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GLOSSARY

Homeomorphism, diffeomorphism. A homeomorphismis a continuous mapf : M → N
which is one-to-one and onto, and whose inversef−1 : N → M is also continuous. It may
be seen as a global continuous change of coordinates. We callf a diffeomorphismif, in
addition, both it and its inverse are smooth. WhenM = N, the iteratedn-fold composition
f◦ n. . . ◦ f is denoted byf n. By convention,f 0 is the identity map, andf−n = ( f n)−1 =
( f−1)n for n≥ 0.

Smooth flow. A flow f t : M → M is a family of diffeomorphisms depending in a smooth
fashion on a parametert ∈ R and satisfyingf s+t = f s◦ f t for all s, t ∈ R. This prop-
erty implies thatf 0 is the identity map. Flows usually arise as solutions of autonomous
differential equations: lett 7→ φt(v) denote the solution of

Ẋ = F(X), X(0) = v (1)

and assume solutions are defined for all times; then the family φt thus defined is a flow (at
least as smooth as the vector fieldF itself). The vector field may be recovered from the
flow, through the relationF(X) = ∂tφt(X) |t=0.
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2 VITOR ARAÚJO AND MARCELO VIANA

Ck topology. Two maps admitting continuous derivatives are said to beC1-closeif they
are uniformly close, and so are their derivatives. More generally, given anyk≥ 1, we say
that two maps areCk-closeif they admit continuous derivatives up to orderk, and their
derivatives of orderi are uniformly close, for everyi = 0,1, . . . ,k. This defines a topology
in the space of maps of classCk.

Foliation. A foliation is a partition of a subset of the ambient space into smooth sub-
manifolds, that one calls leaves of the foliation, all with the same dimension and varying
continuously from one point to the other. For instance, the trajectories of a vector fieldF ,
that is, the solutions of equation (1), form a 1-dimensionalfoliation (the leaves are curves)
of the complement of the set of zeros ofF . The main examples of foliations in the context
of this work are the families of stable and unstable manifolds of hyperbolic sets.

Attractor. A subsetΛ of the ambient spaceM is invariant under a transformationf if
f−1(Λ) = Λ, that is, a point is inΛ if and only if its image is.Λ is invariant under a flow if
it is invariant underf t for all t ∈ R. An attractor is a compact invariant subsetΛ such that
the trajectories of all points in a neighborhoodU converge toΛ as times goes to infinity,
andΛ is dynamically indecomposable(or transitive): there is some trajectory dense inΛ.
Sometimes one asks convergence only for points in some “large” subset of a neighborhood
U of Λ, and dynamical indecomposability can also be defined in somewhat different ways.
However, the formulations we just gave are fine in the uniformly hyperbolic context.

Limit sets. Theω-limit setof a trajectoryf n(x), n∈ Z is the setω(x) of all accumulation
points of the trajectory as timen goes to+∞. The α-limit set is defined analogously,
with n→−∞. The corresponding notions for continuous time systems (flows) are defined
analogously. Thelimit set L( f ) (or L( f t ), in the flow case) is the closure of the union of all
’ω-limit and all α-limit sets. Thenon-wandering setΩ( f ) (or Ω( f t ), in the flow case) is
that set of points such that every neighborhoodU contains some point whose orbit returns
to U in future time (then some point returns toU in past time as well). When the ambient
space is compact all these sets are non-empty. Moreover,thelimit set is contained in the
non-wandering set.

Invariant measure. A probability measureµ in the ambient spaceM is invariant under a
transformationf if µ( f−1(A)) = µ(A) for all measurable subsetsA. This means that the
“events” x ∈ A and f (x) ∈ A have equally probable. We sayµ is invariant under a flow
if it is invariant underf t for all t. An invariant probability measureµ is ergodicif every
invariant setA has either zero or full measure. An equivalently condition is thatµ can not
be decomposed as a convex combination of invariant probability measures, that is, one can
not haveµ= aµ1+(1−a)µ2 with 0 < a < 1 andµ1, µ2 invariant.

DEFINITION

In general terms, a smooth dynamical system is called hyperbolic if the tangent space
over the asymptotic part of the phase space splits into two complementary directions, one
which is contracted and the other which is expanded under theaction of the system. In the
classical, so-called uniformly hyperbolic case, the asymptotic part of the phase space is
embodied by the limit set and, most crucially, one requires the expansion and contraction
rates to be uniform. Uniformly hyperbolic systems are now fairly well understood. They
may exhibit very complex behavior which, nevertheless, admits a very precise descrip-
tion. Moreover, uniform hyperbolicity is the main ingredient for characterizing structural
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stability of a dynamical system. Over the years the notion ofhyperbolicity was broad-
ened (non-uniform hyperbolicity) and relaxed (partial hyperbolicity, dominated splitting)
to encompass a much larger class of systems, and has become a paradigm for complex
dynamcial evolution.

1. INTRODUCTION

The theory of uniformly hyperbolic dynamical systems was initiated in the 1960’s
(though its roots stretch far back into the 19th century) by S. Smale, his students and col-
laborators, in the west, and D. Anosov, Ya. Sinai, V. Arnold,in the former Soviet Union.
It came to encompass a detailed description of a large class of systems, often with very
complex evolution. Moreover, it provided a very precise characterization of structurally
stable dynamics, which was one of its original main goals.

The early developments were motivated by the problem of characterizing structural sta-
bility of dynamical systems, a notion that had been introduced in the 1930’s by A. An-
dronov and L. Pontryagin. Inspired by the pioneering work ofM. Peixoto on circle maps
and surface flows, Smale introduced a class ofgradient-likesystems, having a finite num-
ber of periodic orbits, which should be structurally stableand, moreover, should constitute
the majority (an open and dense subset) of all dynamical systems. Stability and openness
were eventually established, in the thesis of J. Palis. However, contemporary results of M.
Levinson, based on previous work by M. Cartwright and J. Littlewood, provided examples
of open subsets of dynamical systems all of which have an infinite number of periodic
orbits.

In order to try and understand such phenomenon, Smale introduced a simple geometric
model, the now famous ”horseshoe map”, for which infinitely many periodic orbits exist
in a robust way. Another important example of structurally stable system which is not
gradient like was R. Thom’s so-called ”cat map”. The crucialcommon feature of these
models is hyperbolicity: the tangent space at each point splits into two complementar
directions such that the derivative contracts one of these directions and expands the other,
at uniform rates.

In global terms, a dynamical system is calleduniformly hyperbolic, or Axiom A, if
its limit set has this hyperbolicity property we have just described. The mathematical
theory of such systems, which is the main topic of this paper,is now well developped and
constitutes a main paradigm for the behavior of ”chaotic” systems. In our presentation
we go from local aspects (linear systems, local behavior, specific examples) to the global
theory (hyperbolic sets, stability, ergodic theory). In the final sections we discuss several
important extensions (strange attractors, partial hyperbolicity, non-uniform hyperbolicity)
that have much broadened the scope of the theory.

2. LINEAR SYSTEMS

Let us start by introducing the phenomenon of hyperbolicityin the simplest possible
setting, that of linear transformations and linear flows. Most of what we are going to say
applies to both discrete time and continuous time systems ina fairly analogous way, and
so at each point we refer to either one setting or the other. Indepth presentations can be
found in e.g. [8] and [6].

