Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Autonomous system (AS):

An autonomous system is a connected group of one or more IP prefixes, run by one or more network operators, which has a single and clearly defined routing policy. A unique AS number (or ASN) is allocated to each AS for identification purpose in inter‐domain routing among ASes. For example, an organization, such as an ISP or a university, is an example of an AS. Some organizations may have more than one AS and thus have more than one AS number.

BGP (border gateway protocol):

The Border Gateway Protocol (BGP) version 4 is the de facto routing protocol used in the Internet to exchange reachability information among ASes and interconnect them. The current BGP is version 4.

Degree:

The degree of an AS (or a node) is the number of neighbors of this AS (or node).

CCDF:

The complementary cumulative distribution function (CCDF) of a degree is the percentage of nodes that have a degree greater than the degree of interest.

Degree rank:

The degree rank of a node is its index in a list of degrees, ranked in decreasing order.

Eigenvalue:

Let A be an \( { N\times N } \) matrix. If there is a vector \( { X\in \mathcal{R}^N \neq 0 } \) such that \( { AX=\lambda X } \) for some scalar λ, then λ is called the eigenvalue of A with corresponding eigenvector X.

Bibliography

Primary Literature

  1. Achlioptas D, Clauset A, Kempe D, Moore C (2005) On the bias of traceroute sampling, or power-law degree distributions in regular graphs. In: STOC 2005

    Google Scholar 

  2. Adamic LA (2000) Zipf, power-laws, and Pareto – a ranking tutorial. http://www.parc.xerox.com/iea/

  3. Aiello W, Chung F, Lu L (2000) A random graph model for massive graphs. In: Proceedings of the ACM symposium on theory of computing

    Google Scholar 

  4. Albert R, Barabasi A (2000) Topology of complex networks: local events and universality. Phys Rev 85:24

    Google Scholar 

  5. Albert R, Jeong H, Barabasi AL (1999) Diameter of the world wide web. Nature 401(6749):130

    Article  ADS  Google Scholar 

  6. Barabasi A, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509

    Article  MathSciNet  ADS  Google Scholar 

  7. Brite. http://www.cs.bu.edu/brite/

  8. Bu T, Towsley D (2002) On distinguishing between internet power law topology generators. In: Proceedings of the 21st Annual Joint Conference of the IEEE Computer and Communications Societies (Infocom IEEE 2002). vol 2. IEEE, pp 638–647

    Google Scholar 

  9. Calvert K, Doar M, Zegura EW (1997) Modeling internet topology. Communication IEEE Magazine 35(6):160–163

    Article  Google Scholar 

  10. Carmi S, Havlin S, Kirkpatrick S, Shavitt Y, Shir E (2007) A model of internet topology using k-shell decomposition. Proc Natl Acad Sci USA 104:11150–11154

    Article  ADS  Google Scholar 

  11. Chang H, Govindan R, Jamin S, Shenker S, Willinger W (2004) Towards capturing representative AS-level internet topologies. Comput Netw 44(6):737–755

    Article  Google Scholar 

  12. Chang H, Jamin S, Willinger W (2006) To peer or not to peer: modeling the evolution of the internet's topology AS. In: Infocom IEEE 2006

    Google Scholar 

  13. Chen Q, Chang H, Govindan R, Jamin S, Shenker S, Willinger W (2002) The Origin of power laws in internet topologies revisited. In: Infocom IEEE 2002

    Google Scholar 

  14. Cheswick B, Burch H (1998) Internet mapping project. Wired Magazine 6(12):216–217. See http://cm.bell-labs.com/cm/cs/who/ches/map/index.html

  15. Chou H (2000) A note on power-laws of Internet topology, e-print cs. NI/0012019, Harvard University digital library for physics and astronomy

    Google Scholar 

  16. Chuang J, Sirbu M (1998) Pricing multicast communications: a cost based approach. In: Proc. INET'98

    Google Scholar 

  17. Citeseer. http://citeseer.ist.psu.edu/articles1999.html

  18. Cohen R, Raz D (2006) The internet dark matter – on the missing links in the connectivity AS map. In: Infocom IEEE 2006

    Google Scholar 

  19. Colitti L, Di G Battista, Patrignani M, Pissonia M, Rimondini M (2006) Investigating prefix propagation through active BGP probing. In: IEEEISCC 2006

    Google Scholar 

  20. Crovella M, Bestavros A (1996) Self‐similarity in world wide web traffic, evidence and possible causes. In: SIGMETRICS, pp 160–169

    Google Scholar 

  21. Crovella M, Lakhina A, Byers JW, Matta I (2003) Sampling biases in ip topology measurements. In: Infocom IEEE 2003

    Google Scholar 

  22. Cvetković DM, Boob M, Sachs H (1979) Spectra of Graphs. Academic press, New York

    Google Scholar 

  23. di Battista G, Erlebach T, Hall A, Patrignani M, Pizzonia M, Schank T (2007) Computing the types of the relationships between autonomous systems. IEEE/ACM Trans Netw 15(2):267–280

