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Glossary

Hilbert space
A Hilbert space H is a normed complex vector space with a Hermitian

scalar product. If ϕ, ψ ∈ H the scalar product between ϕ and ψ is written
as (ϕ, ψ) ≡ (ψ, ϕ)∗ and is taken to be linear in ψ and antilinear in ϕ: if
a, b ∈ C, the scalar product between aϕ and b ψ is a∗b(ϕ, ψ). The norm of ψ
is defined as ‖ψ‖ ≡

√
(ψ, ψ). With respect to the norm ‖ ·‖, H is a complete

metric space. In the following H will be assumed to be separable, that is any
complete orthonormal set of vectors is countable.

States and observables
In quantum mechanics the states of a system are represented as vectors

in a Hilbert space H, with the convention that proportional vectors repre-
sent the same state. Physicists mostly use Dirac’s notation: the elements
of H are represented by | · 〉 (“ket”) and the scalar product between |ϕ 〉
and |ψ 〉 is written as 〈ϕ | ψ 〉 (“braket”). The observables, i.e. the physical
quantities that can be measured, are represented by linear Hermitian (more
precisely: self-adjoint) operators on H. The eigenvalues of an observable are
the only possible results of the measurement of the observable. The observ-
ables of a system are generally the same of the corresponding classical sys-
tem: energy, angular momentum, etc., i.e. they are of the form f(q, p), with
q ≡ (q1, · · · , qn), p ≡ (p1, · · · , pn) the position and momentum canonical vari-
ables of the system: qi and pi are observables, i.e. operators, which satisfy the
commutation relations [qi, qj] ≡ qiqj − qjqi = 0, [pi, pj] = 0, [qi, pj] = i~ δij ,
with ~ the Planck’s constant h divided by 2π.

Representations
Since separable Hilbert spaces are isomorphic, it is always possible to

represent the elements of H as elements of l2, the space of the sequences
{ui}, ui ∈ C, with the scalar product (v, u) ≡ ∑

i v
∗
i ui. This can be done by

choosing an orthonormal basis of vectors ei in H: (ei, ej) = δij and defining
ui = (ei, u); with Dirac’s notations |A 〉 → {ai}, ai = 〈 ei | A 〉. Linear
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operators ξ are then represented by {ξij}, ξij = (ei, ξ ej) ≡ 〈 ei | ξ | ej 〉.
The ξij are called “matrix elements” of ξ in the representation ei. If ξ† is
the hermitian-conjugate of ξ, then (ξ†)ij = ξ∗ji. If the ei are eigenvectors of
ξ then the (infinite) matrix ξij is diagonal, the diagonal elements being the
eigenvalues of ξ.

Schrödinger Representation
A different possibility is to represent the elements of H as elements of

L2[Rn], the space of the square-integrable functions on Rn, where n is the
number of degrees of freedom of the system. This can be done by assigning
how the operators qi and pi act on the functions of L2[Rn]: in the Schrödinger
representation the qi are taken to act as multiplication by xi and the pi as
−i~∂/∂xi: if |A 〉 → ψA(x1, · · · xn), then

qi |A 〉 → xiψA(x1, · · · xn), pi |A 〉 → −i~∂ψA(x1, · · ·xn)/∂xi.

Schrödinger Equation
Among the observables, the Hamiltonian H plays a special role. It

determines the time evolution of the system through the time dependent
Schrödinger equation

i~
∂ψ

∂t
= Hψ,

and its eigenvalues are the energy levels of the system. The eigenvalue equa-
tion Hψ = Eψ is called the Schrödinger equation.

1 Definition of the Subject

In the investigation of natural phenomena a crucial role is played by the
comparison between theoretical predictions and experimental data. Those
practicing the two arts of the trade continuously put challenges to one an-
other either presenting data which ask for an explanation or proposing new
experimental verifications of a theory. Celestial mechanics offers the first
historical instance of this interplay: the elliptical planetary orbits discovered
by Kepler were explained by Newton; when discrepancies from the elliptical
paths definitely emerged it was necessary to add the effects of the heavier
planets to the dominant role of the sun, until persistent discrepancies be-
tween theory and experiment asked for the drastic revision of the theory of
gravitation put forth by Einstein, a revision which in turn offered a lot of
new effects to observe, some of which have been verified only recently.

In this dialectic interaction between theory and experiment only the sim-
plest problem, that of a planet moving in the field of the sun within Newton’s
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theory, can be solved exactly. All the rest was calculated by means of per-
turbation theory. Generally speaking, perturbation theory is the technique
of finding an approximate solution to a problem where to a dominant factor,
which allows for an exact solution (zeroth order solution), other “perturb-
ing” factors are added which are outweighed by the dominant factor and are
expected to bring small corrections to the zeroth order solution.

Perturbation theory is ever-pervasive in physics, but an area where it
plays a major role is quantum mechanics. In the early days of this discipline,
the interpretation of atomic spectra was made possible only by a heavy use
of perturbation theory, since the only exactly soluble problem was that of the
hydrogen atom without external fields. The explanation of the Stark spectra
(hydrogen in a constant electric field) and of the Zeeman spectra (atom in
a magnetic field) was only possible when a perturbation theory tailored to
the Schrödinger equation, which rules the atomic world, was devised. As
for heavier atoms, in no case an exact solution for the Schrödinger equa-
tion is available: they could only be treated as a perturbation of simpler
“hydrogenoid” atoms. Most of the essential aspects of atomic and molecu-
lar physics could be explained quantitatively in a few years by recourse to
suitable forms of perturbation theory. Not only did it explain the position
of the spectral lines, but also their relative intensities, and the absence of
some lines which showed the impossibility of the corresponding transitions
(selection rules) found a convincing explanation when symmetry consider-
ations were introduced. When later more accurate measurements revealed
details in the hydrogen spectrum (the Lamb shift) that only quantum field
theory was able to explain, perturbation theory gained a new impetus which
sometimes resulted in the anticipation of theory (quantum electrodynamics)
over experiment as to the accuracy of the effect to be measured.

An attempt to describe all the forms that perturbation theory assumes in
the various fields of physics would be vain. We will limit to illustrate its role
and its methods in quantum mechanics, which is perhaps the field where it
has reached its most mature development and finds its widest applications.

2 Introduction

An early example of the use of perturbation theory which clearly illus-
trates its main ideas is offered by the study of the free fall of a body [29].
The equation of motion is

~̇v = ~g + 2~v × ~Ω + ~Ω× (~r × ~Ω) (2.1)
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where ~g is the constant gravity acceleration and ~Ω the angular velocity of the
rotation of the earth about its axis. Ω is the parameter characterizing the
perturbation. If we wish to find the eastward deviation of the trajectory to
first order in Ω we can neglect the third term in the RHS of (2.1), whose main
effect is to cause a southward deviation (in the northern hemisphere). The
ratio of the second term to the first one in the RHS of (2.1) (the effective
perturbation parameter) is Ω

√
h/g ' 10−4 for the fall from a height h ∼

100 m, so we can find the effect of Ω by writing ~v = ~v0 + ~v1 in (2.1), where
~v0 is the zeroth order solution (~v0 = ~gt if ~v0(0) = 0) and ~v1 obeys

~̇v1 = 2~v0 × ~Ω = 2t~g × ~Ω. (2.2)

The solution is ~r = ~h + 1
2
~gt2 + 1

3
t3~g × ~Ω. The eastward deviation is the

deviation in the direction of ~g × ~Ω and its value is δ = 1
3
t̄ 3gΩ cos θ, where θ

is the latitude and t̄ the zeroth order time of fall, t̄ =
√

2h/g.
While the above example is a nice illustration of the main features of

perturbation theory (identification of a perturbation parameter whose powers
classify the contributions to the solution, existence of a zeroth order exact
solution) the beginning of modern perturbation theory can be traced back
to the work of Rayleigh on the theory of sound [33]. In essence, he wondered
how the normal modes of a vibrating string

ρ(x)
∂2v

∂t2
=

∂2v

∂x2
v(0, t) = v(π, t) = 0 (2.3)

are modified when passing from a constant density ρ = 1 to a perturbed
density ρ+ εσ(x). To solve this problem he wrote down most of the formulae
[33, 10] which are still in use to calculate the first order correction to non-
degenerate energy levels in quantum mechanics.

The equation for the normal modes is

u′′(x) + λρ(x)u(x) = 0, u(0) = u(π) = 0. (2.4)

Let u
(0)
n ≡

√
2/π sin nx be the unperturbed solution for the nth mode, λn =

n2, and u
(0)
n + εu

(1)
n the perturbed solution through first order, corresponding

to a frequency λn + εµn. By writing the equation for u
(1)
n

d2u
(1)
n

dx2
+ λnu

(1)
n + µnu(0)

n + λnσu(0)
n = 0 u(1)

n (0) = u(1)
n (π) = 0 (2.5)

after multiplying by u
(0)
r and using Green’s theorem he found

µn = −λn

∫ π

0

σ(x)(u(0)
n )2 dx, (2.6)
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arn ≡
∫ π

0

u(0)
r u(1)

n dx =
λn

λr − λn

∫ π

0

σu(0)
r u(0)

n dx (r 6= n) (2.7)

∫ π

0

u(0)
n u(1)

n dx = 0. (2.8)

As an application Rayleigh found the position π/2 + δx ≡ π/2 + ετ of the
nodal point of the perturbed mode n = 2 when the perturbation to the
density is σ = κδ(x−π/4). The vanishing of u

(0)
2 +εu

(1)
2 determines 2

√
2/πτ =

u
(1)
2 (π/2). By (2.7) the function u

(1)
2 has an expansion u

(1)
2 =

∑
n 6=2 an2u

(0)
n ,

an2 = 4κ
n2−4

sin nπ/4. The result for τ is

τ = − 2κ

π
√

2

(
1 +

1

3
− 1

5
− 1

7
+

1

9
+

1

11
− · · · ) = −κ

2
·

(The series in brackets is equal to
∫ 1

0
1+x2

1+x4 dx = 1
2

∫∞
0

1+x2

1+x4 dx, which can be
calculated by contour integration.)

Perturbation theory was revived by Schrödinger, who introduced it into
quantum mechanics in a pioneering work of 1926 [44]. There, he applied the
concepts and methods which Rayleigh had put forth to the case where the
zeroth order problem was a partial differential equation with non-constant
coefficients, and he wrote down, in the language of wave mechanics, all the
relevant formulae which yield the correction to the energy levels and to the
wave functions for the case of both non-degenerate and degenerate energy
levels. As an application he calculated the shift of the energy levels of the
hydrogen atom in a constant electric field by two different methods. First
he observed that in parabolic coordinates the wave equation is separable
also with a constant electric field, which implies that in the subspace of the
states with equal zeroth order energy the perturbation is diagonal in the
basis of the parabolic eigenfunctions, thus circumventing the intricacies of
the degenerate case. Later, he used the spherical coordinates, which entails
a non diagonal perturbation matrix and calls for the full machinery of the
perturbation theory for degenerate eigenvalues.

It is of no use to repeat here Schrödinger’s calculations, since the meth-
ods which they use are at the core of modern perturbation theory, which is
referred to as the Rayleigh-Schrödinger (RS) perturbation theory. It rapidly
superseded other approaches (as that by Born, Heisenberg and Jordan [7],
who worked in the framework of the matrix quantum mechanics), and will
be presented in the following sections.
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3 Presentation of the Problem and an Example

The most frequent application of perturbation theory in quantum me-
chanics is the approximate calculation of point spectra. The Hamiltonian H
is split into an exactly solvable part H0 (the unperturbed Hamiltonian) plus
a term V (the perturbation) which, in a sense to be specified later, is small
with respect to H0: H = H0 + V. In many cases the perturbation contains
an adjustable parameter which depends on the actual physical setting. For
example, for a system in an external field this parameter is the field strength.
For weak fields one expects the spectrum of H to differ only slightly from the
spectrum of H0. In these cases it is convenient to single out the dependence
on a parameter by setting

H(λ) ≡ H0 + λV. (3.1)

Accordingly we will write the Schrödinger equation as

H(λ)ψ(λ) = E(λ)ψ(λ). (3.2)

We will retain the form (3.1) of the Hamiltonian even when H does not con-
tain a variable parameter, thereby understanding that the actual eigenvalues
and eigenvectors are the values at λ = 1.

The basic idea of the RS perturbation theory is that the eigenvalues and
eigenvectors of H can be represented as power series

ψ(λ) =
∞∑
0

λnψ(n) E(λ) =
∞∑
0

λnεn, (3.3)

whose coefficients are determined by substituting expansions (3.3) into (3.2)
and equating terms of equal order in λ. Generally, only the first few terms
of the series can be explicitly computed, and the primary task of the RS
perturbation theory is their calculation. The practicing scientist who uses
perturbation theory never has to tackle the mathematical problem of the
convergence of the series. This problem, however, or more generally the
connection between the truncated perturbation sums and the actual values
of the energy and the wave function, is fundamental for the consistency of
perturbation theory and will be touched upon in a later section.