The general solution of a system of linear ordinary differential equations

Ẋ = AX, X(0) = v
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whereA is a constantn×n real matrix andv∈ Rn is fixed, is given by

X(t) = etA ·v, t ∈ R,

whereetA = ∑∞
n=0(tA)n/n!. The linear flow is calledhyperbolicif A has no eigenvalues on

the imaginary axis. Then theexponentialmatrix eA has no eigenvalues with norm 1. This
property is very important for a number of reasons.

Stable and unstable spaces.For one thing it implies that all solutions have well-defined
asymptotic behavior: they either converge to zero or diverge to infinity as timet goes to
±∞. More precisely, let

• Es (stable subspace) be the subspace ofRn spanned by the generalized eigenvector
associated to eigenvalues ofA with negative real part.

• Eu (unstable subspace) be the subspace ofRn spanned by the generalized eigen-
vector associated to eigenvalues ofA with positive real part

Then these subspaces are complementary, meaning thatRn = Es⊕Eu, and every solution
etA ·v with v 6∈ Es∪Eu diverges to infinity both in the future and in the past. The solutions
with v ∈ Es converge to zero ast → +∞ and go to infinity ast → −∞, and analogously
whenv∈ Eu, reversing the direction of time.

Robustness and density.Another crucial feature of hyperbolicity isrobustness: any ma-
trix that is close to a hyperbolic one, in the sense that corresponding coefficients are close,
is also hyperbolic. The stable and unstable subspaces need not coincide, of course, but the
dimensions remain the same. In addition, hyperbolicity ifdense: any matrix is close to a
hyperbolic one. That is because, up to arbitrarily small modifications of the coefficients,
one may force all eigenvalues to move out of the imaginary axis.

Stability, index of a fixed point. In addition to robustness, hyperbolicity also implies
stability: if B is close to a hyperbolic matrixA, in the sense we have just described, then
the solutions ofẊ = BX have essentially the same behavior as the solutions ofẊ = AX.
What we mean by “essentially the same behavior” is that thereexists a global continuous
change of coordinates, that is, a homeomorphismh : Rn → Rn, that maps solutions of one
system to solutions of the other, preserving the time parametrization:

h
(

etA ·v
)

= etB ·h(v) for all t ∈ R.

More generally, two hyperbolic linear flows are conjugated by a homeomorphismh if and
only if they have the sameindex, that is, the same number of eigenvalues with negative real
part. In general,h can not be taken to be a diffeomorphism: this is possible if and only if
the two matricesA andB are obtained from one another via a change of basis. Notice that
in this case they must have the same eigenvalues, with the same multiplicities.

Hyperbolic linear flows. There is a corresponding notion of hiperbolicity for discrete
time linear systems

Xn+1 = CXn, X0 = v

with C an×n real matrix. Namely, we say the system ishyperbolicif C has no eigenvalue
in the unit circle. Thus a matrixA is hyperbolic in the sense of continuous time systems if
and only if its exponentialC = eA is hyperbolic in the sense of discrete time systems. The
previous observations (well-defined behavior, robustness, denseness and stability) remain
true in discrete time. Two hyperbolic matrices are conjugate by a homeomorphism if and
only if they have the same index, that is, the same number of eigenvalues with norm less
than 1, and they both either preserve or reverse orientation.
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3. LOCAL THEORY

Now we move on to discuss the behavior of non-linear systems close to fixed or, more
generally, periodic trajectories. By non-linear system weunderstand the iteration of a
diffeomorphismf , or the evolution of a smooth flowf t , on some manifoldM. The general
philosophy is that the behavior of the system close to a hyperbolic fixed point very much
resembles the dynamics of its linear part.

A fixed point p∈ M of a diffeomorphismf : M → M is calledhyperbolicif the linear
partD fp : TpM → TpM is a hyperbolic linear map, that is, ifD fp has no eigenvalue with
norm 1. Similarly, an equilibrium pointp of a smooth vector fieldF is hyperbolicif the
derivativeDF(p) has no pure imaginary eigenvalues.

Hartman-Grobman theorem. This theorem asserts that ifp is a hyperbolic fixed point
of f : M → M then there are neighborhoodsU of p in M andV of 0 in the tangent space
TpM such that we can find a homeomorphismh : U →V such that

h◦ f = D fp ◦h

whenever the composition is defined. This property means that h maps orbits ofD f (p)
close to zero to orbits off close top. We say thath is a (local)conjugacybetween the
non-linear systemf and its linear partD fp. There is a corresponding similar theorem for
flows near a hyperbolic equilibrium. In either case, in general h can not be taken to be a
diffeomorphism.

Stable sets.Thestable setof the hyperbolic fixed pointp is defined by

Ws(p) = {x∈ M : d( f n(x), f n(p)) −−−−→
n→+∞

0}

Givenβ > 0 we also consider thelocal stable setof sizeβ > 0, defined by

Ws
β(p) = {x∈ M : d( f n(x), f n(p)) ≤ β for all n≥ 0}.

The image ofWs
β under the conjugacyh is a neighborhood of the origin insideEs. It follows

that the local stable set is an embedded topological disk, with the same dimension asEs.
Moreover, the orbits of the points inWs

β(p) actually converges to the fixed point as time
goes to infinity. Therefore,

z∈Ws(p) ⇔ f n(z) ∈Ws
β(p) for somen≥ 0.

Stable manifold theorem. The stable manifold theorem asserts thatWs
β(p) is actually a

smooth embedded disk, with the same order of differentiability as f itself, and it is tangent
to Es at the pointp. It follows thatWs(p) is a smooth submanifold, injectively immersed
in M. In general,Ws(p) is not embedded inM: in many cases it has self-accumulation
points. For these reasons one also refers toWs(p) andWs

β(p) as stablemanifoldsof p.
Unstable manifolds are defined analogously, replacing the transformation by its inverse.

Local stability. We call indexof a diffeomorphismf at a hyperbolic fixed pointp the
index of the linear part, that is, the number of eigenvalues of D fp with negative real part.
By the Hartman-Grobman theorem and previous comments on linear systems, two dif-
feomorphisms are locally conjugate near hyperbolic fixed points if and only if the stable
indices and they both preserve/reverse orientation. In other words, the index together with
the sign of the Jacobian determinant form a complete set of invariants for local topological
conjugacy.

Let g be any diffeomorphismC1-close tof . Theng has a unique fixed pointpg close to
p, and this fixed point is still hyperbolic. Moreover, the stable indices and the orientations
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of the two diffeomorphisms at the corresponding fixed pointscoincide, and so they are
locally conjugate. This is calledlocal stabilitynear of diffeomorphisms hyperbolic fixed
points. The same kind of result holds for flows near hyperbolic equilibria.

4. HYPERBOLIC BEHAVIOR: EXAMPLES

Now let us review some key examples of (semi)global hyperbolic dynamics. Thorough
descriptions are available in e.g. [8], [6] and [9].

A linear torus automorphism. Consider the linear transformationA : R2 → R2 given by
the following matrix, relative to the canonical base of the plane:

(

2 1
1 1

)

.

The 2-dimensional torusT2 is the quotientR2/Z2 of the plane by the equivalence relation

(x1,y1) ∼ (x2,y2) ⇔ (x1−x2,y1−y2) ∈ Z
2.

SinceA preserves the latticeZ2 of integer vectors, that is, sinceA(Z2) = Z2, the linear
transformation defines an invertible mapfA : T2 → T2 in the quotient space, which is an
example of linear automorphism ofT2. We call affine line inT2 the projection under the
quotient map of any affine line in the plane.