    Article  Google Scholar 

  24. Dimitropoulos X, Krioukov D, Riley G (2005) Revisiting internet AS-level topology Discovery. In: PAM

    Google Scholar 

  25. Dimitropoulos X, Krioukov D, Fomenkov M, Huffaker B, Hyun Y, Claffy KC, Riley G (2007) AS relationships: inference and validation. ACM Sigcomm Comput Commun Rev (CCR) 37(1):29–40

    Article  Google Scholar 

  26. Doar M, Leslie I (1993) How bad is naive multicast routing? In: Proc. IEEEINFOCOM, pp 82–89

    Google Scholar 

  27. Faloutsos M, Faloutsos P, Faloutsos C (1999) On power-law relationships of the Internet topology. In: ACMSigcomm, pp 251–262

    Google Scholar 

  28. Floyd S, Paxson V (2001) Difficulties in simulating the Internet. IEEE Trans Netw 9(4):392–403

    Article  Google Scholar 

  29. Ganesh A, Massoulie L, Towsley D (2005) The effect of network topology on the spread of epidemics. In: Infocom IEEE 2005

    Google Scholar 

  30. Gao L (2000) On inferring autonomous system relationships in the internet. In: Global IEEE Internet

    Google Scholar 

  31. Govindan R, Reddy A (1997) An analysis of internet inter‐domain topology and route stability. In: Proc. IEEEINFOCOM, Kobe, Japan, 7–11 April 1997

    Google Scholar 

  32. Govindan R, Tangmunarunkit H (2000) Heuristics for internet map discovery. In: Proc. IEEEINFOCOM, Tel Aviv, Israel, March 2000

    Google Scholar 

  33. He Y, Siganos G, Faloutsos M, Krishnamurthy S (2007) A systematic framework for unearthing the missing links: measurements and impact. In: USENIXNSDI

    Google Scholar 

  34. Inet topology generator. http://topology.eecs.umich.edu/inet/

  35. Internet routing registry. http://www.irr.net

  36. Jacobson V (1995) Traceroute. Internet measurement tool. Available at ftp://ftp.ee.lbl.gov/traceroute.tar.gz

  37. Jaiswal S, Rosenberg A, Towsley D (2004) Comparing the structure of power law graphs and the internet AS graph. In: ICNP 2004

    Google Scholar 

  38. Jamin S, Jin C, Jin Y, Raz D, Shavitt Y, Zhang L (2000) On the placement of Internet instrumentation. In: Proc. IEEEINFOCOM, Tel Aviv, Israel, March 2000

    Google Scholar 

  39. Jin C, Chen Q, Jamin S (2000) Inet: Internet topology generator. Technical Report UMCSE-TR-433–00, Michigan

    Google Scholar 

  40. Jovanovic M (2001) Modeling large-scale peer-to-peer networks and a case study of gnutella. Master thesis, University of Cincinnati

    Google Scholar 

  41. Krishnamurthy V, Faloutsos M, Chrobak M, Cui J, Lao L, Percus AG (2007) Sampling large internet topologies for simulation purposes. Comput Netw 51(15):4284–4302

    Article  Google Scholar 

  42. Kumar R, Raghavan P, Rajagopalan S, Sivakumar D, ATomkins, Upfal E (2000) The web as a graph. In: Symposium ACM on Principles of Database Systems

    Google Scholar 

  43. Leland WE, Taqqu MS, Willinger W, Wilson DV (1994) On the self‐similar nature of ethernet traffic. IEEE Trans Netw 2(1):1–15 (earlier version in Sigcomm'93, pp 183–193)

    Article  Google Scholar 

  44. Maennel O, Feldmann A (2002) Realistic BGP traffic for test labs. In: Sigcomm ACM

    Google Scholar 

  45. Magoni D, Pansiot JJ (2001) Analysis of the autonomous system network topology. ACM Sigcomm Comput Commun Rev (CCR) 31(3):26–37

    Article  Google Scholar 

  46. Mahadevan P, Krioukov D, Fall K, Vahdat A (2006) Systematic topology analysis and generation using degree correlations. In: Sigcom ACM

    Google Scholar 

  47. Mahadevan P, Krioukov D, Fomenkov M, Huffaker B, Dimitropoulos X, Claffy KC, Vahdat A (2006) The internet AS-level topology: three data sources and one definitive metric. ACM Sigcomm Comput Commun Rev (CCR) 36(1):17–26

    Article  Google Scholar 

  48. Mao Z, Rexford J, Wang J, Katz R (2003) Towards an accurate AS-level traceroute tool. In: Sigcomm ACM 2003

    Google Scholar 

  49. Mao Z, Johnson D, Rexford J, Wang J, Katz R (2004) Scalable and accurate identification of AS-Level forwarding paths. In: Infocom IEEE 2004

    Google Scholar 

  50. Medina A, Matta I, Byers J (2000) On the origin of powerlaws in Internet topologies. ACM Sigcomm Comput Commun Rev CCR 30(2):18–34

    Article  Google Scholar 

  51. Medina A, Lakhina A, Matta I, Byers J (2001) Brite: an approach to universal topology generation. In: MASCOTS 2001

    Google Scholar 

  52. Mihail M, Papadimitriou CH (2002) On the eigenvalue power law. In: Proceedings of the 6th International Workshop on Randomization and Approximation Techniques, pp 252–262

