Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note however that there are well-documented exceptions, for instance in the retina.

  2. 2.

    This is an estimate for pyramidal cells in neocortex and hippocampus. Different cell types can have widely different average number of inputs, from the 4 average inputs of a granule cell in cerebellum, to the more than 100,000 inputs of a Purkinje cell.

Abbreviations

Action potential:

or Spikes: electrical pulses of an amplitude of about 100?mV that travel along nerve fibers.

Field potential:

an electrical signal recorded extracellularly which arises from the synchronized activity of many cells.

Hippocampus :

one of the most studied area of the mammalian nervous system which is part of the limbic system and is involved in learning and memory .

Neuron :

the main excitable cells of nerve tissue.

Network :

an ensemble of synaptically connected cells.

Synapse :

the specialized junction between two neurons where the action potential voltage transient in the presynaptic cell is transmitted to the post-synaptic cell via neurotransmitter release (chemical synapse) or direct electrical connection (electrical synapse).

Bibliography

Primary Literature

  1. Abbott LF, van Vreeswijk C (1993) Asynchronous states in a network of pulse-coupled oscillators. Phys Rev E 48:1483–1490

    ADS  Google Scholar 

  2. Abbott LF, Varela JA, Sen K, Nelson SB (1997) Synaptic depression and cortical gain control. Science 275:220–224

    Google Scholar 

  3. Adrian ED (1934) Discharge frequencies in the cerebral and cerebellar cortex. Proc Physiol Soc 83:32–33

    Google Scholar 

  4. Adrian ED (1942) Olfactory reactions in the brain of the hedgehog. J Physiol 100:459–473

    Google Scholar 

  5. Amari S (1977) Dynamics of pattern formation in lateral-inhibition type neural fields. Biol Cybern 27:77–87

    MathSciNet  MATH  Google Scholar 

  6. Amit DJ, Brunel N (1997) Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cereb Cortex 7:237–252

    Google Scholar 

  7. Amit DJ, Tsodyks MV (1991) Quantitative study of attractor neural network retrieving at low spike rates I: Substrate – spikes, rates and neuronal gain. Network 2:259–274

    MATH  Google Scholar 

  8. Badel L, Lefort S, Brette R, Petersen CCH, Gerstner W, Richardson MJE (2008) Dynamic I-V curves are reliable predictors of naturalistic pyramidal-neuron voltage traces. J Neurophysiol 99:656–666

    Google Scholar 

  9. Bak P, Tang C, Wiesenfeld K (1988) Self-organized criticality. Phys Rev A 38:364–374

    MathSciNet  ADS  MATH  Google Scholar 

  10. Barbour B, Brunel N, Hakim V, Nadal J (2007) What can we learn from synaptic weight distributions? Trends Neurosci 30:622–629

    Google Scholar 

  11. Beggs JM, Plenz D (2003) Neuronal avalanches in neocortical circuits. J Neurosci 23:11167–77

    Google Scholar 

  12. Ben-Yishai R, Bar-Or RL, Sompolinsky H (1995) Theory of orientation tuning in visual cortex. Proc Natl Acad Sci USA 92:3844–3848

    Google Scholar 

  13. Berg RW, Alaburda A, Hounsgaard J (2007) Balanced inhibition and excitation drive spike activity in spinal half center. Science 315:390–3

    ADS  Google Scholar 

  14. Berger H (1929) Über das Elektroenkephalogramm des Menschen. Arch Psychiatr Nervenkrankh 87:527–570

    Google Scholar 

  15. Bernander O, Douglas RJ, Martin KA, Koch C (1991) Synaptic background activity determines spatio-temporal integration in single pyramidal cells. Proc Natl Acad Sci USA 88:11569–11573

    ADS  Google Scholar 

  16. Bliss TVP, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    ADS  Google Scholar 

  17. Blumenfeld B, Bibitchkov D, Tsodyks MV (2006) Neural network model of the primary visual cortex: From functional architecture to lateral connectivity and back. J Comput Neurosci 20:219–241

