €
embedded disk §{(x) tangent to E at x and there exists,C> 0 such that

dist(f"(y), f"(x)) < Cxe ™. dist(y,x) forally € W3.(X).

Moreover, the familyy{W? (x)} is invariant, in the sense th&tW? (x)) € W (f(x)) for
p-almost everyi. Thus, one may define global stable manifolds

W(x) = J f"(Wge(x))  for p-almost every.
n=0

In general, the local stable disk¢®(x) depend only measurably on Another key differ-
ence with respect to the uniformly hyperbolic setting i tha number€, andty can not
be taken independent of the point, in general. Likewise,defes local and global un-
stable manifolds, tangent i} at almost every point. Most important for the applications,
both foliations, stable and unstable, are absolutely nontis.

In the remaining sections we briefly present three majorltesuthe theory of non-
uniform hyperbolicity: the entropy formula, abundance efipdic orbits, and exact di-
mensionality of hyperbolic measures.

The entropy formula. The entropy of a partitior? of M is defined by
o1 n
hu(f,P) = A@mﬁH“(T )

where®" is the partition into sets of the fori= Pon f~1(Py)N--- N f~"(Py) with P; € P
and

Hy(?") = ¥ —(P)logu(P).

pepn

The Kolmogorov-Sinai entropy,fif) of the system is the supremumf( f, ?) over all
partitions® with finite entropy. The Ruelle-Margulis inequality sayath,,(f) is bounded
above by the averaged sum of the positive Lyapunov exponéatsajor result of the
theorem, Pesin’s entropy formula, asserts that if the ismameasurequ is smooth (for
instance, a volume element) then the entropy actually ab#sowith the averaged sum of
the positive Lyapunov exponents

k
hu(f):/(zlmax{o,)\j})dp.
=

A complete characterization of the invariant measures foickvthe entropy formula is
true was given by F. Ledrappier and L. S. Young.
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Periodic orbits and entropy. It was proved by A. Katok that periodic motions are always
dense in the support of any hyperbolic measure. More thanabauming the measure is
non-atomic, there exist Smale horseshidgsvith topological entropy arbitrarily close to
the entropyh,(f) of the system. In this context, thepological entropy hf,H,) may be
defined as the exponential rate of growth

llim %Iog#{xe Hn: £5(x) = x}.
of the number of periodic points dth,.

Dimension of hyperbolic measures.Another remarkable feature of hyperbolic measures
is that they arexact dimensionathe pointwise dimension

o = lm ST

exists at almost every point, wheBg(x) is the neighborhood of radiusaroundx. This
fact was proved by L. Barreira, Ya. Pesin, and J. Schmelirge khat this means that the
measureu(B; (x)) of neighborhoods scales e when the radius is small.

12. FUTURE DIRECTIONS

The theory of uniform hyperbolicity showed that dynamigaitems with very complex
behavior may be amenable to a very precise description af élelution, especially in
probabilistic terms. It was most successful in charadtegistructural stability, and also
established a paradigm of how general "chaotic” systemsirhig approached. A vast
research program has been going on in the last couple of de@adso, to try and build
such a global theory of complex dynamical evolution, whesams such as partial and
non-uniform hyperbolicity play a central part. The readerdferred to the bibliography,
especially the book]2] for a review of much recent progress.
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