Skip to main content

Motion Prediction for Continued Autonomy

  • Reference work entry

Introduction

Recent hardware developments have rendered dynamic vision – the confluence of computer vision and control–a viable option fora large number of applications, ranging from surveillance and manufacturing to assisting individuals with disabilities. This article discusses one ofthe critical issues currently limiting widespread use of these systems, namely their potential fragility when operating in dense, cluttered environments,and shows that robustness can be substantially enhanced by exploiting the predictive power of dynamic motion models learned from scene data. The articleis organized as follows: Sect. “Definition of the Subject” provides a brief overview ofthe subject. Section “Introduction” illustrates, with a simple example, the robustnesschallenges faced by dynamic vision methods when operating in cluttered, partially stochastic environment, and shows how to address these challengesthrough the use of dynamic motion models. These ideas are further developed in...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Camshift algorithm:

The Continuously Adaptive Mean Shift (CAMSHIFT) algorithm is a tracking procedure based on the mean shift algorithm that was developed to cope with dynamically changing color probability distributions derived from video sequences.

Kalman filter:

A dynamical system (filter) that estimates the state of a linear system from measurements of its outputs corrupted by Gaussian noise.

Linear matrix inequality:

A matrix inequality of the form \( { \mathbf{A(x)}\doteq \sum_i x_i \mathbf{A}_i \leq 0 } \), where \( { \leq 0 } \) stands for negative semidefinite. An LMI of this form defines a convex constraint in the variables \( { x_i } \).

Mean shift algorithm:

A robust non-parametric technique for climbing density gradients to find the mode (peak) of a probability density function.

Particle filter:

A sequential Monte Carlo method to approximate sequences of probability density functions using a large set of random samples known as particles. These particles are propagated over time using important sampling and resampling techniques.

Robust identification:

A class of deterministic identification techniques based on set descriptions of noise and allowable systems. These techniques yield both a system model compatible with the observed data and a priori assumptions, and worst-case bounds on the identification error.

Transfer matrix:

A (generically complex valued) matrix that relates the Z-transforms of the input \( { u(z) } \) and the output \( { y(z) } \) of a linear time invariant system: \( { y(z)=G(z)u(z) } \).

Unscented Kalman filter:

A nonlinear estimation method where the state distribution is approximated by a Gaussian random variable chosen such that it captures the posterior mean and variance accurately up to the \( { 3\text{rd} } \) order of their Taylor series expansion.

Unscented particle filter:

A particle filter that uses an unscented Kalman filter to generate the importance proposal distribution for nonlinear non-Gaussian on-line estimation.

Bibliography

Primary Literature

  1. Feddema J (1997) Microassembly of micro–electromechanical systems (MEMS) using visual servoing. In: Block Island Workshop on Vision and Control. Springer, Berlin, pp. 257–272

    Google Scholar 

  2. Ralis SJ, Vikramaditya B, Nelson BJ (2000) Micropositioning of a weakly calibrated microassembly system using coarse-to-fine visual servoing strategies. Trans IEEE Electron Packag Manuf 23(2):123–131

    Google Scholar 

  3. Ferreira A, Cassier C, Hirai S (2004) Automatic microassembly system assisted by vision servoing and virtual reality. IEEE Trans Mechatron 9(2):321–333

    Google Scholar 

  4. Xie H, Chen L, Sun L, Rong W (2005) Hybrid vision-force control for automatic assembly of miniaturized gear system. In: IEEE Int. Conf. on Robotics and Automation, Barcelona, Spain, April 2005, pp 1368–1373

    Google Scholar 

  5. Song Y, Li M, Sun L, Ji J (2005) Global visual servoing of miniature mobile robot inside a micro-assembly station. In: IEEE Int. Conf. on Mechatronics and Automation, Niagara Falls, Canada, July 2005, pp 1586–1591

    Google Scholar 

  6. Wang YF, Uecker DR, Wang Y (1996) Choreographed scope maneuvering in robotically–assisted laparoscopy with active vision guidance. In: 3\( { \text{rd} } \) IEEE Workshop on Applications of Computer Vision, Sarasota, December 1996

    Google Scholar 

  7. Krupa A, Gangloff J, Doignon C, MF de Mathelin, Morel G, Leroy J, Soler L, Marescaux J (2003) Autonomous 3-d positioning of surgical instruments in robotized laparoscopic surgery using visual servoing. IEEE Transn Robotics Autom 19(5):842–853

    Google Scholar 

  8. Nageotte F, Zanne P, Doignon C, de Mathelin M (2006) Visual servoing-based endoscopic path following for robot-assisted laparoscopic surgery. In: Int IEEE. Conf. on Intelligent Robots and Systems, Beijing, China, October 2006, pp 2364–2369

    Google Scholar 

  9. Hynes P, Dodds GI, Wilkinson AJ (2005) Uncalibrated visual-servoing of a dual-arm robot for surgical tasks. In: IEEE Int. Symposium on Computational Intelligence in Robotics and Automation, Espoo, Finland, June 2005, pp 151–156

    Google Scholar 

  10. Vitrani M, Morel G, Ortmaier T (2005) Automatic guidance of a surgical instrument with ultrasound based visual servoing. In: IEEE Int. Conf. on Robotics and Automation, Barcelona, Spain, April 2005, pp 508–513