    MathSciNet  MATH  Google Scholar 

  18. Bolea S, Sanchez-Andres J, Huang X, Wu J (2006) Initiation and propagation of neuronal coactivation in the developing hippocampus. J Neurophysiol 95:552–561

    Google Scholar 

  19. Bromfield EB, Cavazos JE, Sirven JI (2006) An introduction to Epilepsy. American Epilepsy Society, Bethesda

    Google Scholar 

  20. Brunel N (2000) Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J Comput Neurosci 8:183–208

    MATH  Google Scholar 

  21. Brunel N (2008) Modeling point neurons: from Hodgkin–Huxley toIntegrate-and-Fire. In: De Schutter (ed) Computational modelingmethods for neuroscientists. Mit Press, Cambridge

    Google Scholar 

  22. Brunel N, Hakim V (1999) Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comp 11:1621–1671

    Google Scholar 

  23. Brunel N, Hakim V (2008) Sparsely synchronized neuronal oscillations. Chaos 18:015113

    MathSciNet  ADS  Google Scholar 

  24. Brunel N, Wang X-J (2001) Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. J Comput Neurosci 11:63–85

    Google Scholar 

  25. Brunel N, Wang X-J (2003) What determines the frequency of fast network oscillations with irregular neural discharges? J Neurophysiol 90:415–430

    Google Scholar 

  26. Brunel N, Hakim V, Richardson MJE (2003) Firing rate resonance in a generalized integrate-and-fire neuron with subthreshold resonance. Phys Rev E 67:051916

    MathSciNet  ADS  Google Scholar 

  27. Burkitt AN (2006) A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biol Cybern 95:1–19

    MathSciNet  MATH  Google Scholar 

  28. Burkitt AN (2006) A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties. Biol Cybern 95:97–112

    MathSciNet  MATH  Google Scholar 

  29. Cangiano L, Grillner S (2005) Mechanisms of rhythm generation in a spinal network deprived of crossed connections: the lamprey hemichord. J Neurosci 25:923–35

    Google Scholar 

  30. Cassenauer J, Laurent G (2007) Hebbian stdp in mushroom bodies facilitates the synchronous flow of olfactory information in locusts. Nature 448:709–713

    ADS  Google Scholar 

  31. Chow CC, Kopell N (2000) Dynamics of spiking neurons with electrical coupling. Neural Comput 12:1643–78

    Google Scholar 

  32. Compte A, Sanchez-Vives MV, McCormick DA, Wang X-J (2003) Cellular and network mechanisms of slow oscillatory activity (\( { < } \)1Hz) and wave propagations in a cortical network model. J Neurophysiol 90:2707–2725

    Google Scholar 

  33. Cossart R, Aronov D, Yuste R (2003) Attractor dynamics of network up states in the neocortex. Nature 423:283–288

    ADS  Google Scholar 

  34. Csicsvari J, Hirase H, Czurko A, Buzsáki G (1998) Reliability and state dependence of pyramidal cell-interneuron synapses in the hippocampus: an ensemble approach in the behaving rat. Neuron 21:179–189

    Google Scholar 

  35. Dayan P, Abbott L (2001) Theoretical neuroscience. MIT Press, Cambridge

    MATH  Google Scholar 

  36. De Schutter E (1999) Using realistic models to study synaptic integration in cerebellar Purkinje cells. Rev Neurosci 10:233–245

    Google Scholar 

  37. de Solages C, Szapiro G, Brunel N, Hakim V, Isope P, Buisseret P, Rousseau C, Barbour B, Léna C (2008) High-frequency organization and synchrony of activity in the purkinje cell layer of the cerebellum. Neuron 58:775–788

    Google Scholar 

  38. Destexhe A, Mainen ZF, Sejnowski TJ (1998) Kinetic models of synaptic transmission. In: Koch C, Segev I (eds) Methods in Neuronal Modeling, 2nd edn. Cambridge, MIT Press, pp 1-26