Before expounding the technique of the RS perturbation theory we will
consider a simple (two-dimensional) problem which can be solved exactly,
since in its discussion several features of perturbation theory will emerge
clearly, concerning both the behavior of the energy E(λ) and the behavior
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of the Taylor expansion of this function. From the physical point of view a
system with two-dimensional Hilbert space C2 can be thought of as a particle
with spin 1/2 when the translational degrees of freedom are ignored.

Let us write the Hamiltonian H = H0 +λV in a representation where H0

is diagonal:

H =

(
E0

1 0
0 E0

2

)
+ λ

(
V11 V12

V21 V22

)
=

(
E0

1 + λV11 λV12

λV ∗
12 E0

2 + λV22

)
. (3.4)

We consider first the case E0
1 6= E0

2 , V12 6= 0. The exact eigenvalues
E1,2(λ) of H are found by solving the secular equation:

E1,2(λ) =
1

2

[
(E0

1 + λV11) + (E0
2 + λV22)±

√
∆(λ)

]
, (3.5)

∆(λ) ≡ (
(E0

1 + λV11)−(E0
2 + λV22)

)2
+ 4λ2|V12|2. (3.6)

The corresponding eigenvectors, in the so called intermediate normalization
defined by

(
ψ(0), ψ(λ)

)
= 1, are

ψ1(λ) =
(
1,

√
∆(λ)− (E0

1 − E0
2)− λ(V11 − V22)

2λV12

)
(3.7)

ψ2(λ) =
(
−

√
∆(λ)− (E0

1 − E0
2)− λ(V11 − V22)

2λV21

, 1
)
. (3.8)

Expanding E1,2(λ) through order λ3 we get:

E1(λ) = E0
1 + λV11 + λ2 |V12|2

E0
1 − E0

2

− λ3 |V12|2(V11 − V22)

(E0
1 − E0

2)
2

+ O(λ4) (3.9)

E2(λ) = E0
2 + λV22 − λ2 |V12|2

E0
1 − E0

2

+ λ3 |V12|2(V11 − V22)

(E0
1 − E0

2)
2

+ O(λ4). (3.10)

At order 1 only the diagonal matrix elements of V contribute to E1,2. The
validity of the approximation requires λ|V12| ¿ |E0

1 − E0
2 |. If this condition

is not satisfied, that is if the eigenvalues E0
1 , E

0
2 are “quasi-degenerate”, all

terms of the expansion can be numerically of the same order of magnitude
and no approximation of finite order makes sense.

Note that, within the first order approximation, “level crossing” (E1(λ) =
E2(λ)) occurs at

λ̄ = −(E0
1 − E0

2)/(V11 − V22). (3.11)

On the other hand Eq. (3.5) shows that level-crossing is impossible, unless
V12 = 0, in which case the first order approximation yields the exact result.
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6

-
λλ̄

E2(λ)

E1(λ)

Figure 1: The behavior of the exact eigenvalues E1,2(λ) when V12 = 0 (blue
lines) and when V12 6= 0 (red lines).

If V12 6= 0 the behavior of the levels E1(λ) and E2(λ) near λ̄ is shown in
Figure 1: the two levels “repel” each other [49].

At first order the eigenvectors ψ1,2(λ) are

ψ
[1]
1 =

(
1, −λV21/(E

0
2 − E0

1)
)

(3.12)

ψ
[1]
2 =

(− λV12/(E
0
1 − E0

2), 1
)
. (3.13)

The expectation value (ψ
[1]
1 , Hψ

[1]
1 )/(ψ

[1]
1 , ψ

[1]
1 ) of the Hamiltonian over ψ

[1]
1 ,

for example, is

E0
1 +λV11+λ2 |V12|2

E0
1 − E0

2

−λ3 |V12|2(V11 − V22)

(E0
1 − E0

2)
2

−λ4 |V12|4
(E0

1 − E0
2)

3
+O(λ5) (3.14)

which agrees with E1(λ) up to the λ3 terms
(
the correct fourth order term

contains also |V12|2(V11−V22)
2/(E0

1 −E0
2)

3
)
. This is an example of Wigner’s

(2n + 1)-theorem [52], see Section 4.2.
The power expansions of E1,2(λ) and ψ1,2(λ) converge in the disk |λ| <

|E0
1 − E0

2 |/
√

(V11 − V22)2 + 4|V12|2. The denominator is just twice the infi-
mum over a of the operator norm of V − aI. Since adding to V a multiple
of the identity does not affect the convergence properties of the Taylor’s se-
ries of E(λ), we see that the convergence domain always contains the disk
|λ| < |E0

1 −E0
2 |/2‖V ‖, a property which holds true for any bounded pertur-

bation in Hilbert space (see Sec. 8).
If H0 is degenerate, that is E0

1 = E0
2 ≡ E0, then the eigenvalues are

obtained by diagonalizing V . The degeneracy is removed and the corrections
to the eigenvalues are of first order in λ:

E1,2(λ) = E0 +
1

2
λ

(
V11 + V22 ±

√
(V11 − V22)2 + 4|V12|2

)
(3.15)
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while the eigenvectors are λ independent.
The infinite dimensional case is much more involved. In particular, in

most cases the perturbation series does not converge at all, that is its ra-
dius of convergence vanishes. However, we shall meet again the three situa-
tions discussed above: the case of non-degenerate eigenvalues E0

n such that
|E0

n − E0
m| À |λVnm|, the case of degenerate eigenvalues and finally the case

of “quasi-degenerate” eigenvalues, i.e. groups of eigenvalues E0
ni

such that
|E0

ni
− E0

nj
| > |λVninj

|. As discussed above, in this last case Hninj
must be

diagonalized exactly prior to applying perturbation theory.

4 Perturbation of Point Spectra: Nondegenerate Case

In this section we consider an eigenvector ψ0 of H0 belonging to a non-
degenerate eigenvalue E0 and apply the RS theory to determine the power
expansions (3.3) such that Eq. (3.2) is satisfied, the Hamiltonian H(λ) being
given by (3.1). The case of a degenerate eigenvalue will be considered in Sec-
tion 5. For both cases the starting point is the substitution of the expansions
(3.3) into (3.2), which, upon equating terms with equal powers, yields the
following system of equations

(H0 − E0)ψ
(n) + V ψ(n−1) =

n−1∑

k=0

ψ(k)εn−k, n = 1, 2, ... (4.1)

A perturbative calculation of the energy and the wave function through order
h amounts to calculating εn and ψ(n) up to n = h and truncating the series
in (3.3) at n = h.

4.1 Corrections to the energy and the eigenvectors

In the following let ψk, Ek be the normalized eigenvectors and the eigen-
values of H0, and let ∆Ek0 ≡ Ek −E0, Vhk ≡ (ψh, V ψk). The correction εn is
recursively defined in terms of the lower order corrections to the energy and
the wave function: by left multiplying (4.1) by ψ0 we find

εn = (ψ0, V ψ(n−1))−
n−1∑

h=1

(ψ0, ψ
(h))εn−h. (4.2)

Similarly, the components (ψk, ψ
(n)), k 6= 0, are found by left-multiplying by
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ψk, k 6= 0:

(ψk, ψ
(n)) = −(ψk, V ψ(n−1))∆Ek0

−1 +
n−1∑

h=1

(ψk, ψ
(h))εn−h∆Ek0

−1. (4.3)

Note that, even if the functions ψ(k)’s for k < n were known, still (ψ0, ψ
(n))

is intrinsically undefined, since to any solution of (4.1) we are allowed to
add any multiple of ψ0. The reason of this indeterminacy is that Eq. (3.2)
defines ψ(λ) only up to a multiplicative factor α(λ). Even the normaliza-
tion condition (ψ(λ), ψ(λ)) = 1 leaves ψ(λ) undetermined by a phase factor
exp(iϕ(λ)), ϕ(λ) ∈ R. On the contrary, the corrections εn as well as all the
expectation values (up to order n) are unaffected by these modifications of
the wave function ψ(λ) [16].

We can turn to our advantage the indeterminacy of (ψ0, ψ
(n)) by requiring

that in the expression of εn, Eq. (4.2), the dependence on the values of
(ψ0, ψ

(k)), k ≤ n− 1, disappears. For example, after writing

(ψ0, V ψ(n−1)) = V00(ψ0, ψ
(n−1)) +

∑

h6=0

V0h(ψh, ψ
(n−1))

the independence of (ψ0, ψ
(n−1)) implies ε1 = V00. Next, requiring εn to be

independent of (ψ0, ψ
(n−2)) determines ε2 and so on, until finally (4.2) gives

εn. As an example we carry through this procedure for n = 3. Starting from

ε3 = V00(ψ0, ψ
(2)) +

∑

k 6=0

V0k(ψk, ψ
(2))− ε1(ψ0, ψ

(2))− ε2(ψ0, ψ
(1))

we first find
ε1 = V00. (4.4)

Next, from (4.3) for n = 2, we get

ε3 = −
∑

k 6=0

|V0k|2
∆Ek0

(ψ0, ψ
(1))−

∑

h,k 6=0

V0k

∆Ek0

Vkh(ψh, ψ
(1))+

∑

k 6=0

V0k

∆Ek0

(ψk, ψ
(1))ε1 − ε2(ψ0, ψ

(1)).

The independence of (ψ0, ψ
(1)) implies

ε2 = −
∑

k 6=0

|V0k|2
∆Ek0

. (4.5)
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Finally, by using (4.3) for n = 1 we find

ε3 =
∑

h,k 6=0

V0k

∆Ek0

Vkh

∆Eh0

Vh0 − ε1

∑

k 6=0

|V0k|2
∆Ek0

2 . (4.6)

Note that if εn is required, the lower order corrections being known, one
can use a simplified version of Eqs. (4.2) and (4.3) where the terms (ψ0, ψ

(k))
are omitted since the beginning. Once the values of εk, k ≤ n, have been
determined, Eq. (4.3) yields (ψk, ψ

(n)). For example, for the first order cor-
rection to the wave function we have

(ψk, ψ
(1)) = − Vk0

∆Ek0

. (4.7)

By suitably choosing the arbitrary factor α(λ) we referred to after Eq.
(4.3) we can impose (ψ0, ψ(λ)) = 1. With this choice (known as the “inter-
mediate normalization”, since ψ(λ) is not normalized) we have (ψ0, ψ

(k)) = 0
for any k > 0. As a result, for the wave function through order n we find

ψ[n] ≡ ψ0 +
n∑

k=1

λkψ(k) ≡ ψ0 + δnψ (4.8)

with
(ψ0, ψ

[n]) = 1. (4.9)

Using the intermediate normalization the expression of εn is

εn = (ψ0, V ψ(n−1)), (4.10)

while the value of (ψk, ψ
(n−1)) can be read immediately in the expression of

εn: (ψk, ψ
(n−1)) is obtained from εn by omitting in each term the factor V0k

and the sum over k. For example the wave function ψ[2] ≡ ψ0 +λψ(1) +λ2ψ(2)

in the intermediate normalization by Equations (4.5) and (4.6) is

ψ[2] = ψ0 − λ
∑

k=1

ψk
Vk0

∆Ek0

+

λ2
∑

h,k=1

ψk
Vkh

∆Ek0

Vh0

∆Eh0

− λ2ε1

∑

k=1

ψk
Vk0

∆Ek0
2 · (4.11)

In order to calculate expectation values, transition probabilities and so on
one needs the normalized wave function

ψ
[n]
N = N1/2(ψ0 + δnψ) (4.12)
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with N−1 = 1 + (δnψ, δnψ). N can be chosen real. Note that the wave
function ψ[1] is correctly normalized up to first order.

From the above equations one sees in which sense the perturbation V
must be small with respect to the unperturbed Hamiltonian H0: the sepa-
ration between the unperturbed energy levels must be large with respect to
the matrix elements of the perturbation between those levels and the total
correction δE to E0 should be small with respect to |Ei − E0|, Ei standing
for any other level of the spectrum of H0.

4.2 Wigner’s theorem

From Eq. (4.1) it follows that

Hψ[n] = E[n]ψ[n] + O(λn+1),

whence one should infer that, if E is the exact energy, E − (ψ
[n]
N , Hψ

[n]
N ) =

O(λn+1). It is therefore remarkable Wigner’s result that the knowledge of
ψ[n] allows the calculation of the energy up to order 2n + 1 (Wigner’s 2n + 1
theorem) [52]. Indeed, he proved that, if E is the exact energy,

E − (ψ[n], Hψ[n])

(ψ[n], ψ[n])
= O(λ2n+2).

To this purpose, let

χ(n+1) = ψ − ψ[n]

√
(ψ[n], ψ[n])

where ψ is the normalized exact wave function, Hψ = Eψ. Then

χ(n+1) = O(λn+1), (ψ, χ(n+1)) + (χ(n+1), ψ) = −(χ(n+1), χ(n+1)) = O(λ2n+2).

As a consequence

(ψ[n], Hψ[n])

(ψ[n], ψ[n])
− (ψ,Hψ) = O(λ2n+2).