    Google Scholar 

  11. Starner T, Pentland A (1998) Real-time american sign language recognition using desk and wearable computer based video. IEEE Trans Pattern Anal Mach Intell 20(12):1371–1375

    Google Scholar 

  12. Tsotsos JK, Verghese G, Dickinson S, Jenkin M, Jepson A, Milios E, Nuflo F, Stevenson S, Black M, Metaxas D, Culhane S, Ye Y, Mannn R (1998) PLAYBOT: A visually-guided robot for physically disabled children. Image Vis Comput 16(4):275–292

    Google Scholar 

  13. Song W, Kim J, Bien Z (2000) Visual servoing for human-robot interaction in the wheelchair-based rehabilitation robot. In: IEEE Int. Conf. on Systems, Man, and Cybernetics, October 2000, pp 1811–1816

    Google Scholar 

  14. Martens C, Ruchel N, Lang O, Ivlev O, Graser A (2001) A friend for assisting handicapped people. IEEE Robotics Autom Mag 8(1):57–65

    Google Scholar 

  15. Smith CE, Richards CA, Brandt SA, Papanikolopoulos NP (1996) Visual tracking for intelligent vehicle–highway systems. IEEE Trans Veh Tech 45(4):744–759

    Google Scholar 

  16. Taylor CJ, Kosecka J, Blasi R, Malik J (1999) Comparative study of vision-based lateral control strategies for autonomous highway driving. Intern J Robotics Res 18(5):442–453

    Google Scholar 

  17. Broggi A, Cellario M, Lombardi P, Porta M (2003) An evolutionary approach to visual sensing for vehicle navigation. IEEE Trans Ind Electron 50(1):18–29

    Google Scholar 

  18. Finnefrock M, Jiang X, Motai Y (2005) Visual-based assistance for electric vehicle driving. In: IEEE Intelligent Vehicles Symposium, IEEE June 2005, pp 656–661

    Google Scholar 

  19. Calabi E, Olver PJ, Shakiban C, Tannenbaum A, Haker S (1998) Differential and numerically invariant signature curves applied to object recognition. Intern J Comput Vis 26(2):107–135

    Google Scholar 

  20. Cohen LD (1991) On active contour models and balloons. Comput Vis Graph Image Process: Image Understanding 53(2):211–218

    Google Scholar 

  21. Coombs D, Brown C (1993) Real-time binocular smooth pursuit. Intern J Comput Vis 11(2):147–164

    Google Scholar 

  22. Grimson WEL, Stauffer C, Romano R, Lee L (1998) Using adaptive tracking to classify and monitor activities in a site. In: IEEE Computer Vision and Pattern Recognition, IEEE 1998, pp 22–29

    Google Scholar 

  23. Hager G, Belhumeur P (1997) Efficient region tracking with parametric models of geometry and illumination. IEEE Trans Pattern Anal Mach Intell 20(10):1025–1039

    Google Scholar 

  24. Irani M, Anandan P (1998) Unified approach to moving object detection in 2d and 3d scenes. IEEE Trans Pattern Anal Mach Intell 20(6):577–589

    Google Scholar 

  25. Shi J, Tomasi C (1994) Good features to track. In: IEEE Computer Vision and Pattern Recognition, IEEE 1994, pp 593–600

    Google Scholar 

  26. Black MJ, Jepson AD (1998) Eigentracking: Robust matching and tracking of articulated objects using a view-based representation. Intern J Comput Vis 26(1):63–84

    Google Scholar 

  27. Fleet DJ, Black MJ, Yacoob Y, Jepson AD (2000) Design and use of linear models for image motion analyis. Intern J Comput Vis 36(3):171–194

    Google Scholar 

  28. Nayar SK, Murase H, Nene SA (1994) Learning, positioning, and tracking visual appearance. In: IEEE International Conference on Robotics and Automation, IEEE May 1994, pp 3237–3246

    Google Scholar 

  29. Wen CR, Azarbayejani A, Darrell T, Pentland AP (1997) Pfinder: real-time tracking of the human body. IEEE Trans Pattern Anal Mach Intell 19(7):780–785

    Google Scholar 

  30. Yacoob Y, Davis LS (2000) Learned models for estimation of rigid and articulated human motion from stationary or moving camera. Intern J Comput Vis 36(1):5–30

    Google Scholar 

  31. Orwell J, Remagnino P, Jones GA (1999) Multi-camera color tracking. In: 2nd IEEE Int. Workshop on Visual Surveillance, Fort Collins, CO, June 1999

    Google Scholar 

  32. Collins R, Amidi O, Kanade T (2002) An active camera system for acquiring multi-view video. In: Int. Conf. on Image Processing, vol I, IEEE pp 517–520

    Google Scholar 

  33. Hager G, Toyama K (2000) A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans Autom Control 45(3):477–482

    Google Scholar 

  34. Reid ID, Murray W (1996) Active tracking of foveated feature clusters using affine structure. Intern J Comput Vis 18(1):41–60

    Google Scholar 

  35. Cipolla R, Blake A (1992) Surface shape from the deformation of apparent contours. Intern J Comput Vis 9(2):83–112

    Google Scholar 

  36. Blake A, Isard M (1998) Active Contours. Springer, Berlin

    Google Scholar 

  37. Isard M, Blake A (1998) CONDENSATION – conditional density propagation for visual tracking. Intern J Comput Vis 29(1):5–28

