Skip to main content

Quantum Algorithms and Complexity for Continuous Problems

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

Most continuous mathematical formulations arising in science and engineeringcan only be solved numerically and therefore approximately. We shall alwaysassume that we are dealing with a numerical approximation to the solution.

There are two major motivations for studying quantum algorithms andcomplexity for continuous problems.

  1. 1.

    Are quantum computers more powerful than classical computers forimportant scientific problems? How much more powerful? This would answerthe question posed by Nielsen and Chuang (p. 47 in [48]).

  2. 2.

    Many important scientific and engineering problems have continuousformulations. These problems occur in fields such as physics, chemistry,engineering and finance.The continuous formulations include path integration, partialdifferential equations (in particular, the Schrödinger equation) andcontinuous optimization.

To answer the first question we must know the classical computationalcomplexity (for brevity, complexity)...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Black box model :

This model assumes we can collect knowledge about aninput f through queries without knowing how the answer to the query is computed.A synonym for black box is oracle.

Classical computer:

A computer which does not use the principles of quantum computing to carry out itscomputations.

Computational complexity :

In this article, complexity for brevity.The minimal cost of solving a problem by an algorithm. Some authors use theword complexity when cost would be preferable. An upper bound on thecomplexity is given by the cost of an algorithm. A lower bound is given by a theoremwhich states there cannot be an algorithm which does better.

Continuous problem :

A problem involving real or complex functions of realor complex variables. Examples of continuous problem are integrals, pathintegrals, and partial differential equations.

Cost of an algorithm :

The price of executing an algorithm. The cost depends on the model of computation.

Discrete problem:

A problem whose inputs are from a countable set. Examples of discrete problems are integer factorization, traveling salesman and satisfiability.

e-Approximation:

Most real-world continuous problems can only besolved numerically and therefore approximately, that is to within anerror threshold e. The definition of e-approximation depends onthe setting. See worst-case setting, randomized setting, quantum setting.

Information-based complexity :

The discipline that studies algorithms and complexity of continuous problems.

Model of computation :

The rules stating what is permitted in a computation and how much it costs. The modelof computation is an abstraction of a physical computer. Examples of modelsare Turing machines, real number model, quantum circuit model.

Optimal algorithm :

An algorithm whose cost equals the complexity of the problem.

Promise:

A statement of what is known about a problem a priori before anyqueries are made. An example in quantum computation is the promisethat an unknown 1-bit function is constant or balanced. Ininformation-based complexity a promise is also called global information.

Quantum computing speedup :

The amount by which a quantum computer can solve a problem faster than a classicalcomputer. To compute the speedup one must know the classical complexity and it isdesirable to also know the quantum complexity. Grover proved quadratic speedupfor search in an unstructured database. Its only conjectured that Shor's algorithm provides exponential speedup for integer factorization since the classical complexity is unknown.

Query:

One obtains knowledge about a particular input through queries. For example, if the problem is numerical approximation of \( { \int_0^1 f(x)\mskip2mu\mathrm{d} x } \) a query might be the evaluation of fat a point. In information-based complexity the same concept is called aninformation operation.

Quantum setting:

There are a number of quantum settings. An example is a guarantee of error at most e with probability greater than 1/2.

Qubit complexity :

The minimal number of qubits to solve a problem.

Query complexity :

The minimal number of queries required to solve the problem.

Randomized setting:

In this setting the expected error with respect tothe probability measure generating the random variables is at most e. Thecomputation is randomized. An important example of a randomized algorithm isthe Monte Carlo method.

Worst-case setting:

In this setting an error of at most e is guaranteed for all inputs satisfying the promise. The computation is deterministic.

Bibliography

  1. Abrams DS, Lloyd S (1997)Simulation of Many-Body Fermi Systems on a Universal Quantum Computer.Phys Rev Lett 79(13):2586–2589; http://arXiv.org/quant-ph/9703054

    ADS  Google Scholar 

  2. Abrams DS, Lloyd S (1999)Quantum Algorithm Providing Exponential Speed Increase forFinding Eigenvalues and Eigenvectors.Phys Rev Lett 83:5162–5165

    ADS  Google Scholar 

  3. Abrams DS, Williams CP (1999)Fast quantum algorithms for numerical integrals andstochastic processes. http://arXiv.org/quant-ph/9908083

  4. Bakhvalov NS (1977)Numerical Methods. Mir Publishers, Moscow

    Google Scholar 

  5. Babuska I, Osborn J (1991)Eigenvalue Problems. In: Ciarlet PG, Lions JL (eds) Handbook of Numerical Analysis, vol II.North-Holland, Amsterdam, pp 641–787

    Google Scholar 

  6. Beals R, Buhrman H, Cleve R, Mosca R, de Wolf R (1998)Quantum lower bounds by polynomials. Proceedings FOCS'98, pp 352–361.http://arXiv.org/quant-ph/9802049

