Skip to main content

Carbon Nanotubes, Thermo-mechanical and Transport Properties of

  • Reference work entry
Book cover Encyclopedia of Complexity and Systems Science
  • 470 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Scanning tunneling microscope (STM):

A nano‐technology instrument capable of imaging the topography of conducting surfaces with atomistic resolution. It can also be used to manipulate individual atoms and molecules, and construct nano‐scale structures.

Atomic force microscope (AFM):

A nano‐technology instrument for investigation of material surfaces on atomistic and molecular scales. It can be used to map the topography of non‐conducting surfaces, by sensing the inter‐atomic forces, and produce three‐dimensional images of these surfaces.

Spintronics:

Refers to the field of spin‐based electronics rather than charge‐based electronics. It will lead to a new type of device that is based on the use of electron spin for transfer and storage of information.

Brillouin zone:

In solid state physics several Brillouin zones can be defined. The first zone is defined as the Wigner–Seitz primitive cell of the reciprocal lattice. The nth Brillouin zone is defined as the set of points that are reached from the origin by crossing \( { (n - 1) } \) Bragg planes.

Monte Carlo (MC) method:

In computational modeling, this method provides a probabilistic scheme for solving a variety of problems by employing powerful sampling techniques. In nano‐science and condensed matter physics, one application of this method is for computing the minimum energy state of a nano‐structure.

Stochastic dynamics (SD) method:

This refers to the computer simulation method wherein the Langevin equation of motion, describing the random behavior of a particle, is solved as opposed to the deterministic MD method in which Newton's equations of motion are solved.

Nano‐electromechanical systems (NEMS):

These are nano‐technology based systems that are the smaller versions of the micro‐electromechanical systems (MEMS). They are capable of measuring small displacements, sensing minute amount of substances, and performing rotary motions. NEMS can be constructed via either the top‐down approach, i. e., via miniaturization of the micro‐scale devices, or via the bottom‐up approach, i. e., by positioning single atoms or molecules so that a complex and functional nano‐system is built from below the nano‐scale.

Ab initio approach:

This is the first‐principles approach to the computation of the properties, especially the electronic‐structure properties, of nano‐scale systems using quantum‐mechanical concepts and methods. In this method, the structure of a molecule, for instance, is obtained purely from a knowledge of its composition by solving the Schrödinger equation.

Bibliography

  1. Ajayan PM, Ebbesen TW (1997) Nanometre‐size tubes of carbon. Rep Prog Phys 60:1025–1062

    ADS  Google Scholar 

  2. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Clarendon Press, Oxford

    Google Scholar 

  3. Bekyarova E, Kaneko K, Kasuya D, Murata K, Yudasaka M, Iijima S (2002) Oxidation and porosity evaluation of budlike single‐wall carbon nanohorn aggregates. Langmuir 18:4138–4141

    Google Scholar 

  4. Berber S, Kwon YK, Tománek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84:4613–4616

    Google Scholar 

  5. Berbholc J, Brenner D, Nardelli MB, Meunier V, Roland C (2002) Mechanical and electrical properties of nanotubes. Annu Rev Mater Res 32:347–75

    Google Scholar 

  6. Bethune DS, Kiang CH, de Vries MD, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt‐catalysed growth of carbon nanotubes with single‐atomic‐layer walls. Nature 363:605–607

    ADS  Google Scholar 

  7. Bhushan B (ed) (2004) Springer handbook of nanotechnology. Springer, Berlin

    Google Scholar 

  8. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    ADS  Google Scholar 

  9. Binnig G, Rohrer H (1982) Scanning tunnelling microscopy. Helv Phys Acta 55:726–735

    Google Scholar 

  10. Buongiorno Nardelli M, Yakobson BI, Bernholc J (1998) Brittle and ductile behaviour in carbon nanotubes. Phys Rev Lett 81:4656–4659

    ADS  Google Scholar 

  11. Buongiorno Nardelli M, Yakobson BI, Bernholc J (1998) Mechanism of strain release in carbon nanotubes. Phys Rev B 57:R4277–R4280

    ADS  Google Scholar 

  12. Calbi MM, Toigo F, Cole MW (2001) Dilation‐induced phases of gases adsorbed within a bundle of carbon nanotubes. Phys Rev Lett 86:5062–5065

    ADS  Google Scholar 

  13. Che J, Cagin T, Goddard WA III (2000) Thermal conductivity of carbon nanotubes. Nanotechnology 11:65–69

    ADS  Google Scholar 

  14. Dai H (2002) Carbon nanotubes: opportunities and challenges. Surf Sci 500:218–241

    ADS  Google Scholar 

  15. Dresselhaus MS, Dresselhaus G, Saito R (1995) Physics of Carbon Nanotubes. Carbon 33:883–891

    Google Scholar 

  16. Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of carbon nanotubes. Phys Rep 409:47–99