    Google Scholar 

  38. North B, Blake A, Isard M, Rittscher J (2000) Learning and classification of complex dynamics. IEEE Trans Pattern Anal Mach Intell 22(9):1016–1034

    Google Scholar 

  39. Julier S, Uhlmann J, Durrant-Whyte HF (1995) A new approach for filtering nonlinear systems. In: Proceedings of the (1995) American Control Conference, pp 1628–1632

    Google Scholar 

  40. Anderson BDO, Moore JB (1979) Optimal Filtering. Prentice Hall, New Jersey

    MATH  Google Scholar 

  41. Sánchez Peòna R, Sznaier M (1998) Robust Systems Theory and Applications. Wiley, New York

    Google Scholar 

  42. Bissacco A, Chiuso A, Ma Y, Soatto S (2001) Recognition of human gaits. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE December 2001

    Google Scholar 

  43. Parrilo PA, Sanchez Pena RS, Sznaier M (1999) A parametric extension of mixed time/frequency domain based robust identification. IEEE Trans Autom Contr 44(2):364–369

    MathSciNet  MATH  Google Scholar 

  44. Boyd S, El Ghaoui L, Feron E, Balakrishnan V (1994) Linear Matrix Inequalities in System and Control Theory, vol 15. SIAM Studies in Applied Mathematics, Philadelphia

    MATH  Google Scholar 

  45. Bradski GR, Pisarevsky V (2000) Intel’s computer vision library: applications in calibration, stereo, segmentation, tracking, gesture, face and object recognition. In: IEEE Computer Vision and Pattern Recognition, vol II. IEEE pp 796–797

    Google Scholar 

  46. Comaniciu D, Ramesh V, Meer P (2000) Real–time tracking of non–rigid objects using mean shift. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE June 2000, pp 142–149

    Google Scholar 

  47. Perez P, Hue C, Vermaak J, Gangnet M (2002) Color-based probabilistic tracking. In: 7th European Conference on Computer Vision, Copenhagen 2002, pp 661–675,

    Google Scholar 

  48. Zivkovic Z, Krose B (2004) An em-like algorithm for color-histogram-based object tracking. In: IEEE Computer Vision and Pattern Recognition, vol 1, IEEE June 2004, pp 798–803

    Google Scholar 

  49. Jepson AD, Fleet DJ, El-Maraghi TF (2003) Robust online appearance models for visual tracking. IEEE Trans Pattern Anal Mach Intell 25(10):1296–1311

    Google Scholar 

  50. Ho J, Lee KC, Yang MH, Kriegman D (2004) Visual tracking using learned linear subspaces. In: Int. Conference on Computer Vision and Pattern Recognition, vol 1. IEEE pp 782–789, June 2004, Washington D.C.

    Google Scholar 

  51. Lim H, Camps OI, Sznaier M, Morariu V (2006) Dynamic appearance modeling for human tracking. In: IEEE Computer Vision and Pattern Recognition, IEEE 2006, pp 751–757

    Google Scholar 

  52. Morariu V, Camps OI (2006) Modeling correspondences for multi-camera tracking using nonlinear manifold learning and target dynamics. In: IEEE Computer Vision and Pattern Recognition, IEEE pp 537–544

    Google Scholar 

  53. Morariu V, Camps O, Sznaier M, Lim H (2002) Robust cooperative visual tracking: A combined nonlinear dimensionality reduction/robust identification approach. In: Hirsch MJ, Pardalos PM, Murphey R, Grundel D (eds) Advances in Cooperative Control and Optimization. Springer, Berlin

    Google Scholar 

  54. Chen J, Gu G (2000) Control Oriented System Identification, An \( { \mathcal{H}_\infty } \) Approach. Wiley, New York

    Google Scholar 

  55. Ljung L, Soderstrom T (1983) Theory and Practice of Recursive Identification. MIT Press, Cambridge

    MATH  Google Scholar 

  56. Ljung L (1996) Development of system identification. In: IFAC Congress, vol G, pp 141–146

    Google Scholar 

  57. Milanese M, Vicino A (1991) Optimal estimation theory for dynamic systems with set membership uncertainty: an overview. Automatica 27:997–1009

    MathSciNet  MATH  Google Scholar 

  58. Helmicki AJ, Jacobson CA, Nett CN (1989) \( { \mathcal{H}_\infty } \) identification of stable lsi systems: A scheme with direct application to controller design. In: American Contol Conference, Pittsburgh pp 1428–1434

    Google Scholar 

  59. Gu G, Khargonekar PP, Li Y (1992) Robust convergence of twostage nonlinear algorithms for system identification. Syst Control Lett 18:253–263

    MathSciNet  MATH  Google Scholar 

  60. Chen J, Nett C, Fan M (1995) Worst-case system identification in \( { \mathcal{H}_\infty } \): Validation of a Priori information, essentially optimal algorithms and error bounds. IEEE Trans Autom Control 40(7):1260–1265

    MathSciNet  MATH  Google Scholar 

  61. Foias C, Frazho AE (1990) The commutant lifting approach to interpolation problems, Operator theory: Advances and Applications, vol 44. Birkhäuser, Basel

    Google Scholar 

  62. Ball J, Gohberg I, Rodman L (1990) Interpolation of Rational Matrix Functions, Operator Theory: Advances and Applications, vol 45. Birkhäuser, Basel

