Skip to main content

Self-assembled Materials

  • Reference work entry

Definition of the Subject

The concept of self‐assembly is today highly popular and frequently used to describe a wide range of phenomena. It is also a conceptthat has a possibility to change the way we produce various types of materials [1]. Self‐assembly can broadly speaking be defined as a process with the followingfeatures [2], where: (i) it involves pre‐existing components, i. e. the components arenot formed by the reaction itself. (ii) the process should be reversible to some extent. (iii) it can be controlled by design.

The supramolecular chemistry approach, pioneered by Jean-Marie Lehn [3], where molecularrecognition is used to assemble supramolecular materials is clearly an important starting point for much of this work. The pre‐existing componentsare usually molecules, amphiphilic species, or oligomeric or polymeric species. However, self‐assembly can also be observed on larger length scalesinvolving e. g. nanoparticles (superlattices) and larger colloidal particles...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AI:

Ab initio

AM1:

Austin model 1

AO:

Atomic orbital

B3LYP:

Becke's three parameter hybrid LYP functional

BKL:

Bortz–Kalos–Lebowitz

BO:

Born–Oppenheimer

CA:

Cellular automata

CE:

Cluster expansion

CC:

Coupled cluster

CI:

Configuration interaction

CP:

Car‐Parrinello

DCA:

Dynamic cellular automata

DFT:

Density functional theory

DLVO:

Derjaguin–Landau–Verwey–Overbeek

GGA:

Generalized gradient approximation

HF:

1) Hartree–Fock 2) Harris–Foulkes functional

kMC:

kinetic Monte Carlo

KS:

Kohn–Sham

LbL:

Layer-by-layer

LCAO:

Linear Combination of Atomic Orbitals

LDA:

Local density approximation

LYP:

Lee–Young–Parr

MC:

Monte Carlo

MD:

Molecular Dynamics

MNDO:

Modified neglect of differential overlap

MO:

Molecular Orbital

MP:

Møller–Plesset

NDDO:

Neglect of diatomic differential overlap

NDO:

Neglect of differential overlap

NPT:

Isobaric ensemble: constant N, P and T

NVE:

Microcanonical ensemble: constant N, V and E

NVT:

Canonical ensemble: constant N, V and T

PBC:

Periodic boundary conditions

PF:

Phase-field

PM3:

Parametric model 3

PP:

Pseudo‐potential

PW:

Perdew–Wang

QCA:

Quantum‐dot cellular automata

RSA:

Random sequential adsorption

SA:

Self‐assembly

SAM:

Self‐assembled monolayers

SCF:

Self‐consistent field

STM:

Scanning tunneling microscopy

TB:

Tight‐binding

XC:

Exchange correlation

Bibliography

  1. Ozin GA, Arsenault AC (2005) Nanochemistry, A Chemical Approach toNanomaterials. RSC Publishing, London

    Google Scholar 

  2. Whitesides GM, Grzybowski B (2002) Science 295:2418

    ADS  Google Scholar 

  3. Lehn J-M (1988) Angew Chem Int Ed 27:89

    Google Scholar 

  4. Nuzzo RG, Fusco FA, Allara DL (1987) J Am Chem Soc109:2358

    Google Scholar 

  5. Bentzon MD, van Wonterghem J, Moerup S, Tholen A, Koch CJW (1989) Phil Mag B60:169

    Google Scholar 

  6. Steigerwald ML, Alivisatos AP, Gibson JM, Harris TD, Kortan R, Muller AJ,Thayer AM, Duncan TM, Douglass DC, Brus LE (1988) J Am Chem Soc 110:3046