    ADS  Google Scholar 

  17. Drexler KE (1992) Nanosystems: Molecular Machinery, Manufacturing and Computation. Wiley, New York

    Google Scholar 

  18. Haile JM (1992) Molecular dynamics simulation: Elementary methods. Wiley, New York

    Google Scholar 

  19. Hummer G, Rasaiah JC, Noworyta JP (2001) Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414:188–190

    ADS  Google Scholar 

  20. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    ADS  Google Scholar 

  21. Iijima S (2002) Carbon nanotubes: past, present, and future. Physica B 323:1–5

    ADS  Google Scholar 

  22. Iijima S, Ichihashi T (1993) Single‐shell carbon nanotubes of 1‑nm diameter. Nature 363:603–605

    ADS  Google Scholar 

  23. Iijima S, Yudasaka M, Yamada R, Bandow S, Suenaga K, Kokai F, Takahashi K (1999) Nano‐aggregates of single‐walled graphitic carbon nano‐horns. Chem Phys Lett 309:165–170

    ADS  Google Scholar 

  24. Jin Y, Yuan G (2003) Simulation of elastic properties of single‐walled carbon nanotubes. Compos Sci Technol 63:1507–1515

    Google Scholar 

  25. Kiang CH, Endo M, Ajayan PM, Dresselhaus G, Dresselhaus MS (1998) Size effects in carbon nanotubes. Phys Rev Lett 81:1869–1872

    ADS  Google Scholar 

  26. Lavin JG, Subramoney S, Ruoff RS, Berber S, Tománek D (2002) Scrolls and nested tubes in multiwall carbon nanotubes. Carbon 40:1123–1130

    Google Scholar 

  27. Lee SM, An KH, Lee YH, Seifert G, Frauencheim T (2001) A hydrogen storage mechanism in single‐walled carbon nanotubes. J Am Chem Soc 123:5059–5063

    Google Scholar 

  28. Lu JP (1997) Elastic properties of carbon nanotubes and nanoropes. Phys Rev Lett 79:1297–1300

    ADS  Google Scholar 

  29. Lu JP (1997) Elastic properties of single and multilayered nanotbes. J Phys Chem Solids 58:1649–1652

    ADS  Google Scholar 

  30. Martí J, Gordillo MC (2001) Effects of confinement on the vibrational spectra of liquid water adsorbed in carbon nanotubes. Phys Rev B 63:165430-1–165430-5

    Google Scholar 

  31. Mizel A, Benedict LX, Cohen ML, Louie SG, Zettl A, Budraa NK, Beyermann WP (1999) Analysis of the low‐temperature specific heat of multiwalled carbon nanotubes and carbon nanotube ropes. Phys Rev B 60:3264–3270

    ADS  Google Scholar 

  32. Murata K, Kaneko K, Steele WA, Kokai F, Takahashi K, Kasuya D, Hirahara K, Yudasaka M, Iijima S (2001) Molecular potential structures of heat‐treated single‐wall carbon nanohorn assemblies. J Phys Chem B 105:10210–10216

    Google Scholar 

  33. Murata K, Kaneko K, Steele WA, Kokai F, Takahashi K, Kasuya D, Hirahara K, Yudasaka M, Iijima S (2001) Porosity evaluation of intrinsic intraparticle nanopores of single wall carbon nanohorn. Nano Lett 1:197–199

    ADS  Google Scholar 

  34. Nalwa HS (ed) (2004) Encyclopedia of nanoscience and nanotechnology, vol 1–10. American Scientific Publishers, Cambridge

    Google Scholar 

  35. Ohba T, Murata K, Kaneko K, Steele WA, Kokai F, Takahashi K, Kasuya K, Yudasaka M, Iijima S (2001) N2 adsorption in an internal nanopore space of single‐walled carbon nanohorn: GCMC simulation and experiment. Nano Lett 1:371–373

    ADS  Google Scholar 

  36. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  37. Pathria RK (1972) Statistical mechanics. Pergamon, Oxford

    Google Scholar 

  38. Pekala K, Pekala M (1995) Low temperature transport properties of nanocrystalline Cu, Fe and Ni. NanoStructured Mater 6:819–822

    Google Scholar 

  39. Popov VN (2002) Low‐temperature specific heat of nanotube systems. Phys Rev B 66:153408-1–153408-4

    ADS  Google Scholar 

  40. Popov VN (2004) Carbon nanotubes: properties and applications. Math Sci Eng R 43:61–102

    Google Scholar 

  41. Prylutskyy YI, Durov SS, Ogloblya OV, Buzaneva EV, Scharff P (2000) Molecular dynamics simulation of mechanical, vibrational and electronic properties of carbon nanotubes. Comp Math Sci 17:352–355

    Google Scholar 

  42. Rafii-Tabar H (2000) Modeling the nano‐scale phenomena in condensed matter physics via computer‐based numerical simulations. Phys Rep 325:239–310

    ADS  Google Scholar 

  43. Rafii-Tabar H (2004) Computational modeling of thermo‐mechanical and transport properties of carbon nanotubes. Phys Rep 390:235–452