    Google Scholar 

Books and Reviews

  1. Chen J, Gu G (2000) Control Oriented System Identification, An \( { \mathcal{H}_\infty } \) Approach. Wiley, New York. An excellent reference book with an in depth coverage of Robust Identification and the associated mathematical background in Interpolation Theory

    Google Scholar 

  2. Fisher RB, CV-Online: The Evolving, Distributed, Non-Proprietary, On-Line Compendium of Computer Vision, Online Book, 2007 Provides a very complete online, evolving hypertext summary on central topics in computer vision, including motion and tracking

    Google Scholar 

  3. Forsyth DA, Ponce J (2003) Computer Vision: A Modern Approach, Prentice Hall, Prentice Hall, Upper Saddle River. A textbook covering the fundamentals of computer vision. Chapter 4 includes an introduction to the problem of tracking using linear models

    Google Scholar 

  4. Ma Y, Soatto S, Kosecka J, J Sastry, Sastry SS (2005) An Invitation to 3-D Vision, From Images to Geometric Models. Springer, Berlin. Chapter 12 is dedicated to the topic of visual feedback including applications to autonomous navigation

    Google Scholar 

  5. Medioni G, Kang SB (2005) Emerging Topics is Computer Vision, Prentice Hall, Prentice Hall, Upper Saddle River. Chapter 11 provides a tutorial on the open source computer vision library OpenCV

    Google Scholar 

  6. Paoletti S, Juloski A, Ferrari-Trecate G, Vidal R (2007) Identification of Hybrid Systems: A Tutorial. Eur J Control 13(2–3). A survey paper covering the fundamentals of identification of piecewise affine models

    Google Scholar 

  7. Sánchez Peña R, Sznaier M (1998) Robust Systems Theory and Applications. Wiley, New York. Chapter 10 of this textbook provides a good introduction to the field of Robust Identification. In: addition, the Appendices provide a summary of several key results in Linear Systems Theory

    Google Scholar 

  8. Sznaier M, Camps O (2007) Systems Theoretic Methods in Computer Vision and Image Processing. J Soc Inst Contr Eng. (SICE) Special Issue on Control Theoretic Principles in Emerging Technologies 46:p 206, A survey paper that covers the use of systems theoretic tools to solve multiple problems arising in the context of dynamic vision and image processing, e.?g. tracking, motion segmentation, structure from motion, activity recognition, texture modeling and recognition, static and dynamic inpainting, etc

    Google Scholar 

Download references

Acknowledgment

Support from NSF under grants ECS–0221562, IIS–0117387, and ITR–0312558 and AFOSR under grantFA9550–05–1–0437 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix: Background Results on Linear Spaces and Robust System Identification

Appendix: Background Results on Linear Spaces and Robust System Identification

In this appendix we summarize, for ease of reference, the background results on linear spaces and robust identification used in this chapter.

Linear Spaces

Algebraic structures are instrumental in understanding many problems arising in systems theory from an abstract point of view. In particular these tools are required to formalize and solve the optimal filtering and estimation problems arising in the context of multiframe tracking.

Field

Definition 1

field \( { (\mathcal{F},\& ,\star) } \) is an algebraic structure composed of a set \( { \mathcal{F} } \) and two operations \( { \& } \) and ? with the following properties:

  1. 1.

    Set \( { \mathcal{F} } \) is closed with respect to \( { \& } \), i.?e. \( a,b\in\mathcal{F}\;\Longrightarrow\; (a\& b)\in\mathcal{F} \).

  2. 2.

    Operation \( { \& } \) is associative, i.?e. \( (a\& b)\& c=a\& (b\& c)=a\& b\& c \) for \( a,b,c\in\mathcal{F} \).

  3. 3.

    Operation \( { \& } \) is commutative, i.?e. \( { a\& b=b\& a } \) for \( { a,b\in\mathcal{F} } \).

  4. 4.

    Set \( { \mathcal{F} } \) contains the neutral element \( { n_\& } \) with respect to \( { \& } \), that is, there exists \( { n_\& } \) such that \( { a\& n_\& =a } \) for all \( { a \in\mathcal{F} } \).

  5. 5.

    Set \( { \mathcal{F} } \) contains the inverse element \( { a_\&^I } \) with respect to \( { \& } \), that is, for all \( { a \in \mathcal{F} } \) there exists \( { a^I_\&\in\mathcal{F} } \), such that \( { a\&a_\&^I=n_\& } \).

  6. 6.

    Set \( { \mathcal{F} } \) is closed with respect to ?.

  7. 7.

    Operation ? is associative.

  8. 8.

    Set \( { \mathcal{F} } \) contains the neutral element \( { n_\star } \) with respect to ?.

  9. 9.

    Set \( { \mathcal{F} } \) contains the inverse element \( { a_\star^I } \) with respect to ?.

  10. 10.

    Operation ? is distributive with respect to \( { \& } \), i.?e. \( { (a\&b)\star c = (a\star c) \& (b\star c) } \) for \( { a,b,c\in\mathcal{F} } \).

An example of a field is the set R of the real numbers, equipped with operations \( { (+,\times) } \) as \( { (\&,\star) } \) respectively. Here \( { n_\&=0 } \), \( { n_\star=1 } \), \( { a^I_\&=-a } \) and \( { a^I_\star=a^{-1} } \) (\( { a\neq 0 } \)).

