Skip to main content

Bivariate (Two-dimensional) Wavelets

  • Reference work entry

Definitions

Throughout this article, \( { \mathbb{R}, \mathbb{C}, \mathbb{Z} }\) denote the real line, the complex plane, and the set of all integers, respectively. For \( { 1\leqslant p \leqslant \infty } \), \( { L_p(\mathbb{R}^2) } \) denotes the set of all Lebesguemeasurable bivariate functions f such that \(\|f\|^p_{L_p(\mathbb{R}^2)}:=\int_{\mathbb{R}^2} |f(x)|^p \text{d} x<\infty \). In particular, the space \( { L_2(\mathbb{R}^2) } \) of square integrable functions isa Hilbert space under the inner product

$$ \langle f, g\rangle:=\int_{\mathbb{R}^2} f(x) \overline{g(x)} \text{d} x\:,\quad f,g\in L_2(\mathbb{R}^2)\:, $$

where \( { \overline{g(x)} } \) denotes the complex conjugate of the complex number g(x).

In applications such as image processing and computer graphics, the following are commonly used isotropic dilation matrices:

$$ \begin{aligned} M_{\sqrt{2}}&=\left[\begin{matrix}1 &1\\ 1&-1\end{matrix}\right]\:,\quad& Q_{\sqrt{2}}&=\left[\begin{matrix}1 &-1\\ 1...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Dilation matrix :

\( { 2\times 2 } \) matrix M is called a dilation matrix if all the entries of M are integers and all the eigenvalues of M are greater than one in modulus.

Isotropic dilation matrix :

A dilation matrix M is said to be isotropic if M is similar to a diagonal matrix and all its eigenvalues have the same modulus.

Wavelet system:

A wavelet system is a collection of square integrable functions that are generated from a finite set of functions (which are called wavelets) by using integer shifts and dilations.

Bibliography

Primary Literature

  1. Ayache A (2001) Some methods for constructing nonseparable, orthonormal, compactly supported wavelet bases. Appl Comput Harmon Anal 10:99–111

    MathSciNet  MATH  Google Scholar 

  2. Belogay E, Wang Y (1999) Arbitrarily smooth orthogonal nonseparable wavelets in \( { \mathbb{R}^2 } \). SIAM J Math Anal 30:678–697

    MathSciNet  MATH  Google Scholar 

  3. Carnicer JM, Dahmen W, Peña JM (1996) Local decomposition of refinable spaces and wavelets. Appl Comput Harmon Anal 3:127–153

    Google Scholar 

  4. Cavaretta AS, Dahmen W, Micchelli CA (1991) Stationary subdivision. Mem Amer Math Soc 93(453)1–186

    MathSciNet  Google Scholar 

  5. Chen DR, Han B, Riemenschneider SD (2000) Construction of multivariate biorthogonal wavelets with arbitrary vanishing moments. Adv Comput Math 13:131–165

    MathSciNet  MATH  Google Scholar 

  6. Chui CK (1992) An introduction to wavelets. Academic Press, Boston

    MATH  Google Scholar 

  7. Chui CK, He W, Stöckler J (2002) Compactly supported tight and sibling frames with maximum vanishing moments. Appl Comput Harmon Anal 13:224–262

    Google Scholar 

  8. Cohen A (2003) Numerical analysis of wavelet methods. North-Holland, Amsterdam

    MATH  Google Scholar 

  9. Cohen A, Daubechies I (1993) Nonseparable bidimensional wavelet bases. Rev Mat Iberoamericana 9:51–137

    MathSciNet  MATH  Google Scholar 

  10. Cohen A, Daubechies I (1996) A new technique to estimate the regularity of refinable functions. Rev Mat Iberoamericana 12:527–591

    MathSciNet  MATH  Google Scholar 

  11. Cohen A, Daubechies I, Feauveau JC (1992) Biorthogonal bases of compactly supported wavelets. Comm Pure Appl Math 45:485–560

    MathSciNet  MATH  Google Scholar 

  12. Cohen A, Gröchenig K, Villemoes LF (1999) Regularity of multivariate refinable functions. Constr Approx 15:241–255

    Google Scholar 

  13. Cohen A, Schlenker JM (1993) Compactly supported bidimensional wavelet bases with hexagonal symmetry. Constr Approx 9:209–236