We make explicit this point with an example. Since

ψ
[1]
N =

ψ0 + λψ(1)

√
1 + λ2(ψ(1), ψ(1))

,

by using (4.7) and recalling (4.5) and (4.6) we have

(ψ
[1]
N , Hψ

[1]
N ) = E0 +λε1 +

λ2ε2 + λ3ε3

1 + λ2(ψ(1), ψ(1))
= E0 +λε1 +λ2ε2 +λ3ε3 +O(λ4).

13



4.3 The Feynman–Hellmann theorem

The RS perturbative expansion rests on the hypothesis that both the
eigenvalues E(λ) and the corresponding eigenvectors ψ(λ) admit a power
series expansion, in short, that they are analytic functions of λ in a neigh-
borhood of the origin. As we shall see in Sec. 8, as a rule it is not so and the
perturbative expansion gives rise only to a formal series. For this reason it is
advisable to derive the various terms of the perturbation expansion without
assuming analyticity. If we need E(λ) and ψ(λ) through order n it is suffi-
cient to assume that, as functions of λ, they are Cn+1, that is continuously
differentiable (n + 1) times. The procedure consists in taking the derivatives
of (3.2) [15, 28]: at the first step we get

Hψ′(λ) + V ψ(λ) = E ′(λ)ψ(λ) + E(λ)ψ′(λ) (4.13)

and by left multiplication by ψ(λ), with
(
ψ(λ), ψ(λ)

)
= 1, we get

E ′(λ) =
(
ψ(λ), V ψ(λ)

)
, (4.14)

which is a special case of the Feynman–Hellmann theorem [23, 17]:

∂E

∂λ
= (ψ(λ),

∂H

∂λ
ψ(λ)). (4.15)

For λ = 0 we find
E ′(0) = V00, (4.16)

whence ε1 = V00, in agreement with (4.4). Next, after left multiplying (4.13)
by ψk and taking λ = 0 we get

(ψk, ψ
′) = − Vk0

∆Ek0

(4.17)

which, again, agrees with (4.7). Taking now the derivative of (2) at λ = 0
and using (4.16) we obtain

E ′′(0) = 2
∑

k=1

V0k(ψk, ψ
′) = −2

∑

k=1

|V0k|2
∆Ek0

(4.18)

whence ε2 = 1
2
E ′′(0), in agreement with (4.5).

It is clear that the procedure can be pursued to any allowed order, and
that the results for the energy corrections, as well as for the wave functions,
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are the same we obtained earlier by the RS technique. However, the concep-
tual difference, that no analyticity hypothesis is required, is important since
in many cases this hypothesis is not satisfied.

As to the relation of E[n] ≡ E0 + λε1 + · · · + λnεn with E(λ) we recall
that, since by assumption E(λ) is Cn+1, we can write Taylor’s formula with
a remainder:

E(λ) =
n∑
0

E(p)

p!
λp +

E(n+1)(θλ)

(n + 1)!
λn+1, 0 < θ < 1 . (4.19)

As observed in [28], since for small λ the sign of the remainder is the sign
of E(n+1)(0)λn+1, Eq. (4.19) allows to establish whether the sum in (4.19)
underestimates or overestimates E(λ). Moreover, if two consecutive terms,
say q and q + 1, have opposite sign, then (for sufficiently small λ) E(λ) is
bracketed between the partial sums including and excluding the qth term. It
is a pity that no one can anticipate how small such a λ should be. (Of course
these remarks apply to the RS truncated series as well.)

5 Perturbation of Point Spectra: Degenerate Case

The case when the unperturbed energy E0 is a degenerate eigenvalue of
H0, i.e. in the Hilbert space there exists a subspace W0 generated by a set
{ψ(i)

0 }, 1 ≤ i ≤ n0, of orthogonal normalized states, such that each ψ0 in W0

obeys (H0−E0)ψ0 = 0, deserves a separate treatment. The main problem is
that, if ψ(λ) is an eigenstate of the exact Hamiltonian H = H0 + λV, we do
not know beforehand which state of W0 ψ(0) is.

In order to use a more compact notation it is convenient to introduce the
projection P0 onto the subspace W0 and its complement Q0

P0ψ =

n0∑
i=0

ψ
(i)
0 (ψ

(i)
0 , ψ) Q0 ≡ I − P0, (5.1)

where ψ
(i)
0 , 1 ≤ i ≤ n0, is any orthonormal basis of W0. The Hamiltonian

H = H0 + λV can be written as

H = (P0 + Q0)(H0 + λV )(P0 + Q0) =

E0P0 + λVPP + λVPQ + λVQP + λVQQ + Q0H0Q0, (5.2)

where

VPP = P0V P0, VPQ = P0V Q0, VQP = Q0V P0, VQQ = Q0V Q0. (5.3)
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After projecting the Schrödinger equation onto W0 and its orthogonal com-
plement W⊥

0 , we find

(E0 + λVPP )P0ψ + λVPQQ0ψ = EP0ψ (5.4)

λVQP P0ψ + Q0H0Q0ψ + λVQQQ0ψ = EQ0ψ. (5.5)

Letting
HQQ = Q0HQ0 = Q0H0Q0 + λVQQ (5.6)

Q0ψ can be extracted from (5.5):

Q0ψ = λ(E −HQQ)−1VQP P0ψ. (5.7)

Note that in (5.5) the operator HQQ acts on vectors of W⊥
0 and that

E −HQQ does possess an inverse in W⊥
0 . Indeed, the existence of a vector ζ

in W⊥
0 such that

(HQQ − E)ζ = 0 (5.8)

contradicts the assumptions which perturbation theory is grounded in: the
separation between E(λ) and E(0) should be negligible with respect to the
separation between different eigenvalues of H0. Actually, if ψk is such that
H0ψk = Ekψk, Ek 6= E0, by left multiplying (5.8) by ψk we would find

(E − Ek)(ψk, ζ) = λ(ψk, V ζ)

where the LHS is of order 0 in λ, whereas the RHS of order 1.
By substituting (5.7) into (5.4) we have

(E0 + λVPP )P0ψ + λ2VPQ(E −HQQ)−1VQP P0ψ = EP0ψ. (5.9)

The energy shifts ∆E ≡ E − E0 appear as eigenvalues of an operator A(E)
acting in W0

A(E) ≡ λVPP + λ2VPQ(E −HQQ)−1VQP (5.10)

which however still depends on the unknown exact energy E. A calculation
of the energy corrections up to a given order is possible, starting from (5.10),
provided we expand the term (E −HQQ)−1 as far as is necessary to include
all terms of the requested order.

5.1 Corrections to the energy and the eigenvectors

The contributions εi are extracted from (5.9) by expanding

E = E0 + λε1 + λ2ε2 + · · · P0ψ = ϕ0 + λϕ1 + λ2ϕ2 + · · ·
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and equating terms of equal order. At the first order, since the second term
in the LHS of Eq. (5.9) is of order 2 or larger, we have

VPP ϕ0 = ε1ϕ0. (5.11)

The first order corrections to the energy are the eigenvalues of the matrix
VPP and the corresponding zeroth order wave function is the corresponding
eigenvector.

In the most favorable case the eigenvalues of VPP are simple, and the
degeneracy is completely removed since the first order of perturbation theory.
In this case, in order to get the higher order corrections, we can avail ourselves
of the arbitrariness in the way of splitting the exact Hamiltonian into a
solvable unperturbed Hamiltonian plus a perturbation by putting

H = (H0 + λVPP ) + λ(V − VPP ) ≡ H ′
0 + λV ′ (5.12)

The eigenvectors of H ′
0 are the solutions of Eq. (5.11), with eigenvalues

E0 + λε
(i)
1 , 1 ≤ i ≤ n0, plus the eigenvectors ψj of H0 with eigenvalues Ej 6=

E0. Since the eigenvalues E0+λε
(i)
1 are no longer degenerate, the formalism of

non-degenerate perturbation theory can be applied, but a warning is in order.
When in higher perturbation orders a denominator ∆Ek0 occurs with the
index k referring to another vector of the basis of W0, this denominator is of
order λ and consequently the order of the term containing this denominator is
lower than the naive V -counting would imply. In each such term, the effective
order is the V -counting order minus the number of these denominators. As
shown below, this situation occurs starting from terms of order 4 in the
perturbation V . Note that, also in the case of non-complete removal of the
degeneracy, the procedure outlined above, with obvious modifications, can
be applied to search the higher order corrections to those eigenvalues which
at first order turn out to be non-degenerate.

If a residual degeneracy still exists, i.e. an eigenvalue ε1 of Eq. (5.11) is
not simple, we must explore the higher order corrections until the degeneracy,
if possible, is removed. First of all we must disentangle the contributions of
different order in λ from (E −HQQ)−1. Since

E −HQQ = (E −Q0H0Q0)[1− λ(E −Q0H0Q0)
−1VQQ],

we have

(E −HQQ)−1 =
∞∑
0

λn[(E −Q0H0Q0)
−1VQQ]n(E −Q0H0Q0)

−1. (5.13)
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As the energy E still contains contributions of any order, the operator (E −
Q0H0Q0)

−1 must in turn be expanded into a series in λ. To make notations
more readable, we define

Q0

an
≡ (E0 −Q0H0Q0)

−n. (5.14)

The second order terms from Eqs. (5.9) and (5.13) give

VPP ϕ1 + VPQ
Q0

a
VQP ϕ0 = ε2ϕ0 + ε1ϕ1. (5.15)

Let P
(i)
0 be the projections onto the subspaces W

(i)
0 of W0 corresponding to

the eigenvalues ε
(i)
1 :

P0 =
∑

i

P
(i)
0 , VPP = λ

∑
ε
(i)
1 P

(i)
0 , P1 ≡ P

(1)
0 , ε1 ≡ ε

(1)
1 . (5.16)

By projecting onto W1 ≡ W
(1)
0 and recalling that ϕ0 is in W1 we get

P1VPQ
Q0

a
VQP ϕ0 = ε2ϕ0, (5.17)

whence ε2 is an eigenvalue of the operator

V1 ≡ P1VPQ
Q0

a
VQP P1 = P1V

Q0

a
V P1. (5.18)

Again, if the eigenvalue ε2 is non-degenerate, we can use the previous
theory by splitting the Hamiltonian as

H = (H0 + λVPP + λV1) + λ(V − VPP − V1) ≡ H ′′
0 + λV ′′. (5.19)

The vectors which make V1 diagonal belong to non-degenerate eigenvalues
of H ′′

0 , hence the non-degenerate theory can be applied. If, on the contrary,
the eigenvalue ε2 of V1 is still degenerate, the above procedure can be carried
out one step further, with the aim of removing the residual degeneracy. We
work out the calculation for ε3, since a new aspect of degenerate perturbation
theory emerges: a truly third order term which is the ratio of a term of order
4 in the potential and a term of first order (see (5.25) below).

From (5.9) and (5.13) we extract the contribution of order 3:

VPP ϕ2 + VPQ
Q0

a
VQP ϕ1 − ε1VPQ

Q0

a2
VQP ϕ0 +

VPQ
Q0

a
VQQ

Q0

a
VQP ϕ0 = ε1ϕ2 + ε2ϕ1 + ε3ϕ0. (5.20)
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We want to convert this equation into an eigenvalue problem for ε3. In
analogy with (5.16) we have

P1 =
∑

i

P
(i)
1 , V1 =

∑
ε
(i)
2 P

(i)
1 , P2 ≡ P

(1)
1 , ε2 ≡ ε

(1)
2 . (5.21)

Since P2VPP = ε1P2, first we eliminate ϕ2 by applying P2 to (5.20):

P2VPQ
Q0

a
VQP ϕ1 − ε1P2VPQ

Q0

a2
VQP ϕ0 +

P2VPQ
Q0

a
VQQ

Q0

a
VQP ϕ0 = ε3P2ϕ0 + ε2P2ϕ1. (5.22)

Writing ϕ1 =
∑

i P
(i)
0 ϕ1, since P2V1 = ε2P2 the contribution with i = 1 of the

first term in the LHS of (5.22) is P2V1ϕ1 = ε2P2ϕ1. Hence, Eq. (5.22) reads

∑

i6=1

P2VPQ
Q0

a
VQP P

(i)
0 ϕ1 − ε1P2VPQ

Q0

a2
VQP ϕ0 +

P2VPQ
Q0

a
VQQ

Q0

a
VQP ϕ0 = ε3P2ϕ0 + ε2

∑

i6=1

P
(i)
0 ϕ1. (5.23)

Finally, P
(i)
0 ϕ1, i 6= 1, is extracted from Eq. (5.15) by projecting with

P
(i)
0 , i 6= 1, and recalling that P

(i)
0 ϕ0 = 0 if i 6= 1:

P
(i)
0 ϕ1 = P

(i)
0 VPQ

Q0

a
VQP ϕ0/(ε1 − ε

(i)
1 ), i 6= 1. (5.24)

Substituting into (5.23) we see that ε3 is defined by the eigenvalue equation
for the operator

V2 ≡ P2V
Q0

a
V

Q0

a
V P2 − ε1P2V

Q0

a2
V P2 +

∑

i6=1

P2V
Q0

a
V

P
(i)
0

ε1 − ε
(i)
1

V
Q0

a
V P2. (5.25)

Despite the presence of four factors in the potential, the last term is actually
a third order term due to the denominators ε1 − ε

(i)
1 .