The linear transformationA is hyperbolic, with eigenvalues 0< λ1 < 1 < λ2, and the
corresponding eigenspacesE1 andE2 have irrational slope. For each pointz∈T2, letWi(z)
denote the affine line throughzand having the direction ofEi , for i = 1, 2:

• distances alongW1(z) are multiplied byλ1 < 1 under forward iteration offA
• distances alongW2(z) are multiplied by 1/λ2 < 1 under backward iteration offA.

Thus we callW1(z) stable manifoldandW2(z) unstable manifoldof z (notice we are not
assumingz to be periodic). Since the slopes are irrational, stable andunstable manifolds
are dense in the whole torus. From this fact one can deduce that the periodic points offA
form a dense subset of the torus, and that there exist points whose trajectories are dense in
T2. The latter property is calledtransitivity.

An important feature of this systems is that its behavior is (globally) stable under small
perturbations: given any diffeomorphismg : T2 → T2 sufficientlyC1-close to fA, there
exists a homeomorphismh : T

2 → T
2 such thath◦ g = fA ◦ h. In particular,g is also

transitive and its periodic points form a dense subset ofT2.

The Smale horseshoe.Consider a stadium shaped regionD in the plane divided into three
subregions, as depicted in Figure 1: two half disks,A andC, and a square,B. Next, consider
a map f : D → D mappingD back inside itself as described in Figure 1: the intersection
betweenB and f (B) consists of two rectangles,R0 andR1, and f is affine on the pre-
image of these rectangles, contracting the horizontal direction and expanding the vertical
direction.

The setΛ = ∩n∈Z f n(B), formed by all the points whose orbits never leave the square
B is totally disconnected, in fact, it is the product of two Cantor sets. A description of the
dynamics onΛ may be obtained through the following coding of orbits. For each point
z∈ Λ and every timen ∈ Z the iteratef n(z) must belong to eitherR0 or R1. We call
itinerary of z the sequence{sn}n∈Z with values in the set{0,1} defined byf n(z) ∈ Rsn for
all n∈ Z. The itinerary map

Λ → {0,1}Z, z 7→ {sn}n∈Z
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FIGURE 1. Horseshoe map

is a homeomorphism, and conjugatesf restricted toΛ to the so-calledshift mapdefined on
the space of sequences by

{0,1}Z → {0,1}Z, {sn}n∈Z 7→ {sn+1}n∈Z.

Since the shift map is transitive, and its periodic points form a dense subset of the domain,
it follows that the same is true for the horseshoe map onΛ.

From the definition off we get that distances along horizontal line segments through
points ofΛ are contracted at a uniform rate under forward iteration and, dually, distances
along vertical line segments through points ofΛ are contracted at a uniform rate under
backward iteration. Thus, horizontal line segments are local stable sets and vertical line
segments are local unstable sets for the points ofΛ.

A striking feature of this system is the stability of its dynamics: given any diffeomor-
phismg sufficientlyC1-close to f , its restriction to the setΛg = ∩n∈Zgn(B) is conjugate
to the restriction off to the setΛ = Λ f (and, consequently, is conjugate to the shift map).
In addition, each point ofΛg has local stable and unstable sets which are smooth curve
segments, respectively, approximately horizontal and approximately vertical.

The solenoid attractor. Thesolid torusis the product spaceSS1×D, whereSS1 = R/Z

is the circle andD = {z∈ C : |z| < 1} is the unit disk in the complex plane. Consider the
map f : SS1×D → SS1×D given by

(θ,z) 7→ (2θ,αz+ βeiθ/2),

θ ∈ R/Z and α, β ∈ R with α + β < 1. The latter condition ensures that the image
f (SS1×D) is strictly contained inSS1×D. Geometrically, the image is a long thin domain
going around the solid torus twice, as described in Figure 2.Then, for anyn≥ 1, the cor-
responding iteratef n(SS1×D) is an increasingly thinner and longer domain that winds 2k

times aroundSS1×D. The maximal invariant set

Λ = ∩n≥0 f n(SS1×D)

is calledsolenoid attractor. Notice that the forward orbit underf of every point inSS1×D

accumulates onΛ. One can also check that the restriction off to the attractor is transitive,
and the set of periodic points off is dense inΛ.
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SS1×D

f (SS1×D)

{θ}×D

FIGURE 2. The solenoid attractor

In additionΛ has a dense subset of periodic orbits and also a dense orbit. Moreover
every point in a neighborhood ofΛ converges toΛ and this is why this set is called an
attractor.

5. HYPERBOLIC SETS

The notion we are now going to introduce distillates the crucial feature common to the
examples presented previously. A detailed presentation isgiven in e.g. [8] and [10]. Let
f : M → M be a diffeomorphism on a manifoldM. A compact invariant setΛ ⊂ M is a
hyperbolic setfor f if the tangent bundle overΛ admits a decomposition

TΛM = Eu⊕Es,

invariant under the derivative and such that‖D f−1 | Eu‖ < λ and‖D f | Es‖ < λ for some
constantλ < 1 and some choice of a Riemannian metric on the manifold. Whenit exists,
such a decomposition is necessarily unique and continuous.We callEs the stable bundle
andEu the unstable bundle off on the setΛ.

The definition of hyperbolicity for an invariant set of a smooth flow containing no equi-
libria is similar, except that one asks for an invariant decompositionTΛM = Eu⊕E0⊕Es,
whereEu andEs are as before andE0 is a line bundle tangent to the flow lines. An invariant
set that contains equilibria is hyperbolic if and only it consists of a finite number of points,
all of them hyperbolic equilibria.

Cone fields. The definition of hyperbolic set is difficult to use in concrete situations, be-
cause, in most cases, one does not know the stable and unstable bundles explicitly. For-
tunately, to prove that an invariant set is hyperbolic it suffices to have some approximate
knowledge of these invariant subbundles. That is the contents of the invariant cone field
criterion: a compact invariant set is hyperbolic if and onlyif there exists some continu-
ous (not necessarily invariant) decompositionTΛM = E1⊕E2 of the tangent bundle, some
constantλ < 1, and some cone field aroundE1

C1
a(x) = {v = v1 +v2 ∈ E1

x ⊕E2
x : ‖v2‖ ≤ a‖v1‖}, x∈ Λ

which is

(a) forward invariant:D fx(C1
a(x)) ⊂C1

λa( f (x)) and
(b) expanded by forward iteration:‖D fx(v)‖ ≥ λ−1‖v‖ for everyv∈C1

a(x)

and there exists a cone fieldC2
b(x) aroundE2 which is backward invariant and expanded

by backward iteration.
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Robustness.An easy, yet very important consequence is that hyperbolic sets are robust
under small modifications of the dynamics. Indeed, supposeΛ is a hyperbolic set for
f : M → M, and letC1

a(x) andC2
b(x) be invariant cone fields as above. The (non-invariant)

decompositionE1 ⊕E2 extends continuously to some small neighborhoodU of Λ, and
then so do the cone fields. By continuity, conditions (a) and (b) above remain valid onU ,
possibly for a slightly larger constantλ. Most important, they also remain valid whenf is
replaced by any other diffeomorphismg which is sufficientlyC1-close to it. Thus, using
the cone field criterion once more, every compact setK ⊂U which is invariant underg is
a hyperbolic set forg.