    MathSciNet  MATH  Google Scholar 

  14. Dahmen W (1997) Wavelet and multiscale methods for operator equations. Acta Numer 6:55–228

    MathSciNet  Google Scholar 

  15. Daubechies I (1988) Orthonormal bases of compactly supported wavelets. Comm Pure Appl Math 41:909–996

    MathSciNet  MATH  Google Scholar 

  16. Daubechies I (1992) Ten Lectures on Wavelets, CBMS-NSF Series. SIAM, Philadelphia

    Google Scholar 

  17. Daubechies I, Han B (2004) Pairs of dual wavelet frames from any two refinable functions. Constr Approx 20:325–352

    MathSciNet  MATH  Google Scholar 

  18. Daubechies I, Han B, Ron A, Shen Z (2003) Framelets: MRA-based constructions of wavelet frames. Appl Comput Harmon Anal 14:1–46

    MathSciNet  MATH  Google Scholar 

  19. Dahlke S, Gröchenig K, Maass P (1999) A new approach to interpolating scaling functions. Appl Anal 72:485–500

    Google Scholar 

  20. de Boor C, Hollig K, Riemenschneider SD (1993) Box splines. Springer, New York

    MATH  Google Scholar 

  21. DeRose T, Forsey DR, Kobbelt L, Lounsbery M, Peters J, Schröder P, Zorin D (1998) Subdivision for Modeling and Animation, (course notes)

    Google Scholar 

  22. Dyn N, Levin D (2002) Subdivision schemes in geometric modeling. Acta Numer 11:73–144

    MathSciNet  MATH  Google Scholar 

  23. Dyn N, Gregory JA, Levin D (1990) A butterfly subdivision scheme for surface interpolation with tension control. ACM Trans Graph 9:160–169

    MATH  Google Scholar 

  24. Han B (1997) On dual wavelet tight frames. Appl Comput Harmon Anal 4:380–413

    MathSciNet  MATH  Google Scholar 

  25. Han B (2000) Analysis and construction of optimal multivariate biorthogonal wavelets with compact support. SIAM Math Anal 31:274–304

    MATH  Google Scholar 

  26. Han B (2001) Approximation properties and construction of Hermite interpolants and biorthogonal multiwavelets. J Approx Theory 110:18–53

    MathSciNet  MATH  Google Scholar 

  27. Han B (2002) Symmetry property and construction of wavelets with a general dilation matrix. Lin Algeb Appl 353:207–225

    MATH  Google Scholar 

  28. Han B (2002) Projectable multivariate refinable functions and biorthogonal wavelets. Appl Comput Harmon Anal 13:89–102

    MathSciNet  MATH  Google Scholar 

  29. Han B (2003) Computing the smoothness exponent of a symmetric multivariate refinable function. SIAM J Matrix Anal Appl 24:693–714

    MathSciNet  MATH  Google Scholar 

  30. Han B (2003) Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix. J Comput Appl Math 155:43–67

    MathSciNet  ADS  MATH  Google Scholar 

  31. Han B (2003) Vector cascade algorithms and refinable function vectors in Sobolev spaces. J Approx Theory 124:44–88

    MathSciNet  MATH  Google Scholar 

  32. Han B (2004) Symmetric multivariate orthogonal refinable functions. Appl Comput Harmon Anal 17:277–292

    MathSciNet  MATH  Google Scholar 

  33. Han B (2006) On a conjecture about MRA Riesz wavelet bases. Proc Amer Math Soc 134:1973–1983

    MathSciNet  MATH  Google Scholar 

  34. Han B (2006) The projection method in wavelet analysis. In: Chen G, Lai MJ (eds) Modern Methods in Mathematics. Nashboro Press, Brentwood, pp. 202–225

    Google Scholar 

  35. Han B (2008) Construction of wavelets and framelets by the projection method. Int J Appl Math Appl 1:1–40

    MATH  Google Scholar 

  36. Han B, Jia RQ (1998) Multivariate refinement equations and convergence of subdivision schemes. SIAM J Math Anal 29:1177–1199

    MathSciNet  MATH  Google Scholar 

  37. Han B, Jia RQ (1999) Optimal interpolatory subdivision schemes in multidimensional spaces. SIAM J Numer Anal 36:105–124

    MathSciNet  Google Scholar 

  38. Han B, Jia RQ (2002) Quincunx fundamental refinable functions and quincunx biorthogonal wavelets. Math Comp 71:165–196

    MathSciNet  ADS  MATH  Google Scholar 

  39. Han B, Jia RQ (2006) Optimal C 2 two-dimensional interpolatory ternary subdivision schemes with two-ring stencils. Math Comp 75:1287–1308

    MathSciNet  ADS  MATH  Google Scholar 

  40. Han B, Jia RQ (2007) Characterization of Riesz bases of wavelets generated from multiresolution analysis. Appl Comput Harmon Anal 23:321–345