The procedure outlined above, which essentially embodies the Rayleigh-
Schrödinger approach, can be pursued until the degeneracy is (if possible,
see below Sec. 7) completely removed, after which the theory for the non-
degenerate case can be used. Rather than detailing the calculations, we
present an alternative iterative procedure due to Bloch [4] which allows a
more systematic calculation of the corrections to the energy and the wave
function.
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5.2 Bloch’s method

In equations (5.9) and (5.10) we have seen that the energy corrections
∆E and the projections onto W0 of the vectors ψk(λ) are eigenvalues and
eigenvectors of an operator acting in W0. This observation is not immedi-
ately useful since the operator depends on the unknown exact energy E(λ).
However, it is possible to produce an operator B(λ), which can be calculated
in terms of known quantities and has the property that, if Ek(λ), ψk(λ) are
eigenvalues and eigenvectors of Eq. (3.2) such that Ek(0) = E0, then

B(λ)P0ψk(λ) = ∆EkP0ψk(λ). (5.26)

First of all, note that the vectors P0ψk(λ) are a basis for the subspace W0.
Indeed, it is implicit in the assumption that perturbation theory does work
that the perturbing potential should produce only slight modifications of the
unperturbed eigenvectors of the Hamiltonian, so that the vectors P0ψk(λ) are
linearly independent (although not orthogonal). Since their number equals
the dimension of W0, they are a basis for this subspace.

Following [4], we define a λ dependent operator U in this way:

UP0ψk(λ) = ψk(λ); UQ0 = 0. (5.27)

As a consequence we have

U = UP0, P0U = P0, (5.28)

Uψk(λ) = ψk(λ). (5.29)

The former of Eqs. (5.28) follows immediately from the definition of U .
Hence P0U = P0UP0, which implies the latter of (5.28). Equation (5.29) is
verified by applying the former of Eqs. (5.28) to ψk(λ).

Let
B(λ) ≡ λP0V U. (5.30)

We verify that, if ∆Ek ≡ Ek − E0, then

B(λ)P0ψk(λ) = ∆EkP0ψk(λ). (5.31)

Indeed, by (5.27) we have P0V UP0ψk(λ) = P0V ψk(λ). Writing (3.2) as

(H0 − E0 + λV )ψk(λ) = ∆Ekψk(λ)

and multiplying by P0 we find

λP0V ψk(λ) = ∆EkP0ψk(λ), (5.32)
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hence Eq. (5.31) is satisfied.
A practical use of (5.31) requires an iterative definition of U in terms of

known quantities. From (5.27) and (5.28) we have

U = P0U + Q0U = P0 + Q0UP0. (5.33)

We calculate the latter term of (5.33) on the vectors P0ψk(λ). Since

(λV −∆Ek)ψk = (E0 −H0)ψk,

recalling (5.27) we have

Q0UP0ψk(λ) = Q0ψk(λ) =
Q0

a
(λV −∆Ek)ψk(λ) =

λ
Q0

a
V Uψk(λ)−∆Ek

Q0

a
Uψk(λ) = λ

Q0

a
V Uψk(λ)−∆Ek

Q0

a
UP0ψk(λ).

By (5.32)

Q0UP0ψk(λ) = λ
Q0

a
V Uψk(λ)− λ

Q0

a
UP0V ψk(λ) =

λ
Q0

a
V Uψk(λ)− λ

Q0

a
UP0V Uψk(λ) = λ

Q0

a

(
V U − UV U

)
P0ψk(λ).

As a consequence the desired iterative equation for U is

U = P0 + λ
Q0

a
(V U − UV U). (5.34)

Equation (5.34) in turn allows an iterative definition of the operator B(λ)
of (5.30) depending only on quantities which can be computed in terms of
the known spectral representation of H0. Knowing U through order n − 1
gives B[n](λ) ≡ ∑n

i=1 B(i)(λ), whose eigenvalues are the energy corrections
through order n. In fact, if B =

∑∞
i=1 B(i) and P0ψk =

∑∞
s=0 λsϕs, the order

r contribution to (5.31) is

r∑
i=1

B(i)ϕr−i =
r∑

i=1

εiϕr−i. (5.35)

Defining P0ψ
[n]
k ≡ ∑n

0 λrϕr ≡ ϕ[n], ∆E [n] ≡ ∑n
1 λrεr, we see that the sum of

(5.35) for values of r through n gives

B[n]ϕ[n] = ∆E[n]ϕ[n] + O(λn+1). (5.36)

21



Once P0ψ
[n]
k (λ) has been found, Eq. (5.27) gives the component of ψk(λ) in

W⊥
0 through order n + 1. As an example, for n = 3 we have

U [2] = P0 + λ
Q0

a
V P0 + λ2Q0

a
V

Q0

a
V P0 − λ2Q0

a2
V P0V P0, (5.37)

B[3] = λP0V P0 + λ2P0V
Q0

a
V P0 +

λ3P0V
Q0

a
V

Q0

a
V P0 − λ3P0V

Q0

a2
V P0V P0. (5.38)

If W0 is one dimensional, (5.38) gives for λε1 + λ2ε2 + λ3ε3 the same result
as Eqs. (4.4), (4.5) and (4.6).

The main difference between the RS perturbation theory and Bloch’s
method is that within the former the energy corrections through order n are
calculated by means of a sequential computation starting from ε1, with the
consequence that at each step the dimension of the matrix to be diagonalized
is smaller. Conversely, within Bloch’s method one has to diagonalize the
matrix B[n](λ), which has the dimension of W0. However, as noted above, for
n > 1 the eigenvalues of B[n](λ) are different from λε1 + λ2ε2 + · · ·+ λnεn by
terms of order at least n + 1. Similarly, the eigenvectors of (5.36) differ from
the component in W0 of ψ[n] = ψ0 + λψ(1) + · · · + λnψ(n) by terms of order
larger than n.

It is instructive to reconsider the calculation of ε2 and ε3 in the light of
Bloch’s method. If P0 = P1 + P ′

1, then P0V P0 = ε1P1 + P ′
1V P ′

1 and

B[2](λ) = λε1P1 + λP ′
1V P ′

1 + λ2P1V
Q0

a
V P1+

λ2P ′
1V

Q0

a
V P ′

1 + λ2P1V
Q0

a
V P ′

1 + λ2P ′
1V

Q0

a
V P1.

The last two terms represent off-diagonal blocks which can be omitted for the
calculation of λε1+λ2ε2, since the lowest order contribution to the eigenvalues
of a matrix X from the off-diagonal terms Xij is |Xij|2/(Xii − Xjj). For a
second order expansion as B[2] this yields third order contributions of the
type

λ3P1V
Q0

a
V

P ′
1

ε1 − ε′1
V

Q0

a
V P1.

These are just the contributions to ε3 which we met in the RS approach: the
expression of V2 given in (5.25) combines the block-diagonal term of order 3
with the off-diagonal terms of order 2 giving a third order contribution.
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5.3 The quasi–degenerate case

There are cases, in both atomic and molecular physics, where the energy
levels of H0 present a multiplet structure: the energy levels are grouped into
“multiplets” whose separation ∆E is large compared to the energy separation
δE between the levels belonging to the same multiplet. For instance, in
atomic physics this is the case of the fine structure (due to the the so called
spin–orbit interaction) or of the hyperfine structure (due to the interaction
of the nuclear magnetic moment with the electrons); in molecular physics
typically this is the case of the rotational levels associated with the different
and widely separated vibrational levels.

If a perturbation V is such that its matrix elements between levels of the
same multiplet are comparable to δE, while being small with respect to ∆E,
then naive perturbation theory fails because of the small energy denominators
pertaining to levels belonging to the same multiplet. To solve this problem,
named the problem of quasi-degenerate levels, once again we can exploit the
arbitrariness in the way of splitting the Hamiltonian H into an unperturbed
Hamiltonian and a perturbation. Let

E
(1)
0 ≡ E0 + δE(1), E

(2)
0 ≡ E0 + δE(2), · · · E

(n)
0 ≡ E0 + δE(n),

be the unperturbed energies within a multiplet, with E0 any value close to
the E

(i)
0 ’s (for instance their mean value), and P

(i)
0 the projections onto the

corresponding eigenspaces. Let

H0
0 ≡ H0 −

∑
i

δE(i)P
(i)
0 , Ṽ ≡ λV +

∑
i

δE(i)P
(i)
0 ,

so that
H = H0

0 + Ṽ . (5.39)

We consider H0
0 as the unperturbed Hamiltonian and Ṽ as the pertur-

bation. From the physical point of view this procedure, if applied to all
multiplets, is just the inclusion into the perturbation of those terms of H0

that are responsible for the multiplet structure. With the splitting of the
Hamiltonian as in (5.39) we can apply the methods of degenerate perturba-
tion theory. The most efficient of these techniques is Bloch’s method, which
yields a simple prescription for the calculation of the corrections of any order.
If for example we are content with the lowest order, we must diagonalize the
matrix P0Ṽ P0, or equivalently P0HP0, that is the energies through first order
are the eigenvalues of the equation

P0HP0ψ = EP0ψ , (5.40)
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where P0 =
∑

i P
(i)
0 is the projection onto W0, the eigenspace of H0

0 corre-
sponding to the eigenvalue E0. These eigenvalues are algebraic functions of
λ, and no finite order approximation is meaningful, since all terms can be
numerically of the same order, due to the occurrence of small denominators
(δE(i) − δE(j))n.

6 The Brillouin-Wigner Method

Equations (5.10) and (5.13) yield an alternative approach to the calcula-
tion of the energy shift ∆E due to a perturbation to a non-degenerate energy
level E0, the so called Brillouin-Wigner method [9, 52, 22]. In this case W0,
the space spanned by the unperturbed eigenvector ψ0, is one-dimensional.
The correction ∆E obeys the equation

∆E = (ψ0, A(E)ψ0), (6.1)

where the operator A(E) is defined in (5.10).
Substituting into the expression of A the expansion (5.13) for (E−HQQ)−1

and noting that, if {Ek} is the spectrum of H0,

(ψ0, VPQ(E −Q0H0Q0)
−1VQP ψ0) =

∑

k 6=0

|V0k|2
E − Ek

,

(ψ0, VPQ(E −Q0H0Q0)
−1VQQ(E −Q0H0Q0)

−1VQP ψ0) =
∑

k,h 6=0

V0k(E − Ek)
−1Vkh(E − Eh)

−1Vh0

and so on, we find the following implicit expression for the exact energy E:

E =E0+λ(ψ0, V ψ0)+λ2
∑

k 6=0

|V0k|2
E − Ek

+λ3
∑

k,h6=0

V0k

E − Ek

Vkh

E − Eh

Vh0+· · · .(6.2)

Consistently with the assumption that perturbation theory does work,
the denominators in (6.2) are non-vanishing. The equation can be solved by
arresting the expansion to a given power n in the potential and searching a
solution iteratively starting with E = E0. However, the result differs from
the energy E [n] = E0 + λε1 + λ2ε2 + · · · + λnεn, calculated by means of the
RS perturbation theory, by terms of order n + 1 in the potential. The result
of the RS perturbation theory can be recovered from the Brillouin-Wigner
approach by substituting in the denominators E = E0+λε1+λ2ε2+· · ·+λnεn,
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expanding the denominators in powers of λkεk/E0 and equating terms of
equal orders in both sides of (6.2).

As for the perturbed wave function, if the intermediate normalization is
used, by (5.7) we have:

ψ = ψ0 + Q0ψ = ψ0 + λ(E −HQQ)−1VQP ψ0. (6.3)

Again, using the expansion (5.13) we find

ψ = ψ0 + λ
∑

k 6=0

ψk
Vk0

E − Ek

+ λ2
∑

k,h 6=0

ψk
Vkh

E − Ek

Vh0

E − Eh

+ · · · . (6.4)

As for the energy, if we arrest this expression to order n and substitute for
E the value calculated by using Eq. (6.2), the result will differ from the one
of Rayleigh-Schrödinger perturbation theory by terms of order n + 1.