Linear Vector Space

Definition 2

A set \( { \mathcal{V} } \) is a  linear vector space over the field \( { (\mathcal{F},+,\times) } \) if and only if the following properties are satisfied (in the sequel the elements of \( { \mathcal{F} } \) and \( { \mathcal{V} } \) will be called scalars and vectors respectively):

  1. 1.

    Set \( { \mathcal{V} } \) is closed with respect to +.

  2. 2.

    Operation + is associative in \( { \mathcal{V} } \).

  3. 3.

    Operation + is commutative in \( { \mathcal{V} } \).

  4. 4.

    Set \( { \mathcal{V} } \) contains the neutral element with respect to +.

  5. 5.

    Set \( { \mathcal{V} } \) contains the inverse element with respect to +.

  6. 6.

    \( { \mathcal{V} } \) is closed with respect to operation × between scalars and vectors.

  7. 7.

    Operation × among scalars and vectors is associative in the scalars, i.?e. \( (a\times b)\times v=a\times (b\times v)=a\times b\times v \) for \( { a,b\in\mathcal{F} } \) and \( { v\in\mathcal{V} } \).

  8. 8.

    Distributive 1: \( { (a+b)\times v = (a\times v) + (b\times v) } \) for \( { a,b\in\mathcal{F} } \) and \( { v\in\mathcal{V} } \).

  9. 9.

    Distributive 2: \( { (u+v)\times a = (u\times a) + (v\times a) } \) for \( { a\in\mathcal{F} } \) and \( { u,v\in\mathcal{V} } \).

  10. 10.

    Field  \( { \mathcal{F} } \) contains the neutral element of operation × between vectors and scalars, i.?e. \( { n_\times \times v =v } \) for \( n_\times \in\mathcal{F} \) and \( { v\in\mathcal{V} } \).

Examples of linear spaces over the field of real numbers are the set of matrices in \( { {R}^{n\times 1} } \) and the set of sequences of real numbers, both equipped with the usual addition and scalar multiplication operations. The former is an example of a finite dimensional space, while the latter could be finite or infinite dimensional depending upon whether finite or infinite sequences are considered.

Metric, Norm and Inner Products

Definition 3

metric space \( { (\mathcal{V},m(\cdot,\cdot)) } \) is defined in terms of a  linear vector space \( { \mathcal{V} } \) and a real function (the “metric”) \( { m(\cdot,\cdot):\mathcal{V}\times \mathcal{V}\rightarrow {R}_+ } \), satisfying the following conditions:

  1. 1.

    \( { m(x,y)\geq 0\quad \forall x,y\in\mathcal{V} } \).

  2. 2.

    \( { m(x,y)= 0\quad\Longleftrightarrow\quad x=y } \).

  3. 3.

    \( { m(x,y)= m(y,x) \quad\forall x,y\in\mathcal{V} } \).

  4. 4.

    \( { m(x,z) \leq m(x,y)+m(y,z) \quad\forall x,y,z\in\mathcal{V} } \).

Here \( { R_+\doteq \left\{ x\in R,\; x\geq 0\right\} } \).

Definition 4

normed space \( { (\mathcal{V},\|\cdot\|) } \). is defined in terms of a  linear vector space \( { \mathcal{V} } \) and a real function \( { \|\cdot\|:\mathcal{V}\rightarrow {R}_+ } \) that satisfies the following conditions:

  1. 1.

    \( { \|x\|\geq 0\quad \forall x\in\mathcal{V} } \).

  2. 2.

    \( { \|x\|= 0\quad\Longleftrightarrow\quad x=\underline 0 } \).

  3. 3.

    \( { \|\alpha x\|=|\alpha |\cdot\|x\|\quad\forall x\in\mathcal{V}, \alpha\in\mathcal{F} } \).

  4. 4.

    \( { \|x +y\|\leq \|x\| + \|y\|\quad\forall x,y\in\mathcal{V} } \).

Here \( { |\cdot| } \) represents the magnitude of a scalar.

The following are examples of normed spaces:

  1. 1.

    The linear space of n-dimensional real vectors, equipped with the norm:

    $$ \|x\|_p \doteq \root p \of {\sum_{i=1}^n |x_i|^p} \quad p\geq 1 $$
    (10)
    $$ \|x\|_\infty \doteq \max_{1\leq i\leq n} |x_i| $$
    (11)
  2. 2.

    The linear space of real sequences, equipped with the norm:

    $$ \|x\|_p \doteq \root p \of {\sum_{i=1}^\infty |x_i|^p} \quad p \geq 1 $$
    (12)
    $$ \|x\|_\infty \doteq \max_{i\geq 1} |x_i| $$
    (13)

Robust Identification

The field of system identification concerns itself with mechanisms and algorithms that process finite, partial, and corrupted data to yield abstract mathematical descriptions of real world systems.

Traditional identification approaches [55,56] assume that the data is corrupted by a stochastic process with known statistical properties and that the system to be identified has a prescribed model structure. Most of these identification procedures are based on least squares methods that estimate the parameters of the hypothesized models from the corrupted measurements. In these approaches the only source of uncertainty is the noise in the measurements while the prescribed model is assumed to be an accurate representation of the real system.