  7. Bennett CH, Bernstein E, Brassard G, Vazirani U (1997)Strengths and weaknesses of quantum computing.SIAM J Comput 26(5):1510–1523

    MathSciNet  MATH  Google Scholar 

  8. Bernstein E, Vazirani U (1997)Quantum complexity theory.SIAM J Comput 26(5):1411–1473

    MathSciNet  MATH  Google Scholar 

  9. Berry DW, Ahokas G, Cleve R, Sanders BC (2007)Efficient quantum algorithms for simulating sparse Hamiltonians.Commun Math Phys 270(2):359–371; http://arXiv.org/quant-ph/0508139

    MathSciNet  ADS  MATH  Google Scholar 

  10. Bessen AJ (2007)On the complexity of classical and quantum algorithms fornumerical problems in quantum mechanics. Ph?D thesis. Department ofComputer Science, Columbia University

    Google Scholar 

  11. Boghosian BM, Taylor W (1998)Simulating quantum mechanics on a quantum computer. Physica D 120:30–42 http://arXiv.org/quant-ph/9701019

    MathSciNet  ADS  MATH  Google Scholar 

  12. Brassard G, Hoyer P, Mosca M, Tapp A (2002)Quantum Amplitude Amplification and Estimation.Contemporary Mathematics, vol 305. Am Math Soc, Providence, pp 53–74. http://arXiv.org/quant-ph/0005055

    Google Scholar 

  13. Brown KR, Clark RJ, Chuang IL (2006)Limitations of Quantum Simulation Examined by Simulating a Pairing Hamiltonianusing Magnetic Resonance.Phys Rev Lett 97(5):050504; http://arXiv.org/quant-ph/0601021

    ADS  Google Scholar 

  14. Cameron RH (1951)A Simpson's rule for the numerical evaluation of Wiener'sintegrals in function space.Duke Math J 8:111–130

    Google Scholar 

  15. Chen Z, Yepez J, Cory DG (2006)Simulation of the Burgers equation by NMR quantum information processing.Phys Rev A 74:042321; http://arXiv.org/quant-ph/0410198

  16. Chorin AJ (1973)Accurate evaluation of Wiener integrals.Math Comp 27:1–15

    MathSciNet  MATH  Google Scholar 

  17. Cleve R, Ekert A, Macchiavello C, Mosca M (1996)Quantum Algorithms Revisited.Proc R Soc Lond A 454(1969):339–354

    MathSciNet  ADS  Google Scholar 

  18. Collatz L (1960)The Numerical Treatment of Differential Equations.Springer, Berlin

    MATH  Google Scholar 

  19. Courant C, Hilbert D (1989)Methods of Mathematical Physics, vol I.Wiley Classics Library. Wiley-Interscience, New York

    Google Scholar 

  20. Curbera F (2000)Delayed curse of dimension for Gaussian integration.J Complex 16(2):474–506

    MathSciNet  MATH  Google Scholar 

  21. Dawson CM, Eisert J, Osborne TJ (2007)Unifying variational methods for simulating quantum many-body systems.http://arxiv.org/abs/0705.3456v1

  22. Demmel JW (1997)Applied Numerical Linear Algebra. SIAM, Philadelphia

    MATH  Google Scholar 

  23. Egorov AD, Sobolevsky PI, Yanovich LA (1993)Functional Integrals: Approximate Evaluation and Applications.Kluwer, Dordrecht

    Google Scholar 

  24. Feynman RP (1982)Simulating physics with computers.Int J Theor Phys 21:476

    MathSciNet  Google Scholar 

  25. Forsythe GE, Wasow WR (2004)Finite-Difference Methods for Partial Differential Equations.Dover, New York

    MATH  Google Scholar 

  26. Grover L (1997)Quantum mechanics helps in searching for a needlein a haystack. Phys Rev Lett 79(2):325–328; http://arXiv.org/quant-ph/9706033

    ADS  Google Scholar 

  27. Heinrich S (2002)Quantum Summation with an Application to Integration.J Complex 18(1):1–50; http://arXiv.org/quant-ph/0105116

    MathSciNet  MATH  Google Scholar 

  28. Heinrich S (2003)From Monte Carlo to Quantum Computation. In: Entacher K, Schmid WC, Uhl A (eds)Proceedings of the 3rd IMACS Seminar on Monte Carlo MethodsMCM2001, Salzburg. Special Issue of Math Comput Simul 62:219–230