A major drawback of the Brillouin-Wigner method is its lack of size-
consistency: for a system consisting of non-interacting subsystems, the per-
turbative correction to the energy of the total system is not the sum of the
perturbative corrections to the energies of the separate subsystems through
any finite order. This is best illustrated by the simple case of two systems a,
b with unperturbed eigenvectors, energies and interactions ψa

0 , Ea
0 , λV a and

ψb
0, Eb

0, λV b respectively. If for example the expansion (6.2) is arrested at
order 2, by noting that the matrix elements V0,ij between the unperturbed
state and the states ψa

i ψ
b
j are

V0,ij ≡ (ψa
0ψ

b
0, (V

a + V b)ψa
i ψ

b
j) = (ψa

0 , V
aψa

i )δ0j + (ψb
0, V

bψb
j)δ0i,

for the second order equation defining E we find

E = Ea
0 +Eb

0+λεa
1 +λεb

1+λ2
∑

j

|V b
0j|2

E − Ea
0 − Eb

j

+λ2
∑

i

|V a
0i|2

E − Eb
0 − Ea

i

. (6.5)

On the other hand, for the energy of each system at second order we find

Ea = Ea
0 + λεa

1 + λ2
∑

i

|V a
0i|2

Ea − Ea
i

; Eb = Eb
0 + λεb

1 + λ2
∑

j

|V b
0j|2

Eb − Eb
j

.(6.6)

It is apparent that the sum of the expression reported in (6.6) does not equal
the expression of the energy reported in (6.5). This pathology is absent
in the RS perturbation theory, where for non-interacting systems E(λ) =
Ea(λ) + Eb(λ), hence, for any j, εj = (1/j!)DjE(λ)|λ=0 = εa

j + εb
j.
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7 Symmetry and Degeneracy

In section 5 we applied perturbation theory to the case of degenerate
eigenvalues with special emphasis on the problem of the removal of the de-
generacy at a suitable order of perturbation theory. The main problem is to
know in advance whether the degeneracy can be removed completely, or a
residual degeneracy is to be expected. The answer is given by group theory
[51, 53, 21].

The very existence of degenerate eigenvalues of a Hamiltonian H is inti-
mately connected with the symmetry properties of this operator. Generally
speaking, a group G is a symmetry group for a physical system if there ex-
ists an associated set {T (g)} of transformations in the Hilbert space of the
system such that |(T (g)ϕ, T (g)ψ)|2 = |(ϕ, ψ)|2, g ∈ G [53]. It is proven that
the operators T (g) must be either unitary or antiunitary [53, 2]. We will
consider the most common case that they are unitary and can be chosen in
such a way that

T (g1)T (g2) = T (g1g2), g1, g2 ∈ G, (7.1)

so that the operators {T (g)} are a representation of G.
A system described by a Hamiltonian H is said to be invariant under the

group G if the time evolution operator commutes with T (g). Under fairly
wide hypotheses this implies

[H, T (g)] = 0, g ∈ G. (7.2)

A consequence is that, for any g ∈ G,

Hψ = Eψ ⇒ HT (g)ψ = ET (g)ψ, (7.3)

that is the restrictions T (g)|W of the operators T (g) to the space W corre-
sponding to a given energy E are a representation of G. Given an orthonor-
mal basis {ψi} in W , we have

T (g)ψi =
∑

j

tji(g)ψj (7.4)

and the vectors ψi are said to transform according to the representation of
G described by the matrices tji.

This representation, apart from the occurrence of the so called accidental
degeneracy (which in most cases actually is a consequence of the invariance
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of the Hamiltonian under additional transformations) is irreducible: no sub-
space of W is invariant under all the transformations of the group. As a
consequence, knowing the dimensions dj of the irreducible representations
of G allows to predict the possible degree of degeneracy of a given energy
level, since the dimension of W must be equal to one of the numbers dj. If
the group of invariance is Abelian, all the irreducible representations are one
dimensional, and degeneracy can only be accidental.

Two irreducible representations are equivalent if there are bases which
transform with the same matrix tji(g). Otherwise they are inequivalent. The
following orthogonality theorems hold. If a and b are inequivalent represen-
tations and ψ

(a)
i , ϕ

(b)
j transform according these representations, then

(ψ
(a)
i , ϕ

(b)
j ) = 0 (7.5)

while, if ar and as are equivalent, for the basis vectors ψ
(ar)
i , ϕ

(as)
j we have

(ψ
(ar)
i , ϕ

(as)
j ) = K(a)

rs δij. (7.6)

Moreover, if Ars is a matrix which commutes with all the matrices t
(a)
ij of an

irreducible representation b, then Ars = aδrs (Schur’s Lemma).

7.1 Symmetry and perturbation theory

If H = H0 + λV , let G0 be the group under which H0 is invariant. Al-
though it is not the commonest case, we start with assuming that also the
perturbation V commutes with T (g) for any element g of G0. As a rule W0,
the space of eigenvectors of H0 with energy E0, hosts an irreducible rep-
resentation T (g) of G0. In this case the degeneracy cannot be removed at
any order of perturbation theory. While this follows from general principles
(for any value of λ, ψ(λ) and T (g)ψ(λ) are eigenvectors of H(λ), and by
continuity the eigenspace Wλ will have the same dimension as W0), it is in-
teresting to understand how the symmetry properties affect the mechanism
of perturbation theory.

If {ψ0
i } is a basis of W0 transforming according to an irreducible repre-

sentation a of G0, then the matrix Vij = (ψ0
i , V ψ0

j ) commutes with all the

matrices t
(a)
ji (g) and, according to Schur’s Lemma, (ψ0

i , V ψ0
j ) = vδij = ε1δij.

No splitting occurs at the level of first order perturbation theory, neither
can it occur at any higher order. Indeed, when V commutes with the op-
erators T (g), then Bloch’s operator U, and consequently the operator B(λ)
of (5.30), both commute with the T (g)’s too. Again by Schur’s Lemma, the
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operator B(λ) is a multiple of the identity. At any order of perturbation the
degeneracy of the level is not removed.

In most of the cases, however, the perturbation V does not commute with
all the operators T (g). The set

G = {g : g ∈ G0, [T (g), V ] = 0}

is a subgroup G of G0 and the group of invariance for the Hamiltonian H is
reduced to G. W0 generally contains G-irreducible subspaces Wi, 1 ≤ i ≤ n:
the operators T (g)|W0 are a reducible representation of G. The decomposition
into irreducible representations of G is unique up to equivalence.

The crucial information we gain from group theory is the following: the
number of energy levels which the energy E0 is split into is the number of
irreducible representations of G which the representation of G0 in W0 is split
into. The degrees of degeneracy are the dimensions of these representations.
What is relevant is that we only need to study the eigenspace W0 of H0,
which is known by hypothesis.

In fact, let W (λ) be the space spanned by the eigenvectors ψk(λ) of H(λ)
such that ψk(0) ∈ W0. W (λ) is invariant under the operators T (g), g ∈
G, since Bloch’s operator U commutes with the operators T (g), g ∈ G.
W (λ) can be decomposed into G-irreducible subspaces Wk(λ), and in each
of them by Schur’s Lemma the Hamiltonian H(λ) is represented by a matrix
Ek(λ)IWk(λ). The projections P0Wk(λ) span the space W0 and transform with
the same representation of G as Wk(λ), since P0 commutes with T (g) for any
g in G0, hence for any g in G. Thus, the space W0 hosts as many irreducible
representations of G as W (λ). Assuming that the eigenvalues Ek(λ) are dif-
ferent from one another, we see that the decomposition of the representation
of G0 in W0 into irreducible representations of G determines the number and
the degeneracy of the eigenvalues of H(λ) such that the corresponding eigen-
vectors ψ(λ) are in W0 for λ = 0. The possibility that some of the Ek(λ) are
equal will be touched upon in the next subsection.

Examples where the above mechanism is at work are common in atomic
physics. When an atom, whose unperturbed Hamiltonian H0 is invariant
under O(3), is subjected to a constant electric field ~E = Eẑ (Stark effect), the
invariance group G of its Hamiltonian is reduced to the rotations about the z
axis (SO(2)) and the reflections with respect to planes containing the z axis.
The irreducible representations of this group have dimension at most 2, and
the G-irreducible subspaces of W0 (the space generated by the eigenvectors
ψE0lm of H0 corresponding to the energy E0) are generated by ψE0l0 (one
dimensional representation) and ψE0l±m (two dimensional representations).
Hence, the level E0 is split into l + 1 levels, the states with m and −m
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remaining degenerate since reflections transform a vector with a given m into
the vector with opposite m. Instead, if the atom is subjected to a constant
magnetic field ~B = Bẑ (Zeeman effect), the surviving invariance group G
consists of SO(2) plus the reflections with respect to planes z = z0. G being
Abelian, the degeneracy is completely removed and this occurs at the first
order of perturbation theory.

In the rather special case that W0 contains subspaces transforming accord-
ing to inequivalent representations of G0, also a G0-invariant perturbation V
can separate in energy the states belonging to inequivalent representations.
For example, the spectrum of alkali atoms can be calculated by considering in
a first approximation an electron in the field of the unit charged atomic rest,
which is treated as pointlike. In this problem the obvious invariance group
of the Hamiltonian of the optical electron is O(3), the group of rotations
and reflections, and the space W0 corresponding to the principal quantum
number n > 1 contains n inequivalent irreducible representations which are
labeled by the angular momentum l ≤ n − 1. When the finite dimension of
the atomic rest is taken into account as a perturbation, its invariance under
O(3) splits the levels with given n and different l into n sublevels. A more
careful consideration, however, shows that also the Lenz vector commutes
with the unperturbed Hamiltonian [5], and that the space W0 is irreducible
under a larger group, the group SO(4) [18], which is generated by the angular
momentum and the Lenz vector. As a consequence the l degeneracy is by no
means accidental: a space irreducible under a given group can turn out to
be reducible with respect to one of its subgroups.

Group theory is a valuable tool in degenerate perturbation theory to
search the correct vectors ψk(0) which make the operator P0V P0 diagonal.

In fact, let ψ
(a)
i be vectors which reduce the representation T of G in W0

into its irreducible components T (a). The vectors ψ
(a)
i and V ψ

(a)
i transform

according to the same irreducible representation T (a). Hence, by (7.5) and
(7.6) we find that the P0V P0 is a diagonal block matrix with respect to
inequivalent representations:

(ψ
(ar)
i , V ψ

(bs)
j ) = K(a)

rs δijδab, (7.7)

with δab = 1 if representations a and b are equivalent, δab = 0 otherwise.
The matrices K

(a)
rs are generally much smaller than the full matrix of the

potential. Thus, the operation of diagonalizing V is made easier by finding
the G-irreducible subspaces Wa. Conversely, the reduction of an irreducible
representation of a group G0 in a space W0 into irreducible representations
of a subgroup G can be achieved by the following trick: find an operator
V whose symmetry group is just G and interpret W0 as the degeneracy
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eigenspace of a Hamiltonian H0. The G-irreducible subspaces of W0 are the
eigenspaces of P0V P0.

7.2 Level crossing

As shown in the foregoing section, the existence of a non-Abelian group of
symmetry for the Hamiltonian entails the existence of degenerate eigenvalues.
The problem naturally arises as to whether there are cases when, on the
contrary, the degeneracy is truly “accidental”, that is it cannot be traced
back to symmetry properties. The problem was discussed by J. Von Neumann
and E.P. Wigner [49], who showed that for a generic n×n Hermitian matrix
depending on real parameters λ1, λ2, · · · , three real values of the parameters
have to be adjusted in order to have the collapse of two eigenvalues (level
crossing).

When passing to infinite dimension, arguments valid for finite dimen-
sional matrices might fail. Moreover, often the Hamiltonian is not sufficiently
“generic” so that level crossing may occur. As a consequence, we look for
necessary conditions in order that, given the Hamiltonian H(λ) = H0 + λV ,
two eigenvalues collapse for some (real) value λ̄ of the parameter λ: E1(λ̄) =
E2(λ̄) ≡ Ē. In this case, if ψ1(λ̄) and ψ2(λ̄) are any two orthonormal eigen-
vectors of H(λ̄) = H0 + λ̄V belonging to the eigenvalue Ē, the matrix

Hij(λ̄) ≡ (
ψi(λ̄), (H0 + λ̄V )ψj(λ̄)

)
, i, j = 1, 2

must be a multiple of the identity:

H11(λ̄) = H22(λ̄) (7.8)

H12(λ̄) = 0. (7.9)

Equations (7.8) and (7.9) are three real equations for the unknown λ̄; hence,
except for special cases, level crossing cannot occur.

The condition expressed by Eq. (7.9) is satisfied if the states correspond-
ing to the eigenvalues E1(λ) and E2(λ) possess different symmetry properties,
that is if they belong to inequivalent representations of the invariance group
of the Hamiltonian or, equivalently, if they are eigenvectors with different
eigenvalues of an operator which for any λ commutes with the Hamiltonian
H(λ) (hence it commutes with both H0 and V ). In this case H12 = 0 and the
occurrence of level crossing depends on whether Eq. (7.8) has a real solution.
This explains the statement that level crossing can occur only for states with
different symmetry, while states of equal symmetry repel each other. Indeed,
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Figure 2: The effect of a magnetic field on the doublet 2p1/2, 2p3/2 of the
lithium whose degeneracies, in the absence of the magnetic field, are respec-
tively 2 and 4. µ is the magnetic moment of the electron and µB/δE = 1 for
B ≈ 1.4 T.

if (7.9) is not satisfied, the behavior of two close eigenvalues as functions of
λ is illustrated in Figure 1 (Sec. 3).

Figure 2 illustrates the behavior of the quasi-degenerate energy levels
2p1/2, 2p3/2 of the lithium atom in the presence of an external magnetic field
~B. In the absence of the magnetic field they are split by the spin-orbit
interaction, with a separation δE ≡ E3/2 − E1/2 = 0.4 × 10−4 eV, to be
compared with the separation in excess of 1 eV from the adjacent 2s and 3s
levels. This justifies treating the effect of the magnetic field by means of the
first order perturbation theory for quasi-degenerate levels.