Stable manifold theorem. Let Λ be a hyperbolic set for a diffeomorphismf : M → M.
Assumef is of classCk. Then there existε0 > 0 and 0< λ < 1 and, for each 0< ε ≤ ε0

andx∈ Λ, thelocal stable manifold of sizeε

Ws
ε (x) = {y∈ M : dist( f n(y), f n(x)) ≤ ε for all n≥ 0}

and thelocal unstable manifold of sizeε

Wu
ε (x) = {y∈ M : dist( f−n(y), f−n(x)) ≤ ε for all n≥ 0}

areCk embedded disks, tangent atx to Es
x andEu

x , respectively, and satisfying

• f (Ws
ε (x)) ⊂Ws

ε ( f (x)) and f−1(Wu
ε (x)) ⊂Wu

ε ( f−1(x));
• dist( f (x), f (y)) ≤ λdist(x,y) for all y∈Ws

ε (x)
• dist( f−1(x), f−1(y)) ≤ λdist(x,y) for all y∈Wu

ε (x)
• Ws

ε (x) andWu
ε (x) vary continuously with the pointx, in theCk topology.

Then, theglobal stable and unstable manifoldsof x,

Ws(x) =
[

n≥0

f−n(Ws
ε ( f n(x))

)

and Wu(x) =
[

n≥0

f n(Wu
ε ( f−n(x))

)

,

are smoothly immersed submanifolds ofM, and they are characterized by

Ws(x) = {y∈ M : dist( f n(y), f n(x)) → 0 asn→ ∞}

Wu(x) = {y∈ M : dist( f−n(y), f−n(x)) → 0 asn→ ∞}.

Shadowing property. This crucial property of hyperbolic sets means that possible small
“errors” in the iteration of the map close to the set are, in some sense, unimportant: to the
resulting “wrong” trajectory, there corresponds a nearby genuine orbit of the map. Let us
give the formal statement. Recall that a hyperbolic set is compact, by definition.

Givenδ > 0, aδ-pseudo-orbitof f : M → M is a sequence{xn}n∈Z such that

dist(xn+1, f (xn)) ≤ δ for all n∈ Z.

Givenε > 0, one says that a pseudo-orbit isε-shadowedby the orbit of a pointz∈ M if
dist( f n(z),xn)≤ ε for all n∈ Z. Theshadowing lemmasays that for anyε > 0 one can find
δ > 0 and a neighborhoodU of the hyperbolic setΛ such that everyδ-pseudo-orbit inU is
ε-shadowed by some orbit inU . Assumingε is sufficiently small, the shadowing orbit is
actually unique.
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Local product structure. In general, these shadowing orbits need not be inside th hyper-
bolic setΛ. However, that is indeed the case ifΛ is a maximal invariant set, that is, if
it admits some neighborhoodU such thatΛ coincides with the set of points whose orbits
never leaveU :

Λ =
\

n∈Z

f−n(U).

A hyperbolic set is a maximal invariant set if and only if it has the local product structure
property stated in the next paragraph.

Let Λ be a hyperbolic set andε be small. Ifx andy are nearby points inΛ then the local
stable manifold ofx intersects the local unstable manifold ofy at a unique point, denoted
[x,y], and this intersection is transverse. This is because the local stable manifold and the
local unstable manifold of every point are transverse, and these local invariant manifolds
vary continuously with the point. We say thatΛ haslocal product structureif there exists
δ > 0 such that[x,y] belongs toΛ for everyx, y∈ Λ with dist(x,y) < δ.

Stability. The shadowing property may also be used to prove that hyperbolic sets are
stable under small perturbations of the dynamics: ifΛ is a hyperbolic set forf then for
anyC1-close diffeomorphismg there exists a hyperbolic setΛg close toΛ and carrying the
same dynamical behavior.

The key observation is that every orbitf n(x) of f insideΛ is aδ-pseudo-orbits forg in
a neighborhoodU , whereδ is small if g is close tof and, hence, it is shadowed by some
orbit gn(z) of g. The correspondenceh(x) = z thus defined is injective and continuous.

For any diffeomorphismg close enough tof , the orbits ofx in the maximalg-invariant
setΛg(U) insideU are pseudo-orbits forf . Therefore the shadowing property above en-
ables one to bijectively associateg-orbits ofΛg(U) to f -orbits inΛ. This provides a home-
omorphismh : Λg(U) → Λ which conjugatesg and f on the respective hyperbolic sets:
f ◦h = h◦g. Thushyperbolic maximal sets are structurally stable: the persistent dynam-
ics in a neighborhood of these sets is the same for all nearby maps.

If Λ is a hyperbolic maximal invariant set forf then its hyperbolic continuation for any
nearby diffeomorphismg is also a maximal invariant set forg.

Symbolic dynamics. The dynamics of hyperbolic sets can be described through a sym-
bolic coding obtained from a convenient discretization of the phase space. In a few words,
one partitions the set into a finite number of subsets and assigns to a generic point in the
hyperbolic set its itinerary with respect to this partition. Dynamical properties can then
be read out from a shift map in the space of (admissible) itineraries. The precise notion
involved is that of Markov partition.

A setR⊂ Λ is a rectangleif [x,y] ∈ R for eachx,y ∈ R. A rectangle isproper if it is
the closure of its interior relative toΛ. A Markov partitionof a hyperbolic setΛ is a cover
R = {R1, . . . ,Rm} of Λ by proper rectangles with pairwise disjoint interiors, relative toΛ,
and such

Wu( f (x))∩Rj ⊂ f (Wu(x)∩Ri) and f (Ws(x)∩Ri) ⊂Ws( f (x))∩Rj

for everyx∈ intΛ(Ri) with f (x) ∈ intΛ(Rj). The key fact is thatany maximal hyperbolic
setΛ admits Markov partitions with arbitrarily small diameter.

Given a Markov partitionR with sufficiently small diameter, and a sequencej = ( jn)n∈Z

in {1, . . . ,m}, there exists at most one pointx = h(j) such that

f n(x) ∈ Rjn for eachn∈ Z.
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We say thatj is admissible if such a pointx does exist and, in this case, we sayx admitsj as
an itinerary. It is clear thatf ◦h = h◦σ, whereσ is the shift (left-translation) in the space
of admissible itineraries. The maph is continuous and surjective, and it is injective on the
residual set of points whose orbits never hit the boundaries(relative toΛ) of the Markov
rectangles.

6. UNIFORMLY HYPERBOLIC SYSTEMS

A diffeomorphismf : M → M is uniformly hyperbolic, or satisfies theAxiom A, if the
non-wandering setΩ( f ) is a hyperbolic set forf and the set Per( f ) of periodic points is
dense inΩ( f ). There is an analogous definition for smooth flowsf t : M → M, t ∈ R. The
reader can find the technical details in e.g. [6], [8] and [10].

Dynamical decomposition.The so-called “spectral” decomposition theorem of Smale al-
lows for the global dynamics of a hyperbolic diffeomorphismto be decomposed into ele-
mentary building blocks. It asserts that the non-wanderingset splits into a finite number
of pairwise disjointbasic piecesthat are compact, invariant, and dynamically indecompos-
able. More precisely, the non-wandering setΩ( f ) of a uniformly hyperbolic diffeomor-
phism f is a finite pairwise disjoint union

Ω( f ) = Λ1∪·· ·∪ΛN

of f -invariant, transitive setsΛi , that are compact and maximal invariant sets. Moreover,
theα-limit set of every orbit is contained in someΛi and so is theω-limit set.