    Google Scholar 

  39. Ermentrout GB (1998) Neural networks as spatio-temporal pattern-forming systems. Rep Prog Phys 61:353–430

    ADS  Google Scholar 

  40. Feldmeyer D, Lubke J, Sakmann B (2006) Efficacy and connectivity of intracolumnar pairs of layer 2/3 pyramidal cells in the barrel cortex of juvenile rats. J Physiol 575:583–602

    Google Scholar 

  41. Fisahn A, Pike FG, Buhl EH, Paulsen O (1998) Cholinergic induction of network oscillations at 40?Hz in the in vitro. Nature 394:186–189

    ADS  Google Scholar 

  42. Fourcaud-Trocmé N, Hansel D, van Vreeswijk C, Brunel N (2003) How spike generation mechanisms determine the neuronal response to fluctuating inputs. J Neurosci 23:11628–11640

    Google Scholar 

  43. Freeman W (1991) The physiology of perception. Sci Am 264:78–85

    Google Scholar 

  44. Fries P, Reynolds J, Rorie A, Desimone R (2001) Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291:1560–1563

    ADS  Google Scholar 

  45. Galarreta M, Hestrin S (1999) A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402(6757):72–5

    ADS  Google Scholar 

  46. Gibson JR, Beierlein M, Connors BW (1999) Functional properties of electrical synapses between inhibitory interneurons of neocortical layer 4. J Neurophysiol 93:467–80

    Google Scholar 

  47. Gibson JR, Beierlein M, Connors BW (1999) Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402(6757):75–9

    ADS  Google Scholar 

  48. Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Kybernetik 12:30–9

    Google Scholar 

  49. Goldberg JA, Rokni U, Sompolinsky H (2004) Patterns of ongoing activity and the functional architecture of the primary visual cortex. Neuron 42:489–500

    Google Scholar 

  50. Golomb D, Ermentrout GB (2002) Slow excitation supports propagation of slow pulses in networks of excitatory and inhibitory populations. Phys Rev E 65:061911

    MathSciNet  ADS  Google Scholar 

  51. Hafting T, Fyhn M, Molden S, Moser M, Moser E (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806

    ADS  Google Scholar 

  52. Hansel D, Mato G, Meunier C (1995) Synchrony in excitatory neural networks. Neural Computation 7:307–337

    Google Scholar 

  53. Hansel D, Mato G, Meunier C, Neltner L (1998) On numerical simulations of integrate-and-fire neural networks. Neural Computation 10:467–483

    Google Scholar 

  54. Heisenberg M (2003) Mushroom body memoir: from maps to models. Nat Rev Neurosci 4:266–275

    Google Scholar 

  55. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conductance and excitation in nerve. J Physiol 117:500–544

    Google Scholar 

  56. Holmgren C, Harkany T, Svennenfors B, Zilberter Y (2003) Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. J Physiol 551:139–153

    Google Scholar 

  57. Honeycutt RL (1992) Stochastic Runge–Kutta algorithms. I. White noise. Phys Rev A 45:600–603

    ADS  Google Scholar 

  58. Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 79:2554–2558

    MathSciNet  ADS  Google Scholar 

  59. Issue S (1999) Special issue: The binding problem. Neuron 24:7–125

    Google Scholar 

  60. Izhikevich E, Gally J, Edelman G (2004) Spike-timing dynamics of neuronal groups. Cereb Cortex 14:933–944

    Google Scholar 

  61. Izhikevich EM (2001) Resonate-and-fire neurons. Neural Networks 14:883–894

    Google Scholar 

  62. Jacobi S, Moses E (2007) Variability and corresponding amplitude-velocity relation of activity propagating in one-dimensional neural cultures. J Neurophysiol 97:3597–3606

    Google Scholar 

  63. Jahnke S, Memmesheimer R-M, Timme M (2008) Stable irregular dynamics in spiking neural networks. Phys Rev Lett 100:048102

    ADS  Google Scholar 

  64. Jensen O, Lisman J (2000) Position reconstruction from an ensemble of hippocampal place cells: contribution of theta phase coding. J Neurophysiol 83:2602–2609