    Google Scholar 

  7. Redl FX, Cho K-S, Murray CB, O'Brien S (2003) Nature423:968

    ADS  Google Scholar 

  8. Shevchenko EV, Talapin DV, Kotov NA, O'Brien S, Murray CB (2006) Nature439:55

    ADS  Google Scholar 

  9. Decher G (1997) Science 277:1232

    Google Scholar 

  10. Whitesides GM, Mathias JP, Seto CT (1991) Science254:1312

    ADS  Google Scholar 

  11. Fendler JH (1996) Chem Matter 8:1616

    Google Scholar 

  12. Lawrence DS, Jiang T, Levett M (1996) Chem Rev95:2229

    Google Scholar 

  13. Zhang S (2003) Nature Biotech 21:1171

    Google Scholar 

  14. Tirrell M (2005) AIChE J 51:2386

    Google Scholar 

  15. Zhao X, Zhang S (2006) Chem Soc Rev 35:1105

    Google Scholar 

  16. Dubois LH, Nuzzo RG (1992) Ann Rev Phys Chem43:437

    ADS  Google Scholar 

  17. Ulman A (1996) Chem Rev 96:1533

    Google Scholar 

  18. Laibinis PE, Whitesides GM, Allara DL, Tao YT, Parikh AN, Ruzzo RG (1991) J AmChem Soc 113:7152

    Google Scholar 

  19. Tanev PT, Pinnavaia TJ (1995) Science 267:865

    ADS  Google Scholar 

  20. Zeng FW, Zimmerman SC (1997) Chem Rev 97:1681

    Google Scholar 

  21. Lyubartsev AP, Laaksonen A (2003) In: Karttunen M, Vattulainen I, Lukkarinen A(eds) Novel methods in soft matter simulations. Lecture Notes in Physics, vol 640. Springer, Berlin

    Google Scholar 

  22. Laaksonen A, Tu Y (1999) In: Balbuena PB, Seminario JM (eds) MolecularDynamics: from classical to quantum methods. Elsevier, Amsterdam

    Google Scholar 

  23. Roothaan CCJ (1951) Rev Mod Phys 23:69

    ADS  Google Scholar 

  24. Hehre WJ, Radom L, Schleyer PVR, Pople JA (1986) Ab initio molecular orbitaltheory. Wiley, New York

    Google Scholar 

  25. Leach A (2001) Molecular Modelling: Principles and Applications, 2ndedn. Pearson Education, New Jersey

    Google Scholar 

  26. Pople JA, Santry DP, Segal GA (1965) J Chem Phys 43:S129

    ADS  Google Scholar 

  27. Pople JA, Segal GA (1965) J Chem Phys 43:S136

    ADS  Google Scholar 

  28. Pople JA, Beveridge DL, Dobosh PA (1967) J Chem Phys47:2026

    ADS  Google Scholar 

  29. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc107:3902

    Google Scholar 

  30. Stewart JJP (1989) J Comput Chem 10:209

    Google Scholar 

  31. Stewart JJP (1989) J Comput Chem 10:221

    Google Scholar 

  32. Dewar MJS, Thiel W (1977) J Am Chem Soc 99:4899

    Google Scholar 

  33. Kolb M, Thiel W (1993) J Comput Chem 14:775

    Google Scholar 

  34. Weber W, Thiel W (2000) Theor Chem Acc 103:495

    Google Scholar 

  35. Tu Y, Jacobsson SP, Laaksonen A (2003) Mol Phys101:3009

    ADS  Google Scholar 

  36. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    ADS  Google Scholar 

  37. Burke K, Perdew JP, Wang Y (1998) In: Dobson JF, Vignale G, Das MP (eds)Electronic Density Functional Theory: Recent Progress and New Directions. Plenum Press, New York

    Google Scholar 

  38. Becke AD (1988) Phys Rev A 38:3098

    ADS  Google Scholar 

  39. Hohenberg P, Kohn W (1964) Phys Rev B 136:864

    MathSciNet  ADS  Google Scholar 

  40. Kohn W, Sham LJ (1965) Phys Rev A 140:1133

    MathSciNet  ADS  Google Scholar 

  41. Car RR, Parrinello M (1985) Phys Rev Lett 55:2471

    ADS  Google Scholar 

  42. Foulkes WMC, Haydock R (1989) Phys Rev B 39:12520

    ADS  Google Scholar 

  43. Harris J (1985) Phys Rev B 31:1770

    ADS  Google Scholar 

  44. Sankey OF, Niklewski DJ (1989) Phys Rev B 40:3979

    ADS  Google Scholar 

  45. Tu Y, Laaksonen A (2005) In: Chipot C, Elber R, Laaksonen A, Leimkuhler B,Mark A, Schlick T, Schuette C, Skeel R (eds) Advances in Algorithms for Macromolecular Simulation. Lecture Notes in Computational Science &Engineering, vol 49. Springer, Heidelberg

