Skip to main content

Definition of the Subject

Several nested levels of organization can be defined for any complex system, being many of such levels describable in terms of some type of networkpattern. In this context, complex networks both in nature and technology have been shown to display overabundance of some characteristic, small subgraphs(so called motifs) which appear to be characteristic of the class of network considered. These tiny modules offer a powerful way of classifyingnetworks and are the fingerprints of the rules generating network complexity.

Introduction

Complex systems c an be described, on a first approximation by means of a network [1,3,5,19]. In such a network, the typical components of the system (atoms, proteins, species, computers, humans or neurons)are simply nodes with no further structure. They are linked to others by means of an edge. The presence of such a link implies that there is some type ofcausal relation. Such relation can be the presence of a bond among atoms or...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Graph (network):

A set G of objects called points, nodes, or vertices connected by links called lines or edges.

Subgraph:

A subset of a graph G whose vertex and edge sets are subsets of those of G.

Modularity:

A network is called modular if it is subdivided into relatively autonomous, internally highly connected components.

Scale-free network:

A class of complex network showing a high heterogeneity in the distribution of links among its nodes. Such distribution decays as a power law.

Network motifs:

These are specific subgraphs that occur in different parts of a network at frequencies much higher than those found in randomized networks.

Bibliography

Primary Literature

  1. Albert R, Barabási AL (2002) Rev Mod Phys 74:47–97

    Google Scholar 

  2. Bornholdt S (2005) Less is more in modeling large genetic networks. Science 310:449–450

    Google Scholar 

  3. Bornholdt S, Schuster G (eds) (2002) Handbook of Graphs and Networks. Wiley, Berlin

    Google Scholar 

  4. Davis JA, Leinhardt S (1968) The structure of positive interpersonal relations in small groups. Annual Meeting of the American Sociological Association, Boston

    Google Scholar 

  5. Dorogovtsev SN, Mendes JFF (2003) Evolution of Networks: From Biological Nets to the Internet and WWW. Oxford University Press, New York

    Google Scholar 

  6. Gould SJ, Lewontin RC (1979) The Spandrels of San Marco and the Panglossian Paradigm: A Critique of the Adaptationist Programme. Proc Roy Soc London B 205:581–598

    ADS  Google Scholar 

  7. Holland PW, Leinhardt S (1970) A method for detecting structure in sociometric data. Am J Soc 70:492–513

    Google Scholar 

  8. Itzkovitz S, Alon U (2005) Subgraphs and Network Motifs in Geometric Networks. Phys Rev E 71:026117

    ADS  Google Scholar 

  9. Itzkovitz S, Milo R, Kashtan N, Ziv G, Alon U (2003) Subgraphs in random networks. Phys Rev E 68:026127

    MathSciNet  ADS  Google Scholar 

  10. JacobF (1977) Evolution as tinkering. Science 196:1161–1166

    ADS  Google Scholar 

  11. Kashtan N, Itzkovitz S, Milo R, Alon U (2004) Efficient Sampling Algorithm for Estimating Subgraph Concentrations and Detecting Network Motifs. Bioinformatics 20(11):1746–1758

    Google Scholar 

  12. Mazurie A, Bottani S, Vergassola M (2005) An evolutionary and functional assessment of regulatory network motifs. Genome Biol 6:R35

    Google Scholar 

  13. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network Motifs: Simple Building Blocks of Complex Networks. Science 298:824–827

    ADS  Google Scholar 

  14. Milo R, Itzkovitz S, Kashtan N, Levitt R, Shen-Orr S, Ayzenshtat I, Sheffer M, Alon U (2004) Superfamilies of designed and evolved networks. Science 303:1538–1542

    ADS  Google Scholar 

  15. Mangan S, Alon U (2003) Structure and function of the feed‐forward loop network motif. Proc Nat Acad Sci 100(21):11980–11985

    ADS  Google Scholar 

  16. Mangan S, Zaslaver A, Alon U (2003) The coherent feedforward loop serves as a sign‐sensitive delay element in transcription networks. J Mol Biol 334:197–204