    Google Scholar 

  65. Kamondi A, Acsády L, Wang X-J, Buzsáki G (1998) Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: activity-dependent phase-precession of action potentials. Hippocampus 8:244–261

    Google Scholar 

  66. Keene A, Waddell S (2007) Drosophila olfactory memory: single genes to complex neural circuits. Nat Rev Neurosci 8:341–354

    Google Scholar 

  67. Kenet T, Bibitchkov D, Tsodyks MV, Grinvald A, Arieli A (2003) Spontaneously emerging cortical representations of visual attributes. Nature 425:954–956

    ADS  Google Scholar 

  68. Knight BW (1972) Dynamics of encoding in a population of neurons. J Gen Physiol 59:734–766

    Google Scholar 

  69. Koshiya N, Smith JC (1999) Neuronal pacemaker for breathing visualized in vitro. Nature 400:360–63

    ADS  Google Scholar 

  70. Koulakov AA, Raghavachari S, Kepecs A, Lisman JE (2002) Model for a robust neural integrator. Nat Neurosci 5:775–782

    Google Scholar 

  71. Kreiter AK, Singer W (1996) Stimulus dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey. J Neurosci 16:2381–2396

    Google Scholar 

  72. Kubota D, Colgin L, Casale M, Brucher F, Lynch G (2003) Endogenous waves in hippocampal slices. J Neurophysiol 89:81–89

    Google Scholar 

  73. Kuramoto Y (1984) Chemical oscillations, waves and turbulence. Springer, New York

    MATH  Google Scholar 

  74. Lapicque L (1907) Recherches quantitatives sur l'excitabilité électrique des nerfs traitée comme une polarisation. J Physiol Pathol Gen 9:620–635

    Google Scholar 

  75. LeMasson G, Marder E, Abbott L (1993) Activity-dependent regulation of conductances in model neurons. Science 259:1915–1917

    ADS  Google Scholar 

  76. Lengyel M, Szatmáry Z,Erdi P (2003) Dynamically detuned oscillations account for the coupled rate and temporal code of place cell firing. Hippocampus 13:700–714

    Google Scholar 

  77. Levina A, Hermann JM, Geisel T (2007) Dynamical synapses causing self-organized criticality in neural networks. Nature Physics 3:857–860

    ADS  Google Scholar 

  78. Lewis T, Rinzel J (2003) Dynamics of spiking neurons connected by both inhibitory and electrical coupling. J Comput Neurosci 14:283–309

    Google Scholar 

  79. Luczak A, Barthó P, Marguet S, Buzsáki G, Harris K (2007) Sequential structure of neocortical spontaneous activity in vivo. Proc Natl Acad Sci USA 104:347–352

    Google Scholar 

  80. Lumer ED, Friston KJ, Rees G (1998) Neural correlates of perceptual rivalry in the human brain. Science 280:1930–1934

    ADS  Google Scholar 

  81. Maeda E, Robinson HPC, Kawana A (1995) The mechanisms of generation and propagation of synchronized bursting in developing networks of cortical neurons. J Neurosci 15:6834–45

    Google Scholar 

  82. Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21

    Google Scholar 

  83. Malinow R, Mainen ZF, Hayashi Y (2000) LTP mechanisms: from silence to four-lane traffic. Curr Opin Neurobiol 10:352–357

    Google Scholar 

  84. Mancilla JG, Lewis TJ, Pinto DJ, Rinzel J, Connors BW (2007) Synchronization of electrically coupled pairs of inhibitory interneurons in neocortex. J Neurosci 27:2058–73

    Google Scholar 

  85. Marder E, Goaillard J (2006) Variability, compensation and homeostasis in neuron and network function. Nat Rev Neurosci 7:563–574

    Google Scholar 

  86. Markram H (2006) The blue brain project. Nat Rev Neurosci 7:153–160

    Google Scholar 

  87. Mason A, Nicoll A, Stratford K (1991) Synaptic transmission between individual pyramidal neurons of the rat visual cortex in vitro. J Neurosci 11:72–84