    MathSciNet  MATH  Google Scholar 

  41. Han B, Shen Z (2005) Wavelets from the Loop scheme. J Fourier Anal Appl 11:615–637

    MathSciNet  MATH  Google Scholar 

  42. Han B, Shen Z (2006) Wavelets with short support. SIAM J Math Anal 38:530–556

    MathSciNet  Google Scholar 

  43. Ji H, Riemenschneider SD, Shen Z (1999) Multivariate compactly supported fundamental refinable functions, duals, and biorthogonal wavelets. Stud Appl Math 102:173–204

    MathSciNet  MATH  Google Scholar 

  44. Jia RQ (1998) Approximation properties of multivariate wavelets. Comp Math 67:647–665

    MATH  Google Scholar 

  45. Jia RQ (1999) Characterization of smoothness of multivariate refinable functions in Sobolev spaces. Trans Amer Math Soc 351:4089–4112

    MathSciNet  MATH  Google Scholar 

  46. Jia RQ, Micchelli CA (1991) Using the refinement equation for the construction of pre-wavelets II: Power of two. In: Laurent PJ, Le Méhauté A, Schumaker LL (eds) Curves and Surfaces. Academic Press, New York, pp. 209–246

    Google Scholar 

  47. Jia RQ, Wang JZ, Zhou DX (2003) Compactly supported wavelet bases for Sobolev spaces. Appl Comput Harmon Anal 15:224–241

    MathSciNet  MATH  Google Scholar 

  48. Jiang QT (1998) On the regularity of matrix refinable functions. SIAM J Math Anal 29:1157–1176

    MathSciNet  MATH  Google Scholar 

  49. Khodakovsky A, Schröder P, Sweldens W (2000) Progressive geometry compression. Proc SIGGRAPH

    Google Scholar 

  50. Kovačević J, Vetterli M (1992) Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for \( { \mathbb{R}^n } \). IEEE Trans Inform Theory 38:533–555

    Google Scholar 

  51. Lai MJ (2006) Construction of multivariate compactly supported orthonormal wavelets. Adv Comput Math 25:41–56

    MathSciNet  MATH  Google Scholar 

  52. Lai MJ, Stöckler J (2006) Construction of multivariate compactly supported tight wavelet frames. Appl Comput Harmon Anal 21:324–348

    Google Scholar 

  53. Lawton W, Lee SL, Shen Z (1997) Stability and orthonormality of multivariate refinable functions. SIAM J Math Anal 28:999–1014

    MathSciNet  MATH  Google Scholar 

  54. Lawton W, Lee SL, Shen Z (1998) Convergence of multidimensional cascade algorithm. Numer Math 78:427–438

    MathSciNet  MATH  Google Scholar 

  55. Le Pennec E, Mallat S (2005) Sparse geometric image representations with bandelets. IEEE Trans Image Process 14:423–438

    MathSciNet  ADS  Google Scholar 

  56. Lorentz R, Oswald P (2000) Criteria for hierarchical bases in Sobolev spaces. Appl Comput Harmon Anal 8:32–85

    MathSciNet  MATH  Google Scholar 

  57. Maass P (1996) Families of orthogonal two-dimensional wavelets. SIAM J Math Anal 27:1454–1481

    MathSciNet  MATH  Google Scholar 

  58. Mallat S (1998) A wavelet tour of signal processing. Academic Press, San Diego

    MATH  Google Scholar 

  59. Riemenschneider SD, Shen Z (1997) Multidimensional interpolatory subdivision schemes. SIAM J Numer Anal 34:2357–2381

    MathSciNet  MATH  Google Scholar 

  60. Riemenschneider SD, Shen ZW (1992) Wavelets and pre-wavelets in low dimensions. J Approx Theory 71:18–38

    MathSciNet  MATH  Google Scholar 

  61. Ron A, Shen Z (1997) Affine systems in \( { L_2(\mathbb{R}^d) } \): the analysis of the analysis operator. J Funct Anal 148:408–447

    MathSciNet  MATH  Google Scholar 

  62. Ron A, Shen Z (1997) Affine systems in \( L_2(\mathbb{R}^d) \) II: dual systems. J Fourier Anal Appl 3:617–637

    MathSciNet  Google Scholar 

  63. Sweldens W (1996) The lifting scheme: a custom-design construction of biorthogonal wavelets. Appl Comput Harmon Anal 3:186–200

    MathSciNet  MATH  Google Scholar 

Books and Reviews

  1. Cabrelli C, Heil C, Molter U (2004) Self-similarity and multiwavelets in higher dimensions. Mem Amer Math Soc 170(807):1–82

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Han, B. (2009). Bivariate (Two-dimensional) Wavelets. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_39

Download citation

Publish with us

Policies and ethics