In many situations, for example when measurements are known within an accuracy range or when the available statistical information might be questionable, deterministic bounded noise descriptions are a practical and sound alternative to stochastic ones. Using this approach, the problem of system identification can be formulated as finding the sets of parameter values that are consistent with the known noise bounds. A survey of set membership formulations for system identification can be found in [57].

Noise description is only one of the factors affecting the quality of an identified model. Perhaps a more important factor is the unrealistic presumption that a fixed model structure may fully represent the system to be identified: In practice, only partial information of the physical system is available, model parameters might change due to different operation conditions, and real systems are often too complex to be accurately modeled from first principles. These issues are addressed by robust system identification, which departs from traditional approaches by using a deterministic worst-case approach with no prior assumption about the order of the system. Instead, robust identification procedures are based on a priori assumptions on the class of systems and noise and on the a posteriori experimental data. Using this information robust system identification algorithms find nominal models based on the experimental data and worst-case identification error bounds over the set of models defined by the a priori information.

Information Consistency and Diameter of Information

Due to the fact that the assumed a priori information is, in general, a quantification of the engineering common sense or simply a “leap of faith”, there is no guarantee that it will be coherent with the a posteriori experimental data. Thus, robust identification procedures must always first test the consistency of both types of information.

Consistency can be better understood by considering the set of all possible models which could have produced the a posteriori data y, in accordance with the class of systems \( { \mathcal{S} } \) and the measurement noise \( { \eta \in \mathcal{N} } \):

$$ {\mathcal T}(\mathbf{y}) \doteq \{ g \in {\mathcal S} \mid \mathbf{y} = E(g,\eta) , \eta \in \mathcal{N} \} $$

where \( { E(.,.) } \) is the “experiment” operator. Intuitively, the a priori information and the a posteriori experimental data are consistent if there exists at least one element in \( { \mathcal{S} } \) that could have generated the observed experimental data. This concept is formalized in the next definition:

Definition 5

The a priori information \( { (\mathcal{S},\mathcal{N}) } \) is consistent with the experimental a posteriori information y if and only if the set \( { \mathcal{T}(\mathbf{y}) } \) is nonempty.

Once consistency has been established, the computation of a nominal model and a valid model error bound can be attempted. There are two different types of algorithms to accomplish this. The first type of procedures [58,59] are guaranteed to converge, even when the information available is inconsistent. However, they might result on a nominal model outside the consistency set. The second type of procedures, and the type we use in the sequel, are interpolatory algorithms [60]. As we show next, these algorithms are always guaranteed to converge as the information is completed. Moreover, they are optimal to a factor of 2, in the sense that their worst-case error is never larger than twice the minimum achievable error over the set of all identification algorithms.

Worst Case Identification Error

A salient feature of robust identification is its ability to provide worst-case bounds on the identification error. Given an identification algorithm \( { \mathcal{A} } \) mapping the a priori and a posteriori information to candidate nominal model, its local error is defined as follows:

$$ e(\mathcal{A},\mathbf{y})=\sup_{g\in\mathcal{T}(\mathbf{y})}m\left[g,\mathcal{A}(\mathbf{y}, \mathcal{S},\mathcal{N}) \right] $$
(14)

that is, the maximum distance between the identified set and any other plant in the set \( { \mathcal{T}(\mathbf{y}) } \). Note that this error is related to the outcome of a specific experiment y. A global error can be defined by considering the worst–case error over the set of all possible experimental outcomes:

Definition 6

The worst case global error of a given algorithm \( { \mathcal{A}(\mathbf{y},\mathcal{S},\mathcal{N}) } \) is given by:

$$ e(\mathcal{A}) = \sup_{\mathbf{y}\in\mathbf{Y}} e(\mathcal{A},\mathbf{y}) $$
(15)

where Y is the set of all possible experimental data, consistent with sets \( { \mathcal{S} } \) and \( { \mathcal{N} } \).

Next we briefly review how to obtain mathematically tractable bounds for these errors. Recall that the set \( { \mathcal{T}(\mathbf{y})\subset \mathcal{S} } \) is the smallest set of models that are indistinguishable from the view point of the input information. Therefore, roughly speaking, its size gives lower and upper bounds on the identification error defined above. In order to formalize these ideas and obtain computable bounds we need to introduce the following concepts:

Definition 7

The radius and diameter of a subset \( { \mathcal{A} } \) of a metric space \( { (\mathcal{X},m) } \) are

$$ \begin{aligned} r(\mathcal{A}) & = \inf_{x\in \mathcal{X}} \sup_{a \in \mathcal{A}} m(x,a)\\ d(\mathcal{A}) & = \sup_{x,a \in \mathcal{A}} m(x,a)\:. \end{aligned} $$

The radius can be interpreted as the maximum error, measured in the metric \( { m(.) } \), when considering the set \( { \mathcal{A} } \) as represented by a single “central” point (which might not belong to \( { \mathcal{A} } \)). The diameter is the maximum distance between any two points in the set. Based on these concepts of radius, we next quantify the “size” of the available information.