    Google Scholar 

  88. Mattia M, Del Giudice P (2000) Efficient event-driven simulation of large networks of spiking neurons and dynamical synapses. Neural Comput 12:2305–2329

    Google Scholar 

  89. Mazor O, Laurent G (2005) Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons. Neuron 48:661–673

    Google Scholar 

  90. McNaughton B, Battaglia F, Jensen O, Moser E, Moser M (2006) Path integration and the neural basis of the ‘cognitive map’. Nat Rev Neurosci 7:663–678

    Google Scholar 

  91. Mongillo G, Curti E, Romani S, Amit DJ (2005) Learning in realistic networks of spiking neurons and spike-driven plastic synapses. Eur J Neurosci 21:3143–3160

    Google Scholar 

  92. Moreno-Bote R, Rinzel J, Rubin N (2007) Noise-induced alternations in an attractor network model of perceptual bistability. J Neurophysiol 98:1125–1139

    Google Scholar 

  93. Murphy TH, Blatter LA, Wier WG, Baraban JM (1992) Spontaneous synchronous synaptic calcium transients in cultured cortical neurons. J Neurosci 12:4834–45

    Google Scholar 

  94. O'Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely moving rat. Exp Brain Res 34:171–175

    Google Scholar 

  95. O'Keefe J, Recce M (1993) Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3:317–330

    Google Scholar 

  96. Opitz T, Lima ADD, Voigt T (2002) Spontaneous development of synchronous oscillatory activity during maturation of cortical neurons in vitro. J Neurophysiol 88:2196–206

    Google Scholar 

  97. Perez-Orive J, Mazor O, Turner G, Cassenaer S, Wilson R, Laurent G (2002) Oscillations and sparsening of odor representations in the mushroom body. Science 297:359–365

    ADS  Google Scholar 

  98. Petersen C, Grinvald A, Sakmann B (2003) Spatiotemporal dynamics of sensory responses in layer 2/3 of rat barrel cortex measured in vivo by voltage-sensitive dye imaging combined with whole-cell voltage recordings and neuron reconstructions. J Neurosci 23:1298–1309

    Google Scholar 

  99. Pikovsky A, Rosenblum M, Kurth J (2001) Synchronization, a universal concept in nonlinear science. Cambridge University Press, Cambridge

    Google Scholar 

  100. Polonsky A, Blake R, Braun J, Heeger DJ (2000) Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry. Nat Neurosci 3:1153–1159

    Google Scholar 

  101. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  102. Renart A, Moreno R, Wang X-J (2003) Robust spatial working memory through homeostatic synaptic scaling in heterogenous cortical networks. Neuron 38:473–485

    Google Scholar 

  103. Reyes A, Fetz E (1993) Effects of transient depolarizing potentials on the firing rate of cat neocortical neurons. J Neurophysiol 69:1673–1683

    Google Scholar 

  104. Richardson MJE, Brunel N, Hakim V (2003) From subthreshold to firing-rate resonance. J Neurophysiol 89:2538–2554

    Google Scholar 

  105. Risken H (1984) The Fokker–Planck equation: methods of solution and applications. Springer, Berlin

    MATH  Google Scholar 

  106. Roelfsema P, Lamme V, Spekreijse H (2004) Synchrony and covariation of firing rates in the primary visual cortex during contour grouping. Nat Neurosci 7:982–991

    Google Scholar 

  107. Sanchez-Vives MV, McCormick DA (2000) Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat Neurosci 3:1027–34

    Google Scholar 

  108. Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci 18:3870–3896

    Google Scholar 

  109. Shu Y, Hasenstaub A, McCormick DA (2003) Turning on and off recurrent balanced cortical activity. Nature 423:288–93

    ADS  Google Scholar 

  110. Sjöström PJ, Turrigiano GG, Nelson S (2001) Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32:1149–1164

    Google Scholar 

  111. Softky WR, Koch C (1993) The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J Neurosci 13:334–350

    Google Scholar 

  112. Stein R (1965) A theoretical analysis of neuronal variability. Biophys J 5:173–194

    Google Scholar 

  113. Stopfer M, Jayaraman V, Laurent G (2003) Intensity versus identity coding in an olfactory system. Neuron 39:991–1004