When the magnetic field is present, the residual symmetry is the (Abelian)

group of rotations about the direction of ~B. Hence, the Hamiltonian com-
mutes with the component of the angular momentum along the direction of
~B, whose eigenvalues are denoted with m. In Figure 2 the energies of states
with equal symmetry, that is with the same value of m, are depicted with the
same color. No crossing occurs between states with equal m, while the level
with m = −3/2 does cross both the levels with m = 1/2 and with m = −1/2
which the 2p1/2 level is split into.

8 Problems with the Perturbation Series

So far we have assumed that all the power expansions appearing in the

31



calculations were converging for |λ| ≤ 1, that is we assumed analyticity in
λ of E(λ). Actually, it is only for rather special cases that analyticity can
be proved. For most of the cases of physical interest, even if the terms of
the perturbation series can be shown to exist, the series does not converge,
or, when it converges, the limit is not E(λ). In spite of this, special tech-
niques have been devised to extract a good approximation to E(λ) from the
(generally few) terms of the perturbation series which can be computed. We
will outline the main results existing in the field, without delving into math-
ematical details, for which we refer the reader to the books of Kato [25] and
Reed-Simon [34] and the references therein.

The most favorable case is that of the so called regular perturbations
[36, 37, 38, 39], where the perturbation series does converge to E(λ). More
precisely, if E0 is a nondegenerate eigenvalue of H0, for λ in a suitable neigh-
borhood of λ = 0 the Hamiltonian H = H0 + λV has a nondegenerate
eigenvalue E(λ) which is analytic in λ and equals E0 for λ = 0. The same
property holds for the eigenvector ψ(λ). A sufficient condition for this prop-
erty to hold is expressed by the Kato-Rellich Theorem [36, 37, 38, 39, 26],
which essentially states that if the perturbation V is H0-bounded, in the
sense that constants a, b exist such that

‖V ψ‖ ≤ a‖H0ψ‖+ b‖ψ‖ (8.1)

for any ψ in the domain of V (which must include the domain of H0) then
the perturbation is regular. A lower bound to the radius r such that the
perturbation series converges to the eigenvalue E(λ) for |λ| < r can be given
in terms of the parameters a, b appearing in (8.1) and the distance δ of the
eigenvalue E0 from the rest of the spectrum of H0. We have

r =
[
a +

2

δ
[b + a(|E0|+ δ

2
)]
]−1

. (8.2)

It must be stressed, however, that the constants a and b are not uniquely
determined by V and H0. If the perturbation V is bounded (a = 0, b = ‖V ‖)
condition (8.2) reads r = δ/(2‖V ‖), which implies that the perturbation
series for H = H0 + V with V bounded converges if ‖V ‖ < δ/2 (Kato bound
[26]).The analysis of the two-level system (Sec. 3 ) shows that the figure 1/2
cannot be improved. Still, Kato bound is only a lower bound to r.

A similar statement holds for degenerate eigenvalues [34]: if E0 has mul-
tiplicity m there are m single valued analytic functions Ek(λ), k = 1, ..., m
such that Ek(0) = E0 and, for λ in a neighborhood of 0, Ek(λ) are eigenval-
ues of H(λ) = H0 +λV. Some of the functions Ek(λ) may be coincident, and
in a neighborhood of E0 there are no other eigenvalues of H(λ).
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Regular perturbations are in fact exceedingly rare, a notable case being
that of helium-like atoms [47]. Actually, there are cases where, although
on physical grounds H0 + λV does possess bound states, the relationship
between E(λ) and the RS expansion is far more complicated than for regular
perturbations. As pointed out by Kramers [27], with an argument similar
to an observation by Dyson [12] for quantum electrodynamics, the quartic
anharmonic oscillator with Hamiltonian

H = H0 + λV ≡ p2

2m
+

mω2x2

2
+ λ

m2ω3

~
x4 (8.3)

is such an example. In fact, on the one hand bound states exist only for
λ ≥ 0; on the other hand, if a power series converges for λ > 0, then the
series should converge also for negative values of λ. But for λ < 0 no bound
state exists. Still worse, by estimating the coefficients of the RS expansion
it has been proved that the series has vanishing radius of convergence [3].

In spite of this negative result, in this case it has been proved [46] that
the perturbation series is an asymptotic series. This means that, for each n,
if

∑n
0 εkλ

k is the sum through order n of the perturbation series, then

lim
λ→0

∑n
0 εkλ

k − E(λ)

λn
= 0. (8.4)

We recall the difference between an asymptotic and an absolutely converging
series, such as occurs with regular perturbations. For the latter one, given any
λ in the convergence range of the series, the distance |∑n

0 εkλ
k−E(λ)| can be

made arbitrarily small provided n is sufficiently large (so that a converging
series is also an asymptotic series). On the contrary, for an asymptotic series
|∑n

0 εkλ
k − E(λ)| is arbitrarily small only if λ is sufficiently near 0, but

for a definite value of λ the quantity |∑n
0 εkλ

k − E(λ)| might decrease to
a minimum, attained for some value N, and then it could start to oscillate
for n > N (this is indeed the case for the anharmonic oscillator). As a
consequence, for asymptotic series it is not expedient to push the calculation
of the terms of the series beyond the limit where wild oscillations set in.

Any C∞ function has an asymptotic series, as can be seen by inspection
of the Taylor’s formula with a remainder (see (4.19)). By this means Krieger
[28] argued that, if εk (or equivalently the kth derivative of E(λ)) exists for any
k, the RS series is asymptotic. However, generally there is not a range where
the series converges to E(λ), that is E(λ) is not analytic. An asymptotic
series may fail to converge at all for λ 6= 0, as noted for the anharmonic
oscillator. The asymptotic series of a function, if it exists, is unique, but the
converse is not true. For example, for the C∞ function defined for real x as
f(x) = exp(−1/x2) if x 6= 0, f(0) = 0, the asymptotic series vanishes. There
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are also cases when the perturbation series is asymptotic for arg λ lying in a
range [α, β]. This occurs for example for the generalized anharmonic oscillator
with perturbation V ∝ λx2n. It has been proved that its perturbation series
is asymptotic for | arg λ| ≤ θ < π [46] (note that the domain does not include
negative values of λ). The result was later extended to multidimensional
anharmonic oscillators [19]. General theorems stating sufficient hypotheses
for the perturbation series to be asymptotic can be found in the literature.
As a rule, however, they do not cover most of the cases of physical interest.

Even in the felicitous case when the perturbation series is asymptotic, it is
only known that a partial sum approaches E(λ) as much as desired provided
λ is sufficiently small. This is not of much help to the practicing scientist,
who generally is confronted with a definite value of the parameter λ, which
can always be considered λ = 1 by an appropriate rescaling of the potential
V . Recalling that different functions can have the same asymptotic series, it
seems hopeless to try to recover the function E(λ) from its asymptotic series,
but this is possible for the so called strong asymptotic series. A function E(λ)
analytic in a sectorial region (0 < |λ| < B, | arg λ| < π/2+ δ) is said to have
strong asymptotic series

∑∞
0 akλ

k if for all λ in the sector

|E(λ)−
n∑
0

akλ
k| ≤ Cσn+1|λ|n+1(n + 1)! (8.5)

for some constants C, σ. For strong asymptotic series it is proved that the
function E(λ) is uniquely determined by the series. Conditions that ensure
that the RS series is a strong asymptotic series have been given [34].

The problem of actually recovering the function E(λ) from its asymptotic
series can be tackled by several methods. The most widely used procedure
is the Borel summability method [6], which amounts to what follows. Given
the strongly asymptotic series

∑∞
0 akλ

k, one considers the series F (λ) ≡∑∞
0 (ak/k!)λk. This is known as the Borel transform of the initial series,

which, by the hypothesis of strong asymptotic convergence, can be proved
to have a non-vanishing radius of convergence and to possess an analytic
continuation to the positive real axis. Then the function E(λ) is given by

E(λ) =

∫ ∞

0

F (λx) exp(−x) dx. (8.6)

The above statement is Watson’s Theorem [50]. Roughly speaking, it yields
the function E(λ) as if the following exchange of the series with the integral
were allowed:

E(λ) ∼
∞∑
0

akλ
k =

∞∑
0

ak

k!

∫ ∞

0

exp(−x)xk dxλk =
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∫ ∞

0

exp(−x)
∞∑
0

ak

k!
(xλ)k dx =

∫ ∞

0

F (λx) exp(−x) dx.

A practical problem with perturbation theory is that, apart from a few
classroom examples, one is able to calculate only the lower order terms of the
perturbation series. Although in principle it is impossible to divine the rest
of a series by knowing its terms through a given order, a technique which in
some cases turned out to work is that of Padé approximants [32, 1]. A Padé
[M, N ] approximant to a series is a rational function

RMN(z) =
PM(z)

QN(z)
(8.7)

whose power expansion near z = 0 is equal to the first M + N terms of the
series. It has been proved [31] that the Padé [N, N ] approximants converge to
the true eigenvalue of the anharmonic oscillator with x4 or x6 perturbation.
The Padé [M, N ] approximant to a function f(z) is unique, but its domain of
analyticity is generally larger. Even for asymptotic series whose first terms
are known one can write the Padé approximants. One can either use directly
the Padé approximant as the value of E(λ) for the desired value of λ, or
can insert it into the Borel summation method. For the case of the quartic
anharmonic oscillator (Eq. (8.3)) both methods have been proved to work
(at the cost of calculating some tens of terms of the series).

Another approach to the problem is the method of self-similar approxi-
mants [55], whereby approximants to the function E(λ) for which the asymp-
totic series is known are sought by means of products

f2p(λ) =

p∏
i=1

(1 + Aiλ)ni . (8.8)

The 2p parameters Ai, ni, 1 ≤ i ≤ p, are determined by equating the Tay-
lor expansion of f2p(λ) with the asymptotic series through order 2p (a0 = 1
can be assumed, with no loss of generality, see [55]). Also, odd order ap-
proximants f2p+1 are possible. For the anharmonic oscillator (Eq. (8.3)) the
calculations exhibit a steady convergence to the correct value of the energy
of both the even order and the odd order approximants also for λ = 200.

The problem with the above approaches is that their efficiency seems
limited to toy models as the anharmonic oscillator. For realistic problems it
is difficult to establish in advance that the method converges to the correct
answer.
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9 Perturbation of the Continuous Spectrum

In this section we consider the effect of a perturbing potential V on
states belonging to the continuous spectrum. Since the problem is inter-
esting mainly for the theory of scattering, we will assume that the unper-
turbed Hamiltonian H0 is the free Hamiltonian of a particle of mass m. Also,
assuming that the potential V (~r) vanishes at infinity, the spectrum of the
free Hamiltonian H0 and the continuous spectrum of the exact Hamiltonian
H = H0 + λV are equal and consist of the positive real semi-axis. Given an
energy E = ~2k2/2m, the problem is how the potential V affects that par-
ticular eigenfunction ψ0 of H0 which would represent the state of the system
if the interaction potential were absent.

Letting ψ = ψ0 + δψ, the Schrödinger equation reads

(E −H0)δψ = λV (ψ0 + δψ) (9.1)

In the spirit of the perturbation approach, δψ can be calculated by an itera-
tive process provided we are able to find the solution of the inhomogeneous
equation

(E −H0)δψ = ζ (9.2)

in the form
δψ = G̃0ζ, (9.3)

G̃0 being the Green’s function of (9.2). Assuming that G̃0 is known, we find

δψ = λG̃0V ψ = λG̃0V ψ0 + λG̃0V δψ =

λG̃0V ψ0 +λG̃0V (λG̃0V ψ0 + λG̃0V δψ) =

λG̃0V ψ0 +λ2G̃0V G̃0V ψ0 + λ2G̃0V G̃0V δψ = · · · , (9.4)

that is δψ is written as a power expansion in λ in terms of the free wave
function ψ0.

9.1 Scattering solutions and scattering amplitude

One has to decide which eigenfunction of H0 must be inserted into the
above expression, and which Green function G̃0 must be used, since, of course,
the solution of (9.2) is not unique. The questions are strongly interrelated,
and the answers depend on which solution of the exact Schrödinger equation
one wishes to find. Since the study of the perturbation of the continuous
spectrum is relevant mainly for the theory of potential scattering, we will
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focus on this aspect. In the theory of scattering it is shown [24] that, for a
potential V (~r) vanishing faster than 1/r for r →∞, a wave function ψ which
in the asymptotic region is an eigenfunction of the momentum operator plus
an outgoing wave

ψ
r→∞−→ exp(i~k · ~r) + f~k(θ, ϕ)

exp(ikr)

r
(9.5)

(θ, ϕ being the polar angles with respect to the ~k axis) is suitable for de-
scribing the process of diffusion of a beam of free particles with momentum
~k which impinge onto the interaction region and are scattered according the
amplitude f~k(θ, ϕ). (The character of outgoing wave of the second term in
(9.5) is apparent when the time factor exp(−iEt) is taken into account.)
The differential cross section dσ/dΩ is the ratio of the flux of the probability
current density due to the outgoing wave to the flux due to the impinging
plane wave. One finds

dσ

dΩ
= |f~k(θ, ϕ)|2. (9.6)

In conclusion, we require that ψ0 is a plane wave, and that the Green function
G̃0 has to be chosen in such a way as to yield an outgoing wave for large r.