Definition 8

The radius and diameter of information are defined as:

$$ \begin{aligned} {\mathcal{R}}(\mathcal{I}) & \doteq \sup_{\mathbf{y} \in \mathbf{Y}} r[\mathcal{T}(\mathbf{y})]\\ \mathcal{D}(\mathcal{I}) & \doteq \sup_{\mathbf{y} \in \mathbf{Y}} d[\mathcal{T}(\mathbf{y})] \end{aligned} $$

where Y is the set of all possible experimental data consistent with the sets \( { \mathcal{S} } \) and \( { \mathcal{N} } \):

$$ \mathbf{Y} \doteq \{E(g,\eta) \mid g \in \mathcal{S}, \eta \in \mathcal{N} \}. $$

The following result gives worst–case bounds of the identification error based on these concepts:

Lemma 1

The worst case identification error defined in (15) satisfies the following inequality:

$$ e(\mathcal{A}) \geq \mathcal{R}(\mathcal{I}) \geq \frac{1}{2} \mathcal{D}(\mathcal{I}) $$
(16)

for any algorithm \( { \mathcal{A} } \). The following upper bound holds:

$$ \mathcal{D}(\mathcal{I}) \geq e(\mathcal{A}_I) $$
(17)

for any interpolation algorithm \( { \mathcal{A}_I } \).

The bounds above are of theoretical importance. For instance \( { \mathcal{R(I)} } \) can be interpreted as an intrinsic error that cannot be decreased by any identification algorithm, unless extra information is added to the problem. On the other hand, these quantities are in general hard to compute. Fortunately, in practically relevant cases, they lead to mathematically tractable problems.

Definition 9

A set \( { \mathcal{A} } \) in a linear space X is called symmetric if and only if there exists an element \( { c\in X } \) such that for any \( { a\in X } \) for which \( { c+a\in \mathcal{A} } \) then \( { c-a\in \mathcal{A} } \). The element c is called the symmetry point of set \( { \mathcal{A} } \).

Lemma 2

If the a priori sets \( { \mathcal{S} } \) and \( { \mathcal{N} } \) are symmetric and convex with respect to 0, and the experiment operator \( { E(g,\eta) } \) is linear with respect to both g and ? then the diameter of information satisfies:

$$ \mathcal{D}(\mathcal{I})=\sup_{\mathbf{y} \in \mathbf{Y}} d\left[\mathcal{T}(\mathbf{y})\right] = d\left[\mathcal{T}(\mathbf{y}_0)\right]\; ,\quad \mathbf{y}_0= E(0,0) $$
(18)

Furthermore,

$$ d\left[\mathcal{T}(\mathbf{y}_0)\right]= 2 \sup_{g\in \mathcal{T}(\mathbf{y}_0)} m(g,0)\:. $$
(19)

Roughly speaking, the result above states that the experiment that yields the least amount of information is the one that results in a null outcome. Moreover, a bound on the worst case identification error is given by twice the maximum distance from any element in \( { \mathcal{T}(\mathbf{y_o}) } \) to the center of symmetry of \( { \mathcal{S} } \).

Time–Domain Based Interpolatory Identification Algorithms

In this section we briefly review the properties of the specific identification algorithm, based on time–domain data, used in this paper to establish the existence of operators with the appropriate features. To this effect we need several preliminary results.

The first lemma considers the problem of the existence of a causal linear discrete-time invariant operator such that the first n terms of its transfer function are given:

Lemma 3 (Carathéodory–Fejér)

Given a matrix valued sequence \( { \left \{ \mathbf{L}_i \right \}_{i=0}^{n-1} } \), there exists a causal, discrete-time, LTI operator \( { L(z) \in \mathcal{B}\mathcal{H}_\infty } \) such that

$$ L(z) = \mathbf{L}_0 + \mathbf{L}_1 z + \mathbf{L}_2 z^2+ \ldots \mathbf{L}_{n-1}z^{n-1} + \ldots $$
(20)

if and only if

$$ (\mathbf{T}_L^n)^\mathrm{T} \mathbf{T}_L^n \leq \mathbf{I} $$
(21)

where I denotes the identity matrix of compatible dimension.

Proof

See for instance Chap. 1 in [61].?

In the sequel we consider operator families of the form \( { \mathcal{S} } \):

$$ \mathcal{S}\doteq \left \{S(z) = H(z)+P(z) \right \} $$
(22)

where operators \( { S(z) } \) are described in terms of a nonparametric component \( { H(z)\in\mathcal{B}\mathcal{H}_\infty(K) } \) and a parametric component \( { P(z) } \). We will further assume that the parametric component \( { P(z) } \) belongs to the following class \( { \mathcal{P} } \) of affine operators:

$$ \mathcal{P} \doteq \{ P(z)=\mathbf{p}^\mathrm{T}\mathbf{G}_p(z), \, \mathbf{p}\in \mathcal{R}^{N_p} \}, $$
(23)

where the \( { N_p } \) components \( { \mathbf{G}_{p_i}(z) } \) of vector \( { \mathbf{G}_p(z) } \) are known, linearly independent, rational transfer functions.

The next lemma gives a necessary and sufficient condition for two finite vector sequences to be related by an operator in the family \( { \mathcal{S} } \).