Geodesic flows on surfaces with negative curvature.Historically, the first important
example of uniform hyperbolicity was the geodesic flowGt on Riemannian manifolds of
negative curvatureM. This is defined as follows.

Let M be a compact Riemannian manifold. Given any tangent vectorv, let γv : R → TM
be the geodesic with initial conditionv = γv(0). We denote bẏγv(t) the velocity vector at
time t. Since‖γ̇v(t)‖ = ‖v‖ for all t, it is no restriction to consider only unit vectors. There
is an important volume form on the unit tangent bundle, givenby the product of the volume
element on the manifold by the volume element induced on eachfiber by the Riemannian
metric. By integration of this form, one obtains theLiouville mesureon the unit tangent
bundle, which is a finite measure if the manifold itself has finite volume (including the
compact case). Thegeodesic flowis the flowGt : T1M → T1M on the unit tangent bundle
T1M of the manifold, defined by

Gt(v) = γ̇v(t).

An important feature is that this flow leaves invariant the Liouville measure. By Poincaré
recurrence, this implies thatΩ(G) = T1M.

A major classical result in Dynamics, due to Anosov, states that if M has negative
sectional curvature then this measure is ergodic for the flow. That is, any invariant set has
zero or full Liouville measure. The special case whenM is a surface, had been dealt before
by Hedlund and Hopf.

The key ingredient to this theorem is to prove that the geodesic flow is uniformly hyper-
bolic, in the sense we have just described, when the sectional curvature is negative. In the
surface case, the stable and unstable invariant subbundlesare differentiable, which is no
longer the case in general in higher dimensions. This formidable obstacle was overcome by
Anosov through showing that the corresponding invariant foliations retain, nevertheless, a
weaker form of regularity property, that suffices for the proof. Let us explain this.
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Absolute continuity of foliations. The invariant spacesEs
x andEu

x of a hyperbolic system
depend continuously, and even Hölder continuously, on thebase pointx. However, in gen-
eral this dependence is not differentiable, and this fact isat the origin of several important
difficulties. Related to this, the families of stable and unstable manifolds are, usually, not
differentiable foliations: although the leaves themselves are as smooth as the dynamical
system itself, the holonomy maps often fail to be differentiable. By holonomy maps we
mean the projections along the leaves between two given cross-sections to the foliation.

However, Anosov and Sinai observed that if the system is at least twice differentiable
then these foliations areabsolutely continuous: their holonomy maps send zero Lebesgue
measure sets of one cross-section to zero Lebesgue measure sets of the other cross-section.
This property is crucial for proving that any smooth measurewhich is invariant under a
twice differentiable hyperbolic system is ergodic. For dynamical systems that are only
once differentiable the invariant foliations may fail to beabsolutely continuous. Ergodicity
still is an open problem.

Structural stability. A dynamical system isstructurally stableif it is equivalent to any
other system in aC1 neighborhood, meaning that there exists a global homeomorphism
sending orbits of one to orbits of the other and preserving the direction of time. More
generally, replacingC1 by Cr neighborhoods, anyr ≥ 1, one obtains the notion ofCr

structural stability. Notice that, in principle, this property gets weaker asr increases.
The Stability Conjecture of Palis-Smale proposed a complete geometric characteriza-

tion of this notion: for anyr ≥ 1, Cr structurally stable systems should coincide with the
hyperbolic systems having the property of strong transversality, that is, such that the stable
and unstable manifolds of any points in the non-wandering set are transversal. In particu-
lar, this would imply that the property ofCr structural stability does not really depend on
the value ofr.

That hyperbolicity and strong transversality suffice for structural stability was proved
in the 1970’s by Robbin, de Melo, Robinson. It is comparatively easy to prove that strong
transversality is also necessary. Thus, the heart of the conjecture is to prove that structurally
stable systems must be hyperbolic. This was achieved by Mañé in the 1980’s, forC1

diffeomorphisms, and extended about ten years later by Hayashi forC1 flows. Thusa C1

diffeomorphism, or flow, on a compact manifold is structurally stable if and only if it is
uniformly hyperbolic and satisfies the strong transversality condition.

Ω-stability. A weaker property, calledΩ-stability is defined requiring equivalence only
restricted to the non-wandering set. TheΩ-Stability Conjecture of Palis-Smale claims
that, for anyr ≥ 1, Ω-stable systems should coincide with the hyperbolic systems with no
cycles, that is, such that no basic pieces in the spectral decomposition are cyclically related
by intersections of the corresponding stable and unstable sets.

The Ω-stability theorem of Smale states that these properties are sufficient forCr Ω-
stability. Palis showed that the no-cycles condition is also necessary. Much later, based on
Mañé’s aforementioned result, he also proved that forC1 diffeomorphisms hyperbolicity is
necessary forΩ-stability. This was extended toC1 flows by Hayashi in the 1990’s.

7. ATTRACTORS AND PHYSICAL MEASURES

A hyperbolic basic pieceΛi is ahyperbolic attractorif the stable set

Ws(Λi) = {x∈ M : ω(x) ⊂ Λi}
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contains a neighborhood ofΛi . In this case we callWs(Λi) thebasinof the attractorΛi ,
and denote itB(Λi). When the uniformly hyperbolic system is of classC2, a basic piece is
an attractor if and only if its stable set has positive Lebesgue measure. Thus, the union of
the basins of all attractors is a full Lebesgue measure subset of M. This remains true for a
residual (denseGδ) subset ofC1 uniformly hyperbolic diffeomorphisms and flows.

The following fundamental result, due to Sinai, Ruelle, Bowen shows that, no matter
how complicated it may be, the behavior of typical orbits in the basin of a hyperbolic
attractor is well-defined at the statistical level:any hyperbolic attractorΛ of a C2 diffeo-
morphism (or flow) supports a unique invariant probability measure µ such that

lim
n→∞

1
n

n−1

∑
j=0

ϕ( f j (z)) =
Z

ϕdµ (2)

for every continuous functionϕ and Lebesgue almost every point x∈ B(Λ). The standard
reference here is [3].

Property (2) also means that the Sinai-Ruelle-Bowen measureµ may be “observed”: the
weights of subsets may be found with any degree of precision,as the sojourn-time of any
orbit picked “at random” in the basin of attraction:

µ(V) = fraction of time the orbit ofzspends inV

for typical subsetsV of M (the boundary ofV should have zeroµ-measure), and for
Lebesgue almost any pointz∈ B(Λ). For this reasonµ is called aphysical measure.

It also follows from the construction of these physical measures on hyperbolic attrac-
tors that they depend continuously on the diffeomorphism (or the flow). Thisstatistical
stability is another sense in which the asymptotic behavior is stable under perturbations of
the system, distinct from structural stability.

There is another sense in which this measure is “physical” and that is thatµ is the zero-
noise limit of the stationary measures associated to the stochastic processes obtained by
adding small random noise to the system. The idea is to replace genuine trajectories by
“random orbits”(zn)n, where eachzn+1 is chosenε-close tof (zn). We speak ofstochastic
stability if, for any continuous functionϕ, the random time average

lim
n→∞

1
n

n−1

∑
j=0

ϕ(zj)

is close to
R

ϕdµ for almost all choices of the random orbit.
One way to construct such random orbits is through randomly perturbed iterations, as

follows. Consider a family of probability measuresνε in the space of diffeomorphisms,
such that eachνε is supported in theε-neighborhood off . Then, for each initial statez0

definezn+1 = fn+1(zn), where the diffeomorphismsfn are independent random variables
with distribution lawνε. A probability measureηε on the basinB(Λ) is stationaryif it
satisfies

ηε(E) =

Z

ηε(g
−1(E))dνε(g).

