Skip to main content

Brittle Tectonics: A Non-linear Dynamical System

  • Reference work entry
  • 214 Accesses

Definition of the Subject

Brittle deformation is the primary mode of deformation of Earth's crust. At the long timescale it is manifested by faulting, and on the short timescale by earthquakes. It is one of the best-known examples of a system exhibiting self‐organized criticality. A full understanding of this system is essential to the evaluation of earthquake hazard.

Introduction

The upper part of Earth's crust is brittle and under a state of all-round compression. It responds to deformation by faulting: the formation and propagation of shear cracks. The crack walls support normal stresses and hence fault propagation must overcome not only the rupture resistance of the fault tips but friction between its interior interfaces. This friction is usually velocity weakening, such that any slippage results in stick-slip instability. The resulting dynamically running crack-like shear instability radiates elastic waves, producing the shaking known as an earthquake. Thus brittle tectonics...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Ductile shear zone:

A quasi‐planar tabular zone of localized sheardeformation in the semi‐brittle to fully plastic regimes.

Earthquake:

Dynamically running shear instability on a fault.

Fault:

A shear crack with friction between its interfaces.

Mylonite:

A metamorphic rock with a fabric produced by sheardeformation.

Suprafault:

The shear relaxation structure that includes a fault and itsassociated ductile shear zone.

Bibliography

Primary Literature

  1. Ackermann RV, Schlische RW, Withjack MO (2001)The geometric and statistical evolution of normal fault systems: anexperimental study of the effects of mechanical layer thickness on scalinglaws. J Struct Geol 23:1803–1819

    ADS  Google Scholar 

  2. Bak P, Tang C (1989) Earthquakes as a self‐organizedcritical phenomenon. J Geophys Res 94:15635–15637

    ADS  Google Scholar 

  3. Bak P, Tang C, Weisenfeld K (1987) Self‐organized criticality: An explanation of \( { 1/f } \)noise. Phys Rev Lett 59:381–384

    ADS  Google Scholar 

  4. Beeler NM, Hickman SH, Wong TF (2001) Earthquakestress drop and laboratory‐inferred interseismic strength recovery. J Geophys Res‐Solid Earth 106:30701–30713

    Google Scholar 

  5. Brown SR, Scholz CH, Rundle JB (1991) A simplifiedspring‐block model of earthquakes. Geophys Res Lett 18:215–218

    ADS  Google Scholar 

  6. Burridge R, Knopoff L (1967) Model andtheoretical seismicity. Bull Seism Soc Am 57:341–362

    Google Scholar 

  7. Carlson JM, Langer JS (1989) Properties ofearthquakes generated by fault dynamics. Phys Rev Lett 62:2632–2635

    ADS  Google Scholar 

  8. Christensen K,Olami Z (1992) Variation of the Gutenberg–Richter B Values andNontrivial Temporal Correlations in a Spring-Block Model forEarthquakes. J Geophys Res‐Solid Earth97:8729–8735

    Google Scholar 

  9. Cowie PA, Scholz CH, Edwards M, Malinverno A (1993)Fault strain and seismic coupling on midocean ridges. J Geophys Res-SolidEarth 98:17911–17920

    Google Scholar 

  10. Cowie PA, Sornette D, Vanneste C (1995) Multifractalscaling properties of a growing fault population. Geophys J Int 122:457–469

    ADS  Google Scholar 

  11. Davison F, Scholz C (1985) Frequency‐momentdistribution of earthquakes in the Aleutian Arc: A test of the characteristicearthquake model. Bull Seismol Soc Am 75:1349–1362

    Google Scholar 

  12. Davy P, Sornette A, Sornette D (1990) Some consequencesof a proposed fractal nature of continental faulting. Nature 348:56–58

    ADS  Google Scholar 

  13. Dawers NH, Anders MH, Scholz CH (1993) Growth ofnormal faults – displacement‐length scaling. Geology 21:1107–1110

    ADS  Google Scholar 

  14. Gupta A, Scholz CH (2000) Brittle strain regimetransition in the Afar depression: implications for fault growth and seafloorspreading. Geology 28:1087–1090

    ADS  Google Scholar 

  15. Hanks TC (1977) Earthquake Stress Drops, Ambient TectonicStresses and Stresses That Drive Plate Motions. Pure Appl Geophys115:441–458

    ADS  Google Scholar 

  16. Jensen HJ (1998) Self‐organized criticality: Emergent complex behavior in physical and biological systems. Cambridge Univ. Press, Cambridge