    ADS  Google Scholar 

  44. Rafii-Tabar H (2008) Computational physics of carbon nanotubes. Cambridge University Press, Cambridge

    Google Scholar 

  45. Rao CNR, Satishkumar BC, Govindaraj A, Nath M (2001) Nanotubes. Chem Phys Chem 2:78–105

    Google Scholar 

  46. Rapaport DC (1995) The art of molecular dynamics simulation. Cambridge University Press, Cambridge

    Google Scholar 

  47. Reich S, Thomsen C, Ordejón P (2002) Elastic properties of carbon nanotubes under hydrostatic pressure. Phys Rev B 65:153407-1–153407-4

    Google Scholar 

  48. Rieth M, Schommers W (ed) (2007) Handbook of theoretical and computational nanotechnology, vol 1–10. American Scientific Publishers, Cambridge

    Google Scholar 

  49. Roco MC, Bainbridge WS (2002) Convergent technologies for improving human performance. NSF/DOC‐sponsored Report. WTEC Inc, Arlington

    Google Scholar 

  50. Saito Y, Yoshikawa T, Bandow S, Tomita M, Hayashi T (1993) Interlayer spacings in carbon nanotubes. Phys Rev B 48:1907–1909

    Google Scholar 

  51. Schwarz JA, Contescu CI, Putyera K (ed) (2004) Dekker encyclopedia of nanoscience and nanotechnology, vol 1–5. Marcel Dekker Inc, New York

    Google Scholar 

  52. Siber A (2002) Adsorption of He atoms in external grooves of single‐walled carbon nanotube bundles. Phys Rev B 66:205406-1–205406-6

    ADS  Google Scholar 

  53. Simonyan VV, Diep P, Johnson JK (1999) Molecular simulation of hydrogen adsorption in charged single‐walled carbon nanotubes. J Chem Phys 111:9778–9783

    ADS  Google Scholar 

  54. Simonyan VV, Johnson JK, Kuznetsova A, Yates Jr JT (2001) Molecular simulation of xenon adsorption on single‐walled carbon nanotubes. J Chem Phys 114:4180–4185

    ADS  Google Scholar 

  55. Smith BW, Monthoux M, Luzzi DE (1998) Encapsulated C60 in carbon nanotubes. Nature 396:323–324

    ADS  Google Scholar 

  56. Stevens RMD, Frederick NA, Smith BL, Morse DE, Stucky GD, Hansma PK (2000) Carbon nanotubes as probes for atomic force microscopy. Nanotechnology 11:1–5

    ADS  Google Scholar 

  57. Stojkovic D, Zhang P, Crespi VH (2001) Smallest nanotube: breaking the symmetry of sp3 bonds in tubular geometries. Phys Rev Lett 87:125502–125505

    ADS  Google Scholar 

  58. Supple S, Quirke N (2003) Rapid imbibition of fluids in carbon nanotubes. Phys Rev Lett 90:214501-1–214501-4

    ADS  Google Scholar 

  59. Sutton AP, Pethica JB, Rafii-Tabar H, Nieminen JA (1994) Mechanical properties of metals at nanometre scale. In: Pettifor DG, Cottrell AH (eds) Electron theory in alloy design. Institute of Materials, London, pp 191–233

    Google Scholar 

  60. Talapatra S, Zambano AZ, Weber SE, Migone AD (2000) Gases do not adsorb on the interstitial channels of closed‐ended single‐walled carbon nanotube bundles. Phys Rev Lett 85:138–141

    Google Scholar 

  61. Tuzun RE, Noid DW, Sumpter BG, Merkle RC (1996) Dynamics of fluid flow inside carbon nanotubes. Nanotechnology 7:241–246

    Google Scholar 

  62. Wang Q, Johnson JK (1999) Molecular simulation of hydrogen adsorption in single‐walled carbon nanotubes and idealised carbon slit pore. J Chem Phys 110:577–586

    ADS  Google Scholar 

  63. Wang Q, Johnson JK (1999) Optimisation of carbon nanotube arrays for hydrogen adsorption. J Phys Chem B 103:4809–4813

    Google Scholar 

  64. Williams KA, Eklund PC (2000) Monte Carlo simulation of H2 physisorption in finite‐diameter carbon nanotube ropes. Chem Phys Lett 320:352–358

    ADS  Google Scholar 

  65. Yakobson BI, Brabec CJ, Bernholc J (1996) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76:2511–2514

    ADS  Google Scholar 

  66. Zhao J, Buldum A, Han J, Lu JP (2002) Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology 13:195–200

    ADS  Google Scholar 

  67. Zhou LG, Shi SQ (2002) Molecular dynamic simulations on tensile mechanical properties of single‐walled carbon nanotubes with and without hydrogen storage. Comp Math Sci 23:166–174

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Rafii-Tabar, H. (2009). Carbon Nanotubes, Thermo-mechanical and Transport Properties of. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_46

Download citation

Publish with us

Policies and ethics