Stationary measures always exist, and they are often uniquefor each smallε > 0. Then
stochastic stability corresponds to havingηε converging weakly toµ when the noise level
ε goes to zero.

The notion of stochastic stability goes back to Kolmogorov and Sinai. The first results,
showing that uniformly hyperbolic systems are stochastically stable, on the basin of each
attractor, were proved in the 1980’s by Kifer and Young.
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Let us point out that physical measures need not exist for general systems. A simple
counter-example, attributed to Bowen, is described in Figure 3: time averages diverge over
any of the spiraling orbits in the region bounded by the saddle connections. Notice that the
saddle connections are easily broken by arbitrarily small perturbations of the flow. Indeed,
no robust examples are known of systems whose time-averagesdiverge on positive volume
sets.

A Bz

FIGURE 3. A planar flow with divergent time averages

8. OBSTRUCTIONS TO HYPERBOLICITY

Although uniform hyperbolicity was originally intended toencompass a residual or, at
least, dense subset of all dynamical systems, it was soon realized that this is not the case:
many important examples fall outside its realm. There are two main mechanisms that yield
robustly non-hyperbolic behavior, that is, whole open setsof non-hyperbolic systems.

Heterodimensional cycles.Historically, the first such mechanism was the coexistence of
periodic points with different Morse indices (dimensions of the unstable manifolds) in-
side the same transitive set. See Figure 4. This is how the first examples ofC1-open
subsets of non-hyperbolic diffeomorphisms were obtained by Abraham, Smale on mani-
folds of dimensiond ≥ 3. It was also the key in the constructions by Shub and Mañé of
non-hyperbolic, yet robustly transitive diffeomorphisms, that is, such that every diffeomor-
phism in aC1 neighborhood has dense orbits.

q

p1
p2

FIGURE 4. A heterodimensional cycle

For flows, this mechanism may assume a novel form, because of the interplay between
regular orbits and singularities (equilibrium points). That is, robust non-hyperbolicity may
stem from the coexistence of regular and singular orbits in the same transitive set. The first,
and very striking example was the geometric Lorenz attractor proposed by Afraimovich,
Bykov, Shil’nikov and Guckenheimer, Williams to model the behavior of the Lorenz equa-
tions, that we shall discuss later.
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Homoclinic tangencies.Of course, heterodimensional cycles may exist only in dimension
3 or higher. The first robust examples of non-hyperbolic diffeomorphisms on surfaces were
constructed by Newhouse, exploiting the second of these twomechanisms: homoclinic
tangencies, or non-transverse intersections between the stable and the unstable manifold of
the same periodic point. See Figure 5.

q

q

H

p

p

FIGURE 5. Homoclinic tangencies

It is important to observe that individual homoclinic tangencies are easily destroyed
by small perturbations of the invariant manifolds. To construct open examples of surface
diffeomorphisms withsometangency, Newhouse started from systems where the tangency
is associated to a periodic point inside an invariant hyperbolic set with rich geometric
structure. This is illustrated on the right hand side of Figure 5. His argument requires a
very delicate control of distortion, as well as of the dependence of the fractal dimension
on the dynamics. Actually, for this reason, his construction is restricted to theCr topology
for r ≥ 2. A very striking consequence of this construction is that these open sets exhibit
coexistence of infinitely many periodic attractors, for each diffeomorphism on a residual
subset. A detailed presentation of his result and consequences is given in [9].

Newhouse’s conclusions have been extended in two ways. First, by Palis, Viana, for
diffeomorphisms in any dimension, still in theCr topology withr ≥ 2. Then, by Bonatti,
Dı́az, forC1 diffeomorphisms in any dimension larger or equal than 3. Thecase ofC1

diffeomorphisms on surfaces remains open. As a matter of fact, in this setting it is still
unknown whether uniform hyperbolicity is dense in the spaceof all diffeomorphisms.

9. PARTIAL HYPERBOLICITY

Several extensions of the theory of uniform hyperbolicity have been proposed, allow-
ing for more flexibility, while keeping the core idea: splitting of the tangent bundle into
invariant subbundles. We are going to discuss more closely two such extensions.

On the one hand, one may allow for one or more invariant subbundles along which
the derivative exhibits mixed contracting/neutral/expanding behavior. This is generically
referred to aspartial hyperbolicity, and a standard reference is the book [5]. On the other
hand, while requiring all invariant subbundles to be eitherexpanding or contraction, one
may relax the requirement of uniform rates of expansion and contraction. This is usually
callednon-uniform hyperbolicity. A detailed presentation of the fundamental results about
this notion is available e.g. in [6]. In this section we discuss the first type of condition. The
second one will be dealt with later.
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Dominated splittings. Let f : M → M be a diffeomorphism on a closed manifoldM and
K be any f -invariant set. A continuous splittingTxM = E1(x)⊕ ·· ·⊕Ek(x), x ∈ K of the
tangent bundle overK is dominatedif it is invariant under the derivativeD f and there
existsℓ ∈ N such that for everyi < j, everyx∈ K, and every pair of unit vectorsu∈ Ei(x)
andv∈ E j(x), one has

‖D f ℓ
x ·u‖

‖D f ℓ
x ·v‖

<
1
2

(3)

and the dimension ofEi(x) is independent ofx∈ K for everyi ∈ {1, . . . ,k}. This definition
may be formulated, equivalently, as follows: there existC > 0 andλ < 1 such that for every
pair of unit vectorsu∈ Ei(x) andv∈ E j(x), one has

‖D f n
x ·u‖

‖D f n
x ·v‖

< Cλn for all n≥ 1.

Let f be a diffeomorphism andK be an f -invariant set having a dominated splitting
TKM = E1⊕·· ·⊕Ek. We say that the splitting and the setK are

• partially hyperbolicthe derivative either contracts uniformlyE1 or expands uni-
formly Ek: there existsℓ ∈ N such that

either‖D f ℓ | E1‖ <
1
2

or ‖(D f ℓ | Ek)
−1‖ <

1
2
.

• volume hyperbolicif the derivative either contracts volume uniformly alongE1 or
expands volume uniformly alongEk: there existsℓ ∈ N such that

either|det(D f ℓ | E1)| <
1
2

or |det(D f ℓ | Ek)| > 2.

The diffeomorphismf is partially hyperbolic/volume hyperbolicif the ambient space
M is a partially hyperbolic/volume hyperbolic set forf .

Invariant foliations. An crucial geometric feature of partially hyperbolic systems is the
existence of invariant foliations tangent to uniformly expanding or uniformly contracting
invariant subbundles:assuming the derivative contracts E1 uniformly, there exists a unique
familyF s = {F s(x) : x∈ K} of injectively Cr immersed submanifolds tangent to E1 at ev-
ery point of K, satisfying f(F s(x)) = F s( f (x)) for all x ∈ K, and which are uniformly
contracted by forward iterates of f .This is calledstrong-stable foliationof the diffeomor-
phism onK. Strong-unstable foliations are defined in the same way, tangent to the invariant
subbundleEk, when it is uniformly expanding.