    Google Scholar 

  114. Tong F, Nakayama K, Vaughan JT, Kanwisher N (1998) Binocular rivalry and visual awareness in human extrastriate visual cortex. Neuron 21:761–773

    Google Scholar 

  115. TsodyksMV, Kenet T, Grinvald A, Arieli A (1999) Linking spontaneous activity of single cortical neuronsand the underlying functional architecture. Science 286:1943–1946

    Google Scholar 

  116. Tsodyks MV, Skaggs W, Sejnowski T, McNaughton B (1996) Population dynamics and theta rhythm phase precession of hippocampal place cell firing: a spiking neuron model. Hippocampus 6:271–280

    Google Scholar 

  117. Tsodyks MV, Pawelzik, Markran H (1998) Neural networks with dynamicsynapses. Neural Comp 10:821–835

    Google Scholar 

  118. Tsodyks MV, Uziel A, Markram H (2000) Synchrony generation in recurrent networks with frequency-dependent synapses. J Neurosci 20:RC50

    Google Scholar 

  119. Turrigiano GG, Nelson SB (2000) Hebb and homeostasis in neuronal plasticity. Curr Opin Neurobiol 10:358–364

    Google Scholar 

  120. van Vreeswijk C, Sompalinsky h (1996) Chaos in neuronal networks withbalanced excitatory and inhibitory activity. Science 274:1724–1726

    ADS  Google Scholar 

  121. van Vreeswijk C, Sompolinsky H (1998) Chaotic balanced state in a model of cortical circuits. Neural Computation 10:1321–1371

    Google Scholar 

  122. van Vreeswijk C, Abbott L, Ermentrout GB (1994) When inhibition not excitation synchronizes neural firing. J Comput Neurosci 1:313–321

    Google Scholar 

  123. Wallén P et al (2007) Sodium-dependent potassium channels of a slack-like subtype contribute to slow afterhyperpolarization in lamprey spinal neurons. J Physiol 585:75–90

    Google Scholar 

  124. Wilson HR (2003) Computational evidence for a rivalry hierarchy in vision. Proc Natl Acad Sci USA 100:14499–14503

    ADS  Google Scholar 

  125. Wilson M, McNaughton B (1993) Dynamics of the hippocampal ensemble code for space. Science 261:1055–1058

    ADS  Google Scholar 

  126. Wyart C, Cocco S, Bourdieu L, Léger JF, Herr C, Chatenay D (2005) Dynamics of excitatory synaptic components in sustained firing at low rates. J Neurophysiol 96:3370–80

    Google Scholar 

  127. Zillmer R, Brunel N, Hansel D (2008) Irregular states in randomly diluted networks of leaky integrate-and-fire neurons. in preparation.

    Google Scholar 

Books and Reviews

  1. Buzsaki G (2006) Rhythms of the brain. Oxford University Press

    MATH  Google Scholar 

  2. Chow C, Gutkin B, Hansel D, Meunier C, Dalibard J (eds) (2004) Methods and models in neurophysics, Les Houches 2003. North-Holland

    Google Scholar 

  3. Dayan P, Abbott L (2001) Theoretical neuroscience. MIT Press, Cambridge

    MATH  Google Scholar 

  4. Gerstner W, Kistler WM (2002) Spiking neuron models: single neurons, populations, plasticity. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  5. Wang X-J (2003) Neural oscillations. In: Nadel L (ed) Encyclopedia of Cognitive Science. MacMillan, London, pp 272–280

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Brunel, N., Hakim, V. (2009). Neuronal Dynamics. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_359

Download citation

Publish with us

Policies and ethics