Lemma 4

Given a scalar K, and two vector sequences \( { (\mathbf{u},\mathbf{y}) } \), there exists an operator \( { S \in \mathcal{S} } \) such that \( { \mathbf{y}=S\mathbf{u} } \) if and only if there exists a vector h satisfying:

$$ \begin{aligned} M(\mathbf{h}) \doteq \begin{bmatrix}\mathbf{I} & (\mathbf{T}_{h}^N)^\mathrm{T} \\ \mathbf{T}_{h}^N & \frac{1}{K^2} \end{bmatrix} \geq 0 \\ \mathbf{y}=\mathbf{T}_{u} \mathbf{P} \mathbf{p}+\mathbf{T}_{u}\mathbf{h} \end{aligned} $$
(24)

where \( { (\mathbf{P})_k\doteq [g_k^1 \; g_k^2 \; \cdots \; g_k^{N_p}] } \), with \( { g_k^i } \) denoting the kth Markov parameter of the ith transfer function \( { G_{p_i}(z) } \), \( { h_k } \) the kth Markov parameter of the nonparametric component \( { H(z) } \), respectively, and the scalar K is an upper bound of the \( { \ell_2 } \) induced norm of \( { H(z) } \).

Moreover, in this case all such operators S can be parametrized in terms of a free parameter \( { Q(z) \in \mathcal{B}\mathcal{H}_\infty } \). In particular, the choice \( { Q(z)=0 } \) leads to the “central” model

$$ S_{\mathrm{central}}(z)=H_{o}(z)+ \mathbf{p}^\mathrm{T}\mathbf{G}_p(z) $$

where an explicit state–space realization of \( { H_{o}(z) } \) is given by:

$$ H_o(z) = \mathbf{C}_H\left(z\mathbf{I}-\mathbf{A}_H\right)^{-1}\mathbf{B}_H + \mathbf{D}_H $$

with

$$\begin{aligned} \mathbf{A}_H=&\left \{ \mathbf{A}-[\mathbf{C}_{-}^\mathrm{T}\mathbf{C}_{-} +(\mathbf{A}^\mathrm{T}-\mathbf{I})]^{-1} \mathbf{C}_{-}^\mathrm{T}\mathbf{C}_{-}(\mathbf{A}-\mathbf{I})\right \}^{-1} \\ \mathbf{B}_H=& \enskip [\mathbf{C}_{-}^\mathrm{T}\mathbf{C}_{-}(\mathbf{A}^\mathrm{T}-\mathbf{A}-\mathbf{I}) - (\mathbf{A}^\mathrm{T}-\mathbf{I})\mathbf{A}]^{-1}\mathbf{C}_{-}^\mathrm{T} \\ \mathbf{C}_H=& \enskip K \mathbf{C}_{+} - K \mathbf{C}_{+} \biggl \{ \mathbf{A}-[\mathbf{C}_{-}^\mathrm{T}\mathbf{C}_{-} +(\mathbf{A}^\mathrm{T}-\mathbf{I})]^{-1}\\[-2ex] &\qquad\qquad\qquad\qquad\qquad\qquad\cdot\mathbf{C}_{-}^\mathrm{T}\mathbf{C}_{-}(\mathbf{A}-\mathbf{I})\biggr \}^{-1} \\ \mathbf{D}_H=& \enskip K \mathbf{C}_{+} \biggl\{ [ \mathbf{C}_{-}^\mathrm{T}\mathbf{C}_{-} +(\mathbf{A}^\mathrm{T}-\mathbf{I})]\\[-2ex] &\qquad\qquad\qquad\qquad\cdot\mathbf{A} - \mathbf{C}_{-}^\mathrm{T}\mathbf{C}_{-}(\mathbf{A}-\mathbf{I}) \biggr\}^{-1}\mathbf{C}_{-}^\mathrm{T}\;,\end{aligned} $$
(25)

and

$$ \begin{aligned} &\mathbf{A}=\left[\begin{array}{cc} 0 & \mathbf{I}_{N\times N} \\ 0 & 0 \end{array} \right], \quad \mathbf{C}_-=[\overbrace{1\quad 0\quad\ldots\quad 0}^{N+1}],\\ &\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad\mathbf{C}_+=\frac{{\mathbf{h}}^\mathrm{T}}{K}. \end{aligned} $$
(26)

Proof

See Theorem 18.5.2 in [62] and [43].?

Finally, the following corollary addresses the issue that real plants are subject to some unknown but bounded noise as represented in Fig. 12.

Figure 12
figure 12_340

Linear operator S with input u and output y corrupted with noise ?

Corollary 1 ([43])

Consider the problem of identifying an operator \( { S \in \mathcal{S} } \) from measurements of its output y to a known input u, corrupted by additive bounded noise ? in a given set \( { \mathcal{N} } \):

$$ y_k=(S*u)_k+\eta_k\:,\quad k=0,1,\dots,N\:. $$
(27)

Then there exist \( { S \in\mathcal{S} } \) that satisfies (27) if and only there exists a pair of vectors \( { (\mathbf{h},\mathbf{p}) } \) such that \( { M(\mathbf{h}) > 0 } \) and \( { \mathbf{y}-\mathbf{T}_{u} \mathbf{P} \mathbf{p}-\mathbf{T}_{u}\mathbf{h}\in\mathcal{N} } \). In that case, one such operator is given \( { S_{\text{central}}=\mathbf{p}^\mathrm{T}\mathbf{G}_p+H_o } \), where \( { H_o } \) has the state–space realization (25).

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Sznaier, M., Camps, O. (2009). Motion Prediction for Continued Autonomy. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_340

Download citation

Publish with us

Policies and ethics