As in the purely hyperbolic setting, a crucial ingredient inthe ergodic theory of par-
tially hyperbolic systems is the fact that strong-stable and strong-unstable foliations are
absolutely continuous, if the system is at least twice differentiable.

Robustness and partial hyperbolicity. Partially hyperbolic systems have been studied
since the 1970’s, most notably by Brin, Pesin and Hirsch, Pugh, Shub. Over the last decade
they attracted much attention as the key to characterizing robustness of the dynamics. More
precisely, letΛ be a maximal invariant set of some diffeomorphismf :

Λ =
\

n∈Z

f n(U) for some neighborhoodU of Λ.

The setΛ is robust, or robustly transitive, if its continuationΛg = ∩n∈Zgn(U) is transitive
for all g in a neighborhood off . There is a corresponding notion for flows.

As we have already seen, hyperbolic basic pieces are robust.In the 1970’s, Mañé ob-
served that the converse is also true whenM is a surface, but not anymore if the dimension
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of M is at least 3. Counter-examples in dimension 4 had been givenbefore by Shub. A
series of results of Bonatti, Dı́az, Pujals, Ures in the 1990’s clarified the situation in all
dimensions: robust sets always admit some dominated splitting which is volume hyper-
bolic; in general, this splitting needs not be partially hyperbolic, except when the ambient
manifold has dimension 3.

Lorenz-like strange attractors. Parallel results hold for flows on 3-dimensional mani-
folds. The main motivation are the so-called Lorenz-like strange attractors, inspired by the
famous differential equations

ẋ = −σx+ σy σ = 10
ẏ = ρx−y−xz ρ = 28
ż= xy−βz β = 8/3

(4)

introduced by E. N. Lorenz in the early 1960’s. Numerical analysis of these equations
led Lorenz to realize that sensitive dependence of trajectories on the initial conditions is
ubiquitous among dynamical systems, even those with simpleevolution laws.

The dynamical behavior of (4) was first interpreted by means of certain geometric
models, proposed by Guckenheimer, Williams and Afraimovich, Bykov, Shil’nikov in the
1970’s, where the presence of strange attractors, both sensitive and fractal, could be proved
rigorously. It was much harder to prove that the original equations (4) themselves have such
an attractor. This was achieved just a few years ago, by Tucker, by means of a computer
assisted rigorous argument.

An important point is that Lorenz-like attractors cannot behyperbolic, because they
contain an equilibrium point accumulated by regular orbitsinside the attractor. Yet, these
strange attractors are robust, in the sense we defined above.A mathematical theory of
robustness for flows in 3-dimensional spaces was recently developed by Morales, Pacifico,
and Pujals. In particular, this theory shows that uniformlyhyperbolic attractors and Lorenz-
like attractors are the only ones which are robust. Indeed, they prove thatany robust
invariant set of a flow in dimension3 is singular hyperbolic. Moreover,if the robust set
contains equilibrium points then it must be either an attractor or a repeller. A detailed
presentation of this and related results is given in [1].

An invariant setΛ of a flow in dimension 3 issingular hyperbolicif it is a partially
hyperbolic set with splittingE1⊕E2 such that the derivative is volume contracting along
E1 and volume expanding alongE2. Notice that one of the subbundlesE1 or E2 must
be one-dimensional, and then the derivative is, actually, either norm contracting or norm
expanding along this subbundle. Singular hyperbolic sets without equilibria are uniformly
hyperbolic: the 2-dimensional invariant subbundle splitsas the sum of the flow direction
with a uniformly expanding or contracting one-dimensionalinvariant subbundle.

10. NON-UNIFORM HYPERBOLICITY - L INEAR THEORY

In its linear form, the theory of non-uniform hyperbolicitygoes back to Lyapunov, and
is founded on the multiplicative ergodic theorem of Oseledets. Let us introduce the main
ideas, whose thorough development can be found in e.g. [4], [6] and [7].

The Lyapunov exponentsof a sequence{An,n ≥ 1} of square matrices of dimension
d ≥ 1, are the values of

λ(v) = limsup
n→∞

1
n

log‖An ·v‖ (5)

over all non-zero vectorsv∈ Rd. For completeness, setλ(0) = −∞. It is easy to see that
λ(cv) = λ(v) andλ(v+ v′) ≤ max{λ(v),λ(v′)} for any non-zero scalarc and any vectors
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v, v′. It follows that, given any constanta, the set of vectors satisfyingλ(v) ≤ a is a vector
subspace. Consequently, there are at mostd Lyapunov exponents, henceforth denoted by
λ1 < · · · < λk−1 < λk, and there exists a filtrationF0 ⊂ F1 ⊂ ·· · ⊂ Fk−1 ⊂ Fk = Rd into
vector subspaces, such that

λ(v) = λi for all v∈ Fi \Fi−1

and everyi = 1, . . . ,k (write F0 = {0}). In particular, the largest exponent is given by

λk = limsup
n→∞

1
n

log‖An‖ . (6)

One calls dimFi −dimFi−1 themultiplicity of each Lyapunov exponentλi .
There are corresponding notions for continuous families ofmatricesAt , t ∈ (0,∞), tak-

ing the limit ast goes to infinity in the relations (5) and (6).

Lyapunov stability. Consider the linear differential equation

v̇(t) = B(t) ·v(t) (7)

whereB(t) is a bounded function with values in the space ofd×d matrices, defined for all
t ∈ R. The theory of differential equations ensures that there exists afundamental matrix
At , t ∈ R such that

v(t) = At ·v0

is the unique solution of (7) with initial conditionv(0) = v0.
If the Lyapunov exponents of the familyAt , t > 0 are all negative then the trivial solution

v(t) ≡ 0 is asymptotically stable, and even exponentially stable.The stability theorem of
A. M. Lyapunov asserts that, under an additional regularitycondition, stability is still valid
for non-linear perturbations

w(t) = B(t) ·w+F(t,w)

with ‖F(t,w)‖ ≤ const‖w‖1+c, c > 0. That is, the trivial solutionw(t) ≡ 0 is still expo-
nentially asymptotically stable.

The regularity condition means, essentially, that the limit in (5) does exist, even if one
replaces vectorsv by elementsv1 ∧ ·· · ∧ vl of any l th exterior power ofRd, 1 ≤ l ≤ d.
By definition, the norm of anl -vector v1 ∧ ·· · ∧ vl is the volume of the parallelepiped
determined by the vectorsv1, . . . , vk. This condition is usually tricky to check in specific
situations. However, the multiplicative ergodic theorem of V. I. Oseledets asserts that,
for very general matrix-valued stationary random processes, regularity is an almost sure
property.

Multiplicative ergodic theorem. Let f : M → M be a measurable transformation, pre-
serving some measureµ, and letA : M → GL(d,R) be any measurable function such that
log‖A(x)‖ is µ-integrable. The Oseledets theorem states that Lyapunov exponents exist
for the sequenceAn(x) = A( f n−1(x)) · · ·A( f (x))A(x) for µ-almost everyx∈ M. More pre-
cisely, forµ-almost everyx∈ M there existsk = k(x) ∈ {1, . . . ,d}, a filtration

F0
x ⊂ F1

x ⊂ ·· · ⊂ Fk−1
x ⊂ Fk

x = R
d,

and numbersλ1(x) < · · · < λk(x) such that

lim
n→∞

1
n

log‖An(x) ·v‖ = λi(x)

for all v∈ F i
x \F i−1

x andi ∈ {1, . . . ,k}. More generally, this conclusion holds for any vector
bundle automorphismV → V over the transformationf , with Ax : Vx → V f (x) denoting
the action of the automorphism on the fiber ofx.
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The Lyapunov exponentsλi(x), and their numberk(x), are measurable functions ofx
and they are constant on orbits of the transformationf . In particular, if the measureµ is
ergodic thenk and theλi are constant on a fullµ-measure set of points. The subspacesF i

x
also depend measurably on the pointx and are invariant under the automorphism:

A(x) ·F i
x = F i

f (x).