    MathSciNet  MATH  Google Scholar 

  29. Heinrich S (2003)Quantum integration in Sobolev spaces.J Complex 19:19–42

    MathSciNet  MATH  Google Scholar 

  30. Heinrich S (2004)Quantum Approximation II. Sobolev Embeddings.J Complex 20:27–45; http://arXiv.org/quant-ph/0305031

    MathSciNet  MATH  Google Scholar 

  31. Heinrich S (2006)The randomized complexity of elliptic PDE.J Complex 22(2):220–249

    MathSciNet  MATH  Google Scholar 

  32. Heinrich S (2006)The quantum query complexity of elliptic PDE.J Complex 22(5):691–725

    MathSciNet  MATH  Google Scholar 

  33. Heinrich S, Milla B (2007)The randomized complexity of initial value problems.Talk presented at First Joint International Meeting between the AmericanMathematical Society and the Polish Mathematical Society, Warsaw, Poland

    Google Scholar 

  34. Heinrich S, Novak E (2002) Optimal summation by deterministic, randomized and quantumalgorithms. In: Fang KT, Hickernell FJ, Niederreiter H (eds) Monte Carlo and Quasi-Monte CarloMethods 2000. Springer, Berlin

    Google Scholar 

  35. Heinrich S, Kwas M, Wozniakowski H (2004)Quantum Boolean Summation with Repetitions in the Worst-Average Setting. In: Niederreiter H (ed)Monte Carlo and Quasi-Monte Carlo Methods, 2002. Springer, New York, pp 27–49

    Google Scholar 

  36. Jaksch P, Papageorgiou A (2003)Eigenvector approximation leading to exponential speedup of quantumeigenvalue calculation.Phys Rev Lett 91:257902; http://arXiv.org/quant-ph/0308016

  37. Jordan SP (2005)Fast Quantum Algorithm for Numerical Gradient Estimation.Phys Rev Lett 95:050501; http://arXiv.org/quant-ph/0405146

  38. Kacewicz BZ (1984)How to increase the order to get minimal-error algorithmsfor systems of ODEs.Numer Math 45:93–104

    MathSciNet  MATH  Google Scholar 

  39. Kacewicz BZ (2006)Almost optimal solution of initial-value problems by randomized andquantum algorithms.J Complex 22(5):676–690

    MathSciNet  MATH  Google Scholar 

  40. Keller HB (1968)Numerical methods for two-point boundary-value problems.Blaisdell Pub Co, Waltham

    MATH  Google Scholar 

  41. Knuth DE (1997)The Art of Computer Programming, vol 2: Seminumerical Algorithms, 3rd edn.Addison-Wesley Professional, Cambridge

    Google Scholar 

  42. Kwas M (2005)Quantum algorithms and complexity for certain continuous andrelated discrete problems.Ph?D thesis. Department of Computer Science, Columbia University

    Google Scholar 

  43. Kwas M, Li Y (2003)Worst case complexity of multivariate Feynman–Kac path integration.J Complex 19:730–743

    MathSciNet  MATH  Google Scholar 

  44. Manin Y (1980)Computable and Uncomputable. Sovetskoye Radio, Moscow (in Russian)

    Google Scholar 

  45. Manin YI (1999)Classical computing, quantum computing, and Shor'sfactoring algorithm. http://arXiv.org/quant-ph/9903008

  46. Morita S, Nishimori H (2007)Convergence of Quantum Annealing with Real-Time Schrödinger Dynamics.J Phys Soc Jpn 76(6):064002; http://arXiv.org/quant-ph/0702252

    MathSciNet  ADS  Google Scholar 

  47. Nayak A, Wu F (1999)The quantum query complexity of approximating the medianand related statistics. In: Proc STOC 1999, Association for Computing Machinery, New York, pp 384–393. http://arXiv.org/quant-ph/9804066

  48. Nielsen MA, Chuang IL (2000)Quantum Computation andQuantum Information. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  49. Novak E (1988)Deterministic and Stochastic Error Bounds in Numerical Analysis.Lecture Notes in Mathematics, 1349. Springer, Berlin

    Google Scholar 

  50. Novak E (2001)Quantum complexity of integration.J Complex 17:2–16; http://arXiv.org/quant-ph/0008124

    MATH  Google Scholar 

  51. Ortiz G, Gubernatis JE, Knill E, Laflamme R (2001)Quantum algorithms for fermionic simulations.Phys Rev A 64(2):022319; http://arXiv.org/cond-mat/0012334

    ADS  Google Scholar 

  52. Papageorgiou A (2004)Average case quantum lower bounds for computing the boolean mean.J Complex 20(5):713–731

    MATH  Google Scholar 

  53. Papageorgiou A (2007)On the complexity of the multivariateSturm–Liouville eigenvalue problem.J Complex 23(4–6):802–827

    MATH  Google Scholar 

  54. Papageorgiou A, Traub JF (2005)Qubit complexity of continuous problems.http://arXiv.org/quant-ph/0512082

  55. Papageorgiou A, Wozniakowski H (2005)Classical and Quantum Complexity of the Sturm–LiouvilleEigenvalue Problem.Quantum Inf Process 4(2):87–127; http://arXiv.org/quant-ph/0502054