    Google Scholar 

  53. Oliveira R, Zhang B, Zhang L (2007) Observing the evolution of internet as topology. In: Sigcomm ACM 2007

    Google Scholar 

  54. Oregon Routeview Project. http://www.routeviews.org

  55. Palmer CR, Stefan JG (2000) Generating network topologies that obey powerlaws. In: Proceedings of the Global Internet Symposium, GLOBECOM 2000

    Google Scholar 

  56. Pansiot J-J, Grad D (1998) On routes and multicast trees in the Internet. ACM Sigcomm Comput Commun Rev 28(1):41–50

    Article  Google Scholar 

  57. Pareto V (1896) Cours d'economic politique. Dronz, Geneva

    Google Scholar 

  58. Park K, Lee H (2001) On the effectiveness of route-based packet filtering for distributed DoS attack prevention in power-law Internets. In: Sigcomm ACM 2001

    Google Scholar 

  59. Paxson V, Floyd S (1995) Wide-area traffic: The failure of Poisson modeling. IEEE Trans Netw 3(3):226–244 (earlier version in Sigcomm'94, pp 257–268)

    Article  Google Scholar 

  60. Philips G, Shenker S, Tangmunarunkit H (1999) Scaling of multicast trees: Comments on the chuang‐sirbu scaling law. In: Sigcomm ACM 1999

    Google Scholar 

  61. Ripe Route Information Service. http://www.ripe.net/ris

  62. Shavitt Y, Shir E DIMES: let the internet measure itself. ACM Sigcomm Comput Commun Rev (CCR) 35(5):71–74

    Google Scholar 

  63. Siganos G, Faloutsos M (2004) Analyzing BGP policies: methodology and tool. In: Infocom IEEE 2004

    Google Scholar 

  64. Siganos G, Faloutsos M, Faloutsos P, Faloutsos C (2003) Power-laws of the internet topology. IEEE Trans Netw 1(4):514–524

    Article  Google Scholar 

  65. Siganos G, Tauro S, Faloutsos M (2006) Jellyfish: a conceptual model for the as internet topology. J Commun Netw 8(3):339–350

    Google Scholar 

  66. Skitter. http://www.caida.org/tools/measurement/skitter/

  67. Spring N, Mahajan R, Wetherall D, Anderson T (2004) Measuring ISP topologies with rocketfuel. IEEE Trans Netw 12(1):2–16

    Article  Google Scholar 

  68. Subramanian L, Caesar M, Ee CT, Handley M, Mao M, Shenker S, Stoica I (2005) HLP: next a‐generation interdomain routing protocol. In: Sigcomm ACM 2005

    Google Scholar 

  69. Tangmunarunkit H, Govindan R, Jamin S, Shenker S, Willinger W (2002) Network topology generators: degree based vs. structural. In: Sigcomm ACM 2002

    Google Scholar 

  70. The Cooperative Association for Internet Data Analysis. http://www.caida.org

  71. van Mieghem P, Hooghiemstra G, van der Hofstad R (2001) On the efficiency of multicast. IEEE Trans Netw 9(6):719–732

    Article  Google Scholar 

  72. Wang F, Gao L (2003) Inferring and characterizing internet routing policies. In: ACMIMW 2003

    Google Scholar 

  73. Waxman BM (1988) Routing of multipoint connections. IEEE J Sel Areas Commun 6(9):1617–1622

    Article  Google Scholar 

  74. Wei L, Estrin D (1994) The trade-offs of multicast trees and algorithms. In: Proceedings of the International Conference on Computer Communications and Networks

    Google Scholar 

  75. Weibull Distribution (2003) NIST/SEMATECH e‐handbook of statistical methods. http://www.itl.nist.gov/div898/handbook/

  76. Wong T, Katz R (2000) An analysis of multicast forwarding state scalability. In: Proceedings of the International Conference on Network Protocols

    Google Scholar 

  77. Xia J, Gao L (2004) On the evaluation of as relationship inferences. In: Globecom IEEE 2004

    Google Scholar 

  78. Yook SH, Jeong H, Barabasi A (2002) Modeling the internet's large-scale topology. Proc Natl Acad Sci USA 99(21):13382–13386

    Article  ADS  Google Scholar 

  79. Zegura EW, Calvert KL, Donahoo MJ (1997) A quantitative comparison of graph-based models for internetworks. IEEE Trans Netw 5(6):770–783

    Article  Google Scholar 

  80. Zhang B, Liu R, Massey D, Zhang L (2005) Collecting the internet AS-level topology. ACM Sigcomm Comput Commun Rev (CCR) 2005

    Google Scholar 

  81. Zipf GK (1949) Human behavior and principle of least effort: An introduction to human ecology. Addison Wesley, Cambridge

    Google Scholar 

Books and Reviews

  1. Newman M, Barabasi A-L, Watts DJ (2006) The structure and dynamics of networks. Princeton University Press, Princeton

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

He, Y., Siganos, G., Faloutsos, M. (2009). Internet Topology. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_293

Download citation

Publish with us

Policies and ethics