    MATH  Google Scholar 

  17. Olami Z, Feder HJS, Christensen K (1992)Self‐organized criticality in a continuous, nonconservative cellularautomaton modeling earthquakes. Phys Rev Lett 68:1244–1247

    ADS  Google Scholar 

  18. Pacheco JF, Sykes LR (1992) Seismic momentcatalog of large shallow earthquakes, 1900 to 1989. Bull Seismol Soc Am82:1306–1349

    Google Scholar 

  19. Pacheco JF, Scholz CH, Sykes LR (1992) Changes infrequency‐size relationship from small to large earthquakes. Nature355:71–73

    ADS  Google Scholar 

  20. Schlische RW, Young SS, Ackermann RV, GuptaA (1996) Geometry and scaling relations of a population of very smallrift‐related normal faults. Geology 24:683–686

    ADS  Google Scholar 

  21. Scholz CH (1968) The frequency‐magnitude relation ofmicrofracturing in rock and its relation toearthquakes. Bull Seismol Soc Am 58:399–415

    Google Scholar 

  22. Scholz CH (1994) A reappraisal of large earthquakescaling. Bull Seismol Soc Am 84:215–218

    Google Scholar 

  23. Scholz CH(1997) Earthquake and fault populations and the calculation of brittlestrain. Geowissenschaften 3–4:124–130

    Google Scholar 

  24. Scholz CH (1997) Size distributions for large and smallearthquakes. Bull Seismol Soc Am 87:1074–1077

    Google Scholar 

  25. Scholz CH (1998) Earthquakes and friction laws. Nature391:37–42

    ADS  Google Scholar 

  26. Scholz CH (1998) A further note on earthquake sizedistributions. Bull Seismol Soc Am 88:1325–1326

    Google Scholar 

  27. Scholz CH (2002) The mechanics of earthquakes andfaulting, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  28. Scholz CH, Lawler TM (2004) Slip tapers at thetips of faults and earthquake ruptures. Geophys Res Lett31:L21609, doi:10.1029/2004GL021030

  29. Scholz CH, Dawers NH, Yu JZ, Anders MH (1993) Faultgrowth and fault scaling laws – preliminary‐results. J Geophys Res-SolidEarth 98:21951–21961

    Google Scholar 

  30. Shaw BE, Scholz CH (2001) Slip‐length scaling inlarge earthquakes: observations and theory and implications for earthquakephysics. Geophys Res Lett 28:2995–2998

    ADS  Google Scholar 

  31. Shaw BE, Wesnouski SG (2008) Slip‐lengthScaling in large earthquakes: The role of deep penetrating slip below theseismogenic layer. Bull Seismol Soc Am 98:1633–1641

    Google Scholar 

  32. Sornette D, Virieux J (1992) Linkingshort‐timescale deformation to long‐timescale tectonics. Nature 357:401–403

    ADS  Google Scholar 

  33. Spyropoulos C, Griffith WJ, Scholz CH, Shaw BE(1999) Experimental evidence for different strain regimes of crack populationsin a clay model. Geophys Res Lett 26:1081–1084

    ADS  Google Scholar 

  34. Spyropoulos C, Scholz CH, Shaw BE (2002)Transition regimes for growing crack populations. Phys Rev E 65:056105, doi:10.1103/PhysRevE.65.056105

    ADS  Google Scholar 

  35. Stein RS (1999) The role of stress transfer in earthquakeoccurrence. Nature 402:605–609

    ADS  Google Scholar 

  36. Townend J, Zoback MD (2000) How faulting keepsthe crust strong. Geology 28:399–402

    ADS  Google Scholar 

  37. Tse S, Rice J (1986) Crustal earthquake instabilityin relation to the depth variation of frictional slipproperties. J Geophys Res 91:9452–9472

    ADS  Google Scholar 

  38. Turcotte DL (1999) Seismicity and self‐organizedcriticality. Phys Earth Planet Inter 111:275–293

    ADS  Google Scholar 

Books and Reviews

  1. Sornette D (2003) Critical phenomena in naturalsystems: Chaos, fractals, self‐organization, and disorder. Springer, Berlin

    Google Scholar 

  2. Turcotte DL (1997) Fractals and chaos in geology and geophyics. Cambridge, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Scholz, C.H. (2009). Brittle Tectonics: A Non-linear Dynamical System. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_44

Download citation

Publish with us

Policies and ethics