  56. Paredes B, Verstraete F, Cirac JI (2005)Exploiting Quantum Parallelism to Simulate Quantum Random Many-Body Systems.Phys Rev Lett 95:140501; http://arXiv.org/cond-mat/0505288

  57. Plaskota L (1996)Noisy Information and Computational Complexity.Cambridge University Press, Cambridge

    MATH  Google Scholar 

  58. Plaskota L, Wasilkowski GW, Wozniakowski H (2000)A new algorithm and worst case complexity for Feynman–Kac path integration.J Comp Phys 164(2):335–353

    Google Scholar 

  59. Ritter K (2000)Average-Case Analysis of Numerical Problems.Lecture Notes in Mathematics, 1733. Springer, Berlin

    MATH  Google Scholar 

  60. Shor PW (1997)Polynomial-time algorithms for prime factorization anddiscrete logarithm on a quantum computer.SIAM J Comput 26(5):1484–1509

    MathSciNet  MATH  Google Scholar 

  61. Somma R, Ortiz G, Knill E, Gubernatis (2003)Quantum Simulations of Physics Problems. In: Pirich AR, Brant HE (eds)Quantum Information and Computation. Proc SPIE 2003, vol 5105. The International Society for Optical Engineering, Bellingham, pp 96–103. http://arXiv.org/quant-ph/0304063

  62. Sornborger AT, Stewart ED (1999)Higher Order Methods for Simulations on Quantum Computers.Phys Rev A 60(3):1956–1965; http://arXiv.org/quant-ph/9903055

    ADS  Google Scholar 

  63. Strang G, Fix GJ (1973)An Analysis of the Finite Element Method. Prentice-Hall,Englewood Cliffs

    MATH  Google Scholar 

  64. Szkopek T, Roychowdhury V, Yablonovitch E, Abrams DS (2005)Egenvalue estimation of differential operators with a quantum algorithm.Phys Rev A 72:062318

    ADS  Google Scholar 

  65. Titschmarsh EC (1958)Eigenfunction Expansions Associated with Second-OrderDifferential Equations, Part B. Oxford University Press, Oxford

    Google Scholar 

  66. Traub JF (1999)A continuous model of computation.Phys Today May:39–43

    Google Scholar 

  67. Traub JF, Werschulz AG (1998)Complexity and Information.Cambridge University Press, Cambridge

    MATH  Google Scholar 

  68. Traub JF, Wozniakowski H (1980)A general theory of optimal algorithms.ACM Monograph Series. Academic Press, New York

    Google Scholar 

  69. Traub JF, Wozniakowski H (1992)The Monte Carlo algorithm with a pseudorandom generator.Math Comp 58(197):323–339

    Google Scholar 

  70. Traub JF, Wozniakowski H (2002)Path integration on a quantum computer.Quantum Inf Process 1(5):365–388; http://arXiv.org/quant-ph/0109113

  71. Traub JF, Wasilkowski GW, Wozniakowski H (1988)Information-Based Complexity. Academic Press, New York

    Google Scholar 

  72. Wasilkowski GW, Wozniakowski H (1996)On tractability of path integration.J Math Phys 37(4):2071–2088

    Google Scholar 

  73. Weinberger HF (1956)Upper and Lower Bounds for Eigenvalues by Finite Difference Methods.Commun Pure Appl Math IX:613–623

    MathSciNet  Google Scholar 

  74. Weinberger HF (1958)Lower Bounds for Higher Eigenvalues by Finite Difference Methods.Pacific J Math 8(2):339–368

    MathSciNet  MATH  Google Scholar 

  75. Werschulz AG (1991)The Computational Complexity of Differential and Integral Equations.Oxford University Press, Oxford

    MATH  Google Scholar 

  76. Wisner S (1996)Simulations of Many-Body Quantum Systems by a Quantum Computer.http://arXiv.org/quant-ph/96

  77. Wozniakowski H (2006)The Quantum Setting with Randomized Queries for Continuous Problems.Quantum Inf Process 5(2):83–130

    Google Scholar 

  78. Yepez J (2002)An efficient and accurate quantum algorithm for the Dirac equation.http://arXiv.org/quant-ph/0210093

  79. Zalka C (1998)Simulating quantum systems on a quantum computer.Proc Royal Soc Lond A 454(1969):313–322; http://arXiv.org/quant-ph/9603026

    ADS  MATH  Google Scholar 

Download references

Acknowledgments

We are grateful to Erich Novak, University of Jena, and Henryk Wozniakowski,Columbia University and University of Warsaw, for their very helpful comments.We thank Jason Petras, Columbia University, for checking the complexityestimates appearing in the tables.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Papageorgiou, A., Traub, J.F. (2009). Quantum Algorithms and Complexity for Continuous Problems. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_424

Download citation

Publish with us

Policies and ethics