Thus we need to solve the equation

(~k2 + ∆)δψ = λ
2m

~2
V (exp(i~k · ~r) + δψ) ≡ U(~r)(exp(i~k · ~r) + δψ) (9.7)

with the asymptotic condition δψ → f~k exp(ikr)/r for r → ∞. In terms of
the Green’s function G0(~r, ~r

′), which satisfies the equation

(∆ + ~k2)G0(~r, ~r
′) = δ(~r − ~r ′), (9.8)

the solution of (9.7) can be written as

δψ(~r) =

∫
G0(~r, ~r

′)U(~r ′)[(exp(i~k · ~r ′) + δψ(~r ′)]d~r ′, (9.9)

which is a form of the Lippmann-Schwinger equation [30]. The integral op-

erator G0 with kernel G0(~r, ~r
′) is connected to the operator G̃0 of (9.3) by

the equation G̃0 = 2mG0/~2.
The leading term of δψ for r → ∞ is determined by the leading term

of G0(~r, ~r
′), so we look for a solution of (9.8) with the behavior of outgoing

wave for r → ∞. Due to translation and rotation invariance (if both the
incoming beam and the scattering potential are translated or rotated by the
same amount, the scattering amplitude f~k(θ, ϕ) is unchanged), we require for
the solution a dependence only on |~r − ~r ′|.
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Recalling that ∆ 1/r = −4πδ(~r), we look for a solution of (9.8) with
~r ′ = 0 of the form −F (r)/(4πr), with F (0) = 1. The function G0(~r, ~r

′) then
will be

G0(~r, ~r
′) =

F (|~r − ~r ′|)
|~r − ~r ′| . (9.10)

The equation for F (r) is
F ′′ + k2F = 0, (9.11)

whose solutions are exp(±ikr) (outgoing and incoming wave respectively).
In conclusion for G0 we find

G0(~r, ~r
′) = − 1

4π

exp(ik|~r − ~r ′|)
|~r − ~r ′| . (9.12)

The solution of the Schrödinger equation with the Green function given
in (9.12) is denoted as ψ+

~k
and obeys the integral equation known as the

Lippmann-Schwinger equation [30]:

ψ+
~k

(~r) = exp(i~k · ~r)− 1

4π

∫
exp(ik|~r − ~r ′|)

|~r − ~r ′| U(~r ′)ψ+
~k

(~r ′) d~r ′. (9.13)

The behavior for r → ∞ can be easily checked to be as in (9.5) by
inserting the expansion

|~r − ~r ′| = r − ~r · ~r ′
r

+ O(1/r) (9.14)

into the Green function G0. We find (r̂ ≡ ~r/r)

− 1

4π

exp(ik|~r − ~r ′|)
|~r − ~r ′|

r→∞−→ − 1

4π

exp[ik(r − r̂ · ~r ′)]
r

[
1 +

~r · ~r ′
r2

]
, (9.15)

which yields for ψ+
~k

(~r) (~kf ≡ kr̂)

ψ+
~k

(~r)
r→∞−→ exp(i~k · ~r)− 1

4π

exp(ikr)

r

∫
exp (−i~kf · ~r ′)U(~r ′)ψ+

~k
(~r ′) d~r ′.

(9.16)

The solutions ψ+
~k

(~r) are normalized as the plane waves exp(i~k · ~r):

(ψ+
~k
, ψ+

~k ′
) = (2π)3δ(~k − ~k ′). (9.17)

In addition, they are orthogonal to any possible bound state solution of the
Schrödinger equation with the Hamiltonian H = H0 + λV . Together with
the bound state solutions they constitute a complete set. On a par with
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the solutions ψ+
~k

(~r) one can also envisage solutions ψ−~k (~r) with asymptotic

behavior of incoming wave. They are obtained using for H (see (9.11)) the
solution exp(−ikr). The normalization and orthogonality properties of the
functions ψ−~k (~r) are the same as for the ψ+

~k
(~r) functions.

From (9.16) we derive an implicit expression for the scattering amplitude
f~k(θ, ϕ):

f~k(θ, ϕ) = − 1

4π

∫
exp (−i~kf · ~r ′)U(~r ′)ψ+

~k
(~r ′) d~r ′ (9.18)

where the unknown function ψ+
~k

(~r) still appears. Letting ϕf ≡ exp (i~kf · ~r),
Eq. (9.18) can also be written as

f~k(θ, ϕ) = − 1

4π
(ϕf , Uψ+

~k
). (9.19)

9.2 The Born series and its convergence

Equations (9.13) and (9.19) are the starting point to obtain the expression
of the exact wave function ψ+

~k
(~r) and the scattering amplitude f~k(θ, ϕ) as a

power series in λ, in the spirit of the perturbation approach. Recalling that
U = (2m/~2)V (see (9.7)), if ϕ~k ≡ exp(i~k · ~r) for ψ+

~k
(~r) we find

ψ+
~k

= ϕ~k + λG0
2m

~2
V ϕ~k + λ2G0

2m

~2
V G0

2m

~2
V ϕ~k + · · · (9.20)

= exp(i~k · ~r) + λ

∫
G0(~r, ~r

′)
2m

~2
V (~r ′) exp(i~k · ~r ′)d~r′ +

λ2

∫
d~r ′

∫
d~r ′′G0(~r, ~r

′)
2m

~2
V (~r ′)G0(~r

′, ~r ′′)
2m

~2
V (~r ′′) exp(i~k · ~r ′′) + · · · .

Inserting the above expansion into (9.19), for the scattering amplitude
f~k(θ, ϕ) we find

f~k(θ, ϕ) =
∞∑

n=1

f
(n)
~k

(θ, ϕ) (9.21)

where f
(n)
~k

, the contribution of order n in λ to f~k(θ, ϕ), is obtained by sub-

stituting ψ+
~k

in (9.19) with the contribution of order n− 1 of the expansion

(9.20). The term of order 1 is called the Born approximation [8], and is given
by

fB
~k

(θ, ϕ) ≡ f
(1)
~k

(θ, ϕ) = − 1

4π

(
2mλ

~2

) ∫
exp[i(~k − ~kf ) · ~r ′]V (~r ′) d~r ′. (9.22)
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The term of order 2 is

f
(2)
~k

(θ, ϕ) = − 1

4π

(
2mλ

~2

)2

(ϕf , V G0V ϕ~k) (9.23)

and the general term of order n is

f
(n)
~k

(θ, ϕ) = − 1

4π

(
2mλ

~2

)n

(ϕf , V G0V · · ·G0V ϕ~k) (n times V ). (9.24)

The scattering amplitude through order n is

f
[n]
~k

(θ, ϕ) =
n∑

i=1

f
(i)
~k

(θ, ϕ) (9.25)

with f
(1)
~k

(θ, ϕ) ≡ fB
~k

(θ, ϕ), and the series
∑∞

1 f
(i)
~k

(θ, ϕ) is known as the Born

series [8]. Of course, when using (9.25) for calculating the differential cross
section dσ/dΩ only terms of order not exceeding n should be consistently
retained.

For a discussion of the range of validity and the convergence of the expan-
sions (9.20) and (9.21) it is convenient to pose the problem in the framework
of integral equations in the Hilbert space L2 [40, 54], which provides a natural
notion of convergence. To this purpose, since ψ+

~k
(~r) is not square integrable,

we start assuming that the potential V (~r) is summable
∫
|V (~r)|d~r < ∞ (9.26)

and multiply Eq. (9.13) by |V (~r)| 12 [41, 20, 45]. Letting εV (~r) ≡ V (~r)/|V (~r)|
(εV (~r) ≡ 0 if V (~r) = 0) and defining

ζ+
~k

(~r) ≡ |V (~r)| 12 ψ+
~k

(~r) (9.27)

K ′(~r, ~r ′) ≡ −2m

~2
G0(~r, ~r

′)|V (~r)| 12 |V (~r ′)| 12 εV (~r ′), (9.28)

Eq. (9.13) reads:

ζ+
~k

(~r) = |V (~r)| 12 exp (i~k · ~r) + λ

∫
K ′(~r, ~r ′)ζ+

~k
(~r ′) d~r ′. (9.29)

Now the function in front of the integral is square integrable and the
kernel K ′(~r, ~r ′) is square integrable too

∫
d~r

∫
d~r ′|K ′(~r, ~r ′)|2 =

∫
d~r

∫
d~r ′

|V (~r)||V (~r ′)|
|~r − ~r ′|2 < ∞ (9.30)
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provided the potential V (~r) obeys the additional condition
∫

d~r ′
|V (~r ′)|
|~r − ~r ′|2 < ∞. (9.31)

Equation (9.29) can be formally written as

ζ+
~k

= ζ0 + λK̂ ′ζ+
~k

, ζ0 ≡ |V (~r)| 12 exp (i~k · ~r), (9.32)

K̂ ′ being the integral operator with kernel K ′ given in (9.28). The function
ζ+
~k

is formally given as

ζ+
~k

= (I − λK̂ ′)−1ζ0 (9.33)

where the inverse operator (I − λK̂ ′)−1 exists except for those values of λ
(singular values) for which I − λK̂ ′ has the eigenvalue 0.

Since by (9.30) K̂ ′ is a compact operator, the singular values are isolated
points which obey the inequality |λ| ≥ ‖K̂ ′‖−1, since the spectrum of an
operator is contained in the closed disc of radius equal to the norm of the
operator. Thus, when ‖λK̂ ′‖ < 1 the inverse operator (I−λK̂ ′)−1 exists and
is given by the Neumann series

(I − λK̂ ′)−1 = I + λK̂ ′ + λ2K̂ ′2 + · · · ≡ I + RK′
λ , (9.34)

which is clearly norm convergent. By the inequality

‖λK̂ ′‖2 ≤ λ2 Tr(K̂ ′ †K̂ ′) = λ2

∫
d~r

∫
d~r ′|K ′(~r, ~r ′)|2 (9.35)

we see that, if

λ2 m2

4π2~4

∫
d~r

∫
d~r ′

|V (~r)||V (~r ′)|
|~r − ~r ′|2 < 1, (9.36)

the condition ‖λK̂ ′‖ < 1 is satisfied and consequently the inverse operator
(I − λK̂ ′)−1 exists. In conclusion, a sufficient condition for the convergence
of the expansion

ζ+
~k

= ζ0 + λK̂ ′ζ0 + λ2K ′2ζ0 + · · · (9.37)

in the L2 norm is that (9.36) holds [43]. Since ‖K̂ ′‖4 ≤ Tr(K̂ ′ †K̂ ′K̂ ′ †K̂ ′),
by the Riemann-Lebesgue Lemma it is possible to prove [56] that for any
given λ the condition ‖λK̂ ′‖ < 1 is satisfied provided the energy ~2k2/2m is
sufficiently large.

The implications for the convergence of the expansion (9.21) of the scat-
tering amplitude are immediate, once Eq. (9.19) is written in the form

f~k(θ, ϕ) = −λ
m

2π~2

(|V (~r)| 12 ϕf (~r)εV (~r), |V (~r)| 12 ψ+
~k

(~r)
)
. (9.38)
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The Born series converges whenever the iterative solution of (9.32) converges,
that is if (9.30) is satisfied. As noted above, for any given λ this happens
for sufficiently large energy. An additional useful result is that the Born
approximation fB

~k
(θ, ϕ) (or the expansion f

[n]
~k

(θ, ϕ) through any n) converges

to the exact scattering amplitude f~k(θ, ϕ) when the energy grows to infinity.
More precisely [48], if (9.26) holds then

|f~k(θ, ϕ)− f
[n]
~k

(θ, ϕ)| k→∞−→ 0. (9.39)

If ‖λK̂ ′‖ ≥ 1 the Neumann series (9.34) does not converge and the per-
turbation approach is no longer viable. However, if λ is not a singular value
Eq. (9.32) can be solved by reducing it to an integral equation with a kernel
D of norm less than 1 plus a problem of linear algebra [54]. In fact, for
any positive value L the operator K̂ ′ can be approximated by a finite rank
operator F

Fζ =
n∑

i=1

αi(~r)(βi(~r
′), ζ(~r ′)) (9.40)

such that, if D ≡ K̂ ′ − F , ‖D‖ < 1/L. Equation (9.32) then reads

(I − λD)ζ+
~k

= ζ0 + λFζ+
~k

(9.41)

Since for |λ| < L we have ‖λD‖ < 1, ζ+
~k

can be written in terms of the

appropriate Neumann series I + RD
λ (see (9.34)):

ζ+
~k

= ζ0 + RD
λ ζ0 + Fζ+

~k
+ RD

λ Fζ+
~k

. (9.42)

The unknown quantities (βi, ζ
+
~k

) which appear in the RHS of (9.42) are de-
termined by solving the linear-algebraic problem obtained by left-multiplying
both sides of the equation by βr, 1 ≤ r ≤ n. The values of λ in the range
|λ| < L for which the algebraic problem is not soluble are the singular values
of (9.32) in that range. Thus, Eq. (9.32) can be solved for any non-singular
value.