It is in the nature of things that, usually, these objects arenot defined everywhere and they
depend discontinuously on the base pointx.

When the transformationf is invertible one obtains a stronger conclusion, by applying
the previous result also to the inverse automorphism: assuming that log‖A(x)−1‖ is also in
L1(µ), one gets that there exists a decomposition

Vx = E1
x ⊕·· ·⊕Ek

x ,

defined at almost every point and such thatA(x) ·Ei
x = Ei

f (x) and

lim
n→±∞

1
n

log‖An(x) ·v‖ = λi(x)

for all v∈ Ei
x different from zero and alli ∈ {1, . . . ,k}. TheseOseledets subspaces Ei

x are
related to the subspacesF i

x through

F j
x = ⊕

j
i=1Ei

x.

Hence, dimEi
x = dimF i

x −dimF i−1
x is the multiplicity of the Lyapunov exponentλi(x).

The angles between any two Oseledets subspaces decay sub-exponentially along orbits
of f :

lim
n→±∞

1
n

logangle(
M

i∈I

Ei
f n(x),

M

j /∈I

E j
f n(x)) = 0

for any I ⊂ {1, . . . ,k} and almost every point. These facts imply the regularity condition
mentioned previously and, in particular,

lim
n→±∞

1
n

log|detAn(x)| =
k

∑
i=1

λi(x)dimEi
x

Consequently, if detA(x) = 1 at every point then the sum of all Lyapunov exponents,
counted with multiplicity, is identically zero.

11. NON-UNIFORMLY HYPERBOLIC SYSTEMS

The Oseledets theorem applies, in particular, whenf : M → M is aC1 diffeomorphism
on some compact manifold andA(x) = D fx. Notice that the integrability conditions are
automatically satisfied, for anyf -invariant probability measureµ, since the derivative off
and its inverse are bounded in norm.

Lyapunov exponents yield deep geometric information on thedynamics of the diffeo-
morphism, especially when they do not vanish. We callµ a hyperbolic measureif all
Lyapunov exponents are non-zero atµ-almost every point. Bynon-uniformly hyperbolic
systemwe shall mean a diffeomorphismf : M → M together with some invariant hyper-
bolic measure.

A theory initiated by Pesin provides fundamental geometricinformation on this class
of systems, especially existence of stable and unstable manifolds at almost every point
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which form absolutely continuous invariant laminations. For most results, one needs the
derivativeD f to be Hölder continuous: there existsc > 0 such that

‖D fx−D fy‖ ≤ const·d(x,y)c.

These notions extend to the context of flows essentially without change, except that one
disregards the invariant line bundle given by the flow direction (whose Lyapunov exponent
is always zero). A detailed presentation can be found in e.g.[6].

Stable manifolds. An essential tool is the existence of invariant families of local stable
sets and local unstable sets, defined atµ-almost every point. Assumeµ is a hyperbolic
measure. LetEu

x andEs
x be the sums of all Oseledets subspaces corresponding to positive,

respectively negative, Lyapunov exponents, and letτx > 0 be a lower bound for the norm
of every Lyapunov exponent atx.

Pesin’s stable manifold theorem states that,for µ-almost every x∈ M, there exists a C1

embedded disk Wsloc(x) tangent to Esx at x and there exists Cx > 0 such that

dist( f n(y), f n(x)) ≤Cxe
−nτx ·dist(y,x) for all y ∈Ws

loc(x).

Moreover, the family{Ws
loc(x)} is invariant, in the sense thatf (Ws

loc(x)) ⊂Ws
loc( f (x)) for

µ-almost everyx. Thus, one may define global stable manifolds

Ws(x) =
∞

[

n=0

f−n(Ws
loc(x)

)

for µ-almost everyx.

In general, the local stable disksWs(x) depend only measurably onx. Another key differ-
ence with respect to the uniformly hyperbolic setting is that the numbersCx andτx can not
be taken independent of the point, in general. Likewise, onedefines local and global un-
stable manifolds, tangent toEu

x at almost every point. Most important for the applications,
both foliations, stable and unstable, are absolutely continuous.

In the remaining sections we briefly present three major results in the theory of non-
uniform hyperbolicity: the entropy formula, abundance of periodic orbits, and exact di-
mensionality of hyperbolic measures.

The entropy formula. The entropy of a partitionP of M is defined by

hµ( f ,P ) = lim
n→∞

1
n

Hµ(P
n),

whereP n is the partition into sets of the formP= P0∩ f−1(P1)∩·· ·∩ f−n(Pn) with Pj ∈ P

and
Hµ(P

n) = ∑
P∈P n

−µ(P) logµ(P).

TheKolmogorov-Sinai entropy hµ( f ) of the system is the supremum ofhµ( f ,P ) over all
partitionsP with finite entropy. The Ruelle-Margulis inequality says thathµ( f ) is bounded
above by the averaged sum of the positive Lyapunov exponents. A major result of the
theorem, Pesin’s entropy formula, asserts that if the invariant measureµ is smooth (for
instance, a volume element) then the entropy actually coincides with the averaged sum of
the positive Lyapunov exponents

hµ( f ) =

Z

(

k

∑
j=1

max{0,λ j}
)

dµ.

A complete characterization of the invariant measures for which the entropy formula is
true was given by F. Ledrappier and L. S. Young.



HYPERBOLIC DYNAMICAL SYSTEMS 21

Periodic orbits and entropy. It was proved by A. Katok that periodic motions are always
dense in the support of any hyperbolic measure. More than that, assuming the measure is
non-atomic, there exist Smale horseshoesHn with topological entropy arbitrarily close to
the entropyhµ( f ) of the system. In this context, thetopological entropy h( f ,Hn) may be
defined as the exponential rate of growth

lim
k→∞

1
k

log#{x∈ Hn : f k(x) = x}.

of the number of periodic points onHn.

Dimension of hyperbolic measures.Another remarkable feature of hyperbolic measures
is that they areexact dimensional: the pointwise dimension

d(x) = lim
r→0

logµ(Br(x))
logr

exists at almost every point, whereBr(x) is the neighborhood of radiusr aroundx. This
fact was proved by L. Barreira, Ya. Pesin, and J. Schmeling. Note that this means that the
measureµ(Br(x)) of neighborhoods scales asrd(x) when the radiusr is small.

12. FUTURE DIRECTIONS

The theory of uniform hyperbolicity showed that dynamical systems with very complex
behavior may be amenable to a very precise description of their evolution, especially in
probabilistic terms. It was most successful in characterizing structural stability, and also
established a paradigm of how general ”chaotic” systems might be approached. A vast
research program has been going on in the last couple of decades or so, to try and build
such a global theory of complex dynamical evolution, where notions such as partial and
non-uniform hyperbolicity play a central part. The reader is referred to the bibliography,
especially the book [2] for a review of much recent progress.
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