    Google Scholar 

  17. McKay BD (1981) Practical Graph Isomorphism. Congressus Numerantium 30:45–87

    MathSciNet  Google Scholar 

  18. Moreno‐Vega Y, Vázquez‐Prada M, Pacheco A (2004) Fitness for synchronization of network motifs. Phys A 343:279–287

    Google Scholar 

  19. Newman MEJ (2003) SIAM Rev 45:167–256

    MathSciNet  ADS  MATH  Google Scholar 

  20. Onnela J-K, Saramaki J, Kertész J, Kaski K (2005) Intensity and coherence of motifs in weighted complex networks. Phys Rev E 71:065103(R)

    Google Scholar 

  21. Ravasz E, Somera SL, Mongru DA, Oltvai ZN, Barabási A-L (2002) Hierarchical organization of modularity in metabolic networks. Science 297:1551–1555

    Google Scholar 

  22. Rodriguez‐Caso C, Medina MA, Solé RV (2005) Topology, tinkering and evolution of the human transcription factor network. FEBS J 272:6423–6434

    Google Scholar 

  23. Shen-Orr S, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulatory network of Escherichia coli. Nat Genet 31:64–68

    Google Scholar 

  24. Sporns O, Kotter R (2004) Motifs in Brain Networks. PLoS Biol 2(11):e369

    Google Scholar 

  25. Solé RV, Ferrer I, Cancho R, Montoya JM, Valverde S (2002) Selection, Tinkering, and Emergence in Complex Networks. Complexity 8:20–33

    Google Scholar 

  26. Solé RV, Valverde S (2006) Are Network Motifs The Spandrels of Cellular Complexity? Trends Ecol Evol 21:419–22

    Google Scholar 

  27. Tononi G, Sporns O, Edelman GM (1999) Measures of degeneracy and redundancy in biological networks. Proc Natl Acad Sci USA 96:3257–3262

    ADS  Google Scholar 

  28. Valverde S, Solé RV (2005) Network Motifs in Computational Graphs: A Case Study in Software Architecture. Phys Rev E 72(2):026107

    Google Scholar 

  29. Vázquez A, Dobrin R, Sergi D, Eckmann JP, Oltvai ZN, Barabási A-L (2004) The topological relationship between the large-scale attributes and local interaction patterns of complex networks. Proc Nat Acad Sci 1001:17940–17945

    Google Scholar 

  30. VázquezA, Flammini A, Maritan A, Vespignani A (2003) Modeling of ProteinInteraction Networks. Complexus 1:38–44

    Google Scholar 

  31. Wagner G, Pavlicev M, Cheverud JM (2007) The road to modularity. Nat Rev Genet 8:921–931

    Google Scholar 

  32. Wasserman S, K Faust (1994) Social Network Analysis. Cambridge University Press, Cambridge

    Google Scholar 

  33. Wernicke S (2006) Efficient Detection of Network Motifs. IEEE/ACM Trans Comp Biol Bioinf 3(4):347–359

    Google Scholar 

  34. Wolf DM, Arkin AP (2003) Motifs, modules and games in bacteria. Curr Opin Microbiol 6(2):125–134

    Google Scholar 

  35. Ziv E, Koytcheff R, Middendorf M, Wiggins C (2005) Systematic identification of statistically significant network measures. Phys Rev E 71:016110

    ADS  Google Scholar 

Books and Reviews

  1. Banzhaf W, Kuo PD (2004) Network motifs in natural and artificial transcriptional regulatory networks. J Biol Phys Chem 4(2):85–92

    Google Scholar 

  2. Dobrin R, Beg Q, Barabási A-L, Oltvai Z (2004) Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network. BMC Bioinform 5:10

    Google Scholar 

  3. Gould SJ (2002) The Structure of Evolutionary Theory. Harvard University Press, Cambridge

    Google Scholar 

  4. Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402:C47–C52

    Google Scholar 

  5. Kuo PD, Banzhaf W, Leier A (2006) Network topology and the evolution of dynamics in an artificial regulatory network model created by whole genome duplication and divergence. Biosystems 85:177–200

    Google Scholar 

  6. Solé RV, Pastor‐Satorras R, Smith E, Kepler TS (2002) A model of large-scale proteome evolution. Adv Complex Syst 5:43–54

    Google Scholar 

  7. Zhang LV et al (2005) Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network. J Biol 4(2):6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Valverde, S., Solé, R.V. (2009). Motifs in Graphs . In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_339

Download citation

Publish with us

Policies and ethics