10 Time Dependent Perturbations

A rather different problem is presented by the case that a time indepen-
dent Hamiltonian H0, for which the spectrum and the eigenfunctions are
known, is perturbed by a time dependent potential V (t). This occurs, for
example, when an atom or a molecule interacts with an external electromag-
netic field. For the total Hamiltonian H = H0 + λV (t) stationary states no
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longer exist, and the relevant question is how the perturbation affects the
time evolution of the system. We assume that the state ψ is known at a
given time, which can be chosen as t = 0, and search for ψ(t). Obviously,
any time t0 prior to the setting on of the perturbation λV (t) could be chosen
instead of t = 0.

The time dependent Schrödinger equation reads

i~
∂ψ

∂t
= Hψ(t) = H0ψ(t) + λV (t)ψ(t). (10.1)

At any t, ψ(t) can be expanded in the basis of the eigenfunctions ϕn(t) of
H0 :

H0ϕn(t) = Enϕn(t)

ϕn(t) = ϕn(0) exp(−iEnt/~) ≡ ζn exp(−iEnt/~). (10.2)

For the sake of simplicity we treat H0 as if it only had discrete spectrum,
but the presence of a continuous component of the spectrum does not create
any problem.

We can write [11, 42]

ψ(t) =
∑

n

an(t)ϕn(t). (10.3)

Note that the basis vectors ϕn(t) are themselves time dependent (by the phase
factor given in(10.2)), whereas the vectors ζn are time independent. The
isolation of the contribution of H0 to the time evolution as a time dependent
factor allows a simpler system of equations for the unknown coefficients an(t).

Substituting expansion (10.3) into (10.1) we find

i~
∑

n

ȧn(t)ϕn(t) +
∑

n

an(t)Enϕn(t) =

∑
n

an(t)Enϕn(t) + λ
∑

n

an(t)V (t)ϕn(t).

By left multiplying by ϕk(t), for the coefficients ak(t) we find the system of
equations

i~ȧk(t) = λ
∑

n

an(t)(ϕk(t), V (t)ϕn(t)) ≡ λ
∑

n

V I
kn(t)an(t), (10.4)

where we have defined

V I
kn(t) = (ϕk(t), V (t)ϕn(t)). (10.5)
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The matrix elements V I
kn(t) are the matrix elements of an operator V I(t)

between the time independent vectors ζk, ζn. Indeed, since

ϕn(t) = ζn exp(−iEnt/~) = exp(−iH0t/~)ζn, (10.6)

Eq. (10.5) can be written as

V I
kn(t) =

(
exp(−iH0t/~)ζk, V (t) exp(−iH0t/~)ζn

) ≡ (ζk, V
I(t)ζn), (10.7)

where the operator V I(t) is defined as follows:

V I(t) ≡ exp(iH0t/~)V (t) exp(−iH0t/~). (10.8)

System (10.4) must be supplemented with the appropriate initial condi-
tions, which depend on the particular problem. The commonest application
of time dependent perturbation theory is the calculation of transition proba-
bilities between eigenstates of H0. Thus, we assume that at t = 0 the system
is in an eigenstate of the unperturbed Hamiltonian H0, say the state ϕ1. In
this case a1(0) = 1, an(0) = 0 if n 6= 1.

In the spirit of perturbation theory, each an is expanded into powers of λ

a1(t) = 1 +
∑
r=1

λra
(r)
1 (t), an(t) =

∑
r=1

λra(r)
n (t) n 6= 1, (10.9)

and terms of equal order are equated. For a
(r)
k we find

i~ȧ(r)
k =

∑
n

V I
kna

(r−1)
n , r > 0. (10.10)

By (10.9), for any r > 0, a
(r)
n (0) = 0. As a consequence, for r = 1 we have

a
(1)
k =

−i

~

∫ t

0

V I
k1(t1)dt1 =

−i

~

∫ t

0

(ζk, V (t1)ζ1) exp(i∆Ek1t1/~) dt1, (10.11)

where ∆Ek1 ≡ Ek − E1. For r = 2 we find

i~ȧ(2)
k =

∑
n

V I
kn(t)a(1)

n (t) =
−i

~
∑

n

V I
kn(t)

∫ t

0

V I
n1(t1)dt1

whose solution is

a
(2)
k (t) =

(−i

~

)2
∫ t

0

dt2

∫ t2

0

dt1
∑

n

V I
kn(t2)V

I
n1(t1) =

(−i

~

)2
∫ t

0

dt2

∫ t2

0

dt1
∑

n

(ζk, V (t2)ζn) exp(i∆Eknt2/~)×

(ζn, V (t1)ζ1) exp(i∆En1t1/~). (10.12)
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It is clear how the calculation proceeds for higher values of r. The general
expression is

a
(r)
k (t) =

(−i

~

)r
∫ t

0

dtr

∫ tr

0

dtr−1 · · ·
∫ t3

0

dt2

∫ t2

0

dt1 ×
∑

V I
knr

(tr)V
I
nrnr−1

(tr−1) · · ·V I
n3n2

(t2)V
I
n21(t1). (10.13)

By the completeness of the vectors ζn, the sums over the intermediate states
can be substituted by the identity and the expression of a

(r)
k is simplified into

a
(r)
k (t) =

(−i

~

)r
∫ t

0

dtr

∫ tr

0

dtr−1 · · ·
∫ t3

0

dt2

∫ t2

0

dt1
(
ζk, V

I(tr)V
I(tr−1) · · ·V I(t2)V

I(t1)ζ1

)
. (10.14)

It is customary to write (10.14) in a different way. The r-dimensional
cube 0 ≤ ti ≤ t, 1 ≤ i ≤ r, can be split into r! subdomains

0 ≤ tp1 ≤ tp2 · · · ≤ tpr−1 ≤ tpr ≤ t, (10.15)

with {p1, p2, · · · pr−1, pr} a permutation of {1, 2, · · · , r − 1, r}. The time or-
dered product of r (non-commuting) operators V I(tp1), V I(tp2), · · · V I(tpr)
is introduced according to the definition

T
[
V I(tp1) · · ·V I(tpr)

] ≡ V I(tr) · · ·V I(t1), t1 ≤ t2 ≤ · · · ≤ tr. (10.16)

If (−iλ/~)r(ζk, T
[
V I(tp1) · · ·V I(tpr)

]
ζ1) is integrated over the r-cube, then

each of the r! subdomains defined by (10.15) yields the same contribution.
As a consequence Eq. (10.13) can be written as

a
(r)
k (t) =

1

r!

(−i

~

)r
∫ t

0

dtr

∫ t

0

dtr−1 · · ·
∫ t

0

dt2

∫ t

0

dt1
(
ζk, T

[
V I(tr)V

I(tr−1) · · ·V I(t2)V
I(t1)

]
ζ1

)
. (10.17)

The amplitudes ak(t) can then be written as

ak(t) =
(
ζk, T

[
exp

(−iλ

~

) ∫ t

0

V I(t′)dt′
]
ζ1

)
(10.18)

with obvious significance of the T -exponential: each monomial in the V I

operators which appear in the expansion of the exponential is to be time
ordered according to the T -prescription. If the initial state is given at time
t0 the integral appearing in the T -exponential should start at t0. We define

U I(t, t0) ≡ T
[
exp

(−iλ

~

) ∫ t

t0

V I(t′)dt′
]
. (10.19)
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The expansion of the T -exponential into monomials in the V I operators is
called the Dyson series [13, 14]. It is extensively employed in perturbative
quantum field theory.

From (10.18) and (10.19) it is easy to derive an expression for the time
evolution operator U(t, t0) such that

U(t, t0)ψ(t0) = ψ(t). (10.20)

Indeed, ψ(t) and ψ(t0) can be expanded in the basis of the vectors ϕn(t) and
ϕn(t0) respectively as in (10.3). By the linearity of the Schrödinger equation
it suffices to determine

(
ϕk(t), U(t, t0)ϕn(t0)

)
, which we already know to be(

ζk, U
I(t, t0)ζn). We have

(
ϕk(t), U(t, t0)ϕn(t0)

)
=

(
exp(−iH0t/~)ζk, U(t, t0) exp(−iH0t0/~)ζn

)
=

(
ζk, exp(iH0t/~)U(t, t0) exp(−iH0t0/~)ζn

)
.

As a consequence we find the equation

U(t, t0) = exp(−iH0t/~)T
[
exp

(−iλ

~

) ∫ t

t0

V I(t′)dt′
]
exp(iH0t0/~), (10.21)

which provides the perturbation expansion of the evolution operator U(t, t0)
in powers of λ.

It can be proved that if the operator function V (t) is strongly continuous
and the operators V (t) are bounded, then the expansion which defines the T -
exponential is norm convergent to a unitary operator, as expected [35]. The
restriction to bounded operators V (t) does not detract from the range of
applications of Eqs. (10.18) and (10.21), since time dependent perturbation
theory is almost exclusively used for treating interactions of a system with
external fields, which generate bounded interactions.

11 Future Directions

The long and honorable service of perturbation theory in every sector of
quantum mechanics must be properly acknowledged. Its future is perhaps
already in our past: the main achievement is its application to quantum field
theory where, just to quote an example, the agreement between the mea-
sured value and the theoretical prediction of the electron magnetic moment
anomaly to ten significant digits has no rivals.

Despite its successes, still perturbation theory is confronted with funda-
mental questions. In most of realistic problems it is unknown whether the
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perturbation series is convergent or at least asymptotic. In non-relativistic
quantum mechanics this does not represent a practical problem since only a
limited number of terms can be calculated, but in quantum field theory, where
higher order terms are in principle calculable, this calls for dedicate investi-
gations. There, in particular, conditions for recovering the exact amplitudes
from the first terms of the series by such techniques as the Padé approxi-
mants or the self similar approximants, and the estimate on the bound of the
error, deserve further investigation.

Somewhat paradoxically, it can be said that the future of perturbation
theory is in the non-perturbative results (analyticity domains, large coupling
constant behavior, tunneling effect...) - an issue where much work has al-
ready been done - since they have proved to be complementary to the use of
perturbation theory.
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[5] Böhm A (1993) Quantum mechanics, foundations and applications,
Springer Verlag, New York, pp. 208-215

[6] Borel E (1899) Mémoires sur le séries divergentes. Ann. Sci. École
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fonctions rationelles. Ann. Sci. École Norm. Sup. Suppl. [3] 9:1-93

[33] Rayleigh JW (1894-1896) The theory of sound, Vol. I, Macmillan, Lon-
don, pp 115-118

[34] Reed M, Simon B (1978) Methods of modern mathematical physics,
Vol IV, Academic Press, New York, pp. 10-44

[35] Reed M, Simon B (1975) Methods of modern mathematical physics,
Vol II, Academic Press, New York, pp. 282-283

[36] Rellich F (1937) Störungstheorie der Spektralzerlegung I. Math. Ann.
113:600-619

[37] Rellich F (1937) Störungstheorie der Spektralzerlegung II. Math. Ann.
113:677-685

[38] Rellich F (1939) Störungstheorie der Spektralzerlegung III. Math. Ann.
116:555-570

[39] Rellich F (1940) Störungstheorie der Spektralzerlegung IV. Math. Ann.
117:356-382
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bei adiabatischen Prozessen. Phys. Zschr. 30: pp. 467-470

[50] Watson G (1912) A theory of asymptotic series. Philos. Trans. Roy.
Soc. London Ser. A 211:279-313

[51] Weyl H (1931) The theory of groups and quantum mechanics, Dover,
New York

[52] Wigner EP (1935) On a modification of the Rayleigh-Schrödinger per-
turbation theory. Math. Natur. Anz. (Budapest). 53:477-482

[53] Wigner EP (1959) Group theory and its application to the quantum
mechanics of atomic spectra, Academic Press, New York

[54] Yosida K (1991) Lectures on differential and integral equations, Dover,
New York, pp. 115-131

[55] Yukalov VI, Yukalova EP (2007) Methods of self similar factor approx-
imants. Physics Letters A 368:341-347

50



[56] Zemach C, Klein A (1958) The Born expansion in non-relativistic quan-
tum theory I. Nuovo Cimento 10:1078-1087

Books and Reviews

Hirschfelder JO, Byers Brown W, Epstein ST (1964) Recent developments
in perturbation theory, in Advances in quantum chemistry, Vol. 1,
Academic Press, New York, pp. 255-374

Killingbeck J (1977) Quantum-mechanical perturbation theory. Rep. Progr.
Phys. 40:963-1031

Mayer I (2003) Simple theorems, proofs and derivations in quantum chem-
istry, Kluwer Academic/Plenum Publishers, New York, pp. 69-120

Morse PM, Feshbach H (1953) Methods of theoretical physics, part 2,
McGraw-Hill, New York, pp. 1001-1106

Wilcox CH (1966) Perturbation theory and its applications in quantum
mechanics, Wiley, New York

51