    Google Scholar 

  46. Tu Y, Jacobsson SP, Laaksonen A (2006) Phys Rev B74:205104

    ADS  Google Scholar 

  47. Madden PA, Heaton R, Aguado A, Jahn S (2006) J Mol Struct –Theochem 771:9

    Google Scholar 

  48. Hafner J (2007) Comp Phys Commun 177:6

    ADS  Google Scholar 

  49. Muller S (2006) Surf Interf Anal 38:1158

    Google Scholar 

  50. Juhas P, Cherba DM, Duxbury PM, Punch WF, Billinge SJL (2006) Nature440:655

    ADS  Google Scholar 

  51. Le Page Y, Rodgers JR (2005) Acta Appl Cryst38:697

    Google Scholar 

  52. Bockstedte M, Kley A, Neugebauer J, Scheffler M (1997) Comp Phys Commun107:187

    ADS  Google Scholar 

  53. Gonze X, Beuken JM, Caracas R, Detraux F, Fuchs M, Rignanese GM, Sindic L,Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez P, Paty JY, Allan DC (2002) Comp Mater Sci 25:478

    Google Scholar 

  54. Colombo L (2005) Riv Nuovo Cim 28:1

    Google Scholar 

  55. Bowler DR, Choudhury R, Gillan MJ, Miyazaki T (2006) Phys Stat Solidi B243:989

    ADS  Google Scholar 

  56. Kawazoe Y (2003) Bull Mater Sci 26:13

    Google Scholar 

  57. Allen MP, Tildesley D (1987) Computer Simulation of Liquids. Clarendon,Oxford

    Google Scholar 

  58. Rapaport DC (2004) The Art of Molecular Dynamics Simulation, 2ndedn. Cambridge University Press, Cambridge

    Google Scholar 

  59. Frenkel D, Smit B (2002) Understanding Molecular Simulation: from Algorithmsto Applications, 2nd edn. Computational Science Series, vol 1. Academic Press, London

    Google Scholar 

  60. Schlick T (2002) Molecular Modeling: An Interdisciplinary Guide. Springer, NewYork

    Google Scholar 

  61. Hinchliffe A (2003) Molecular Modelling for Beginners. Wiley, NewYork

    Google Scholar 

  62. Field MF (2007) A Practical Introduction to the Simulation of MolecularSystems. Cambridge University Press, Cambridge

    Google Scholar 

  63. Seminario JM, Balbuena P (eds) (1999) Molecular Dynamics (Theoretical andComputational Chemistry). Elsevier Science, Amsterdam

    Google Scholar 

  64. Haile JM (1992) Molecular Dynamics Simulation: Elementary Methods. Wiley,New York

    Google Scholar 

  65. Leimkuhler B, Reich S (2004) Simulating Hamiltonian Dynamics. CambridgeUniversity Press, Cambridge

    Google Scholar 

  66. Alder BJ, Wainwright TE (1957) J Chem Phys27:1208

    ADS  Google Scholar 

  67. Alder BJ, Wainwright TE (1959) J Chem Phys 31:459

    MathSciNet  ADS  Google Scholar 

  68. Rahman A (1964) Phys Rev 136:405

    ADS  Google Scholar 

  69. Verlet L (1967) Phys Rev 159:98

    ADS  Google Scholar 

  70. Stillinger FH, Rahman A (1974) J Chem Phys60:1545

    ADS  Google Scholar 

  71. Hedman F, Laaksonen A (1999) In: Balbuena PB, Seminario JM (eds) MolecularDynamics: from classical to quantum methods. Theoretical Chemistry Series, vol 7. Elsevier Science BV, Amsterdam

    Google Scholar 

  72. Hedmann F (2006)http://www.diva-portal.org/diva/ getDocument?urn_nbn_se_su_diva-1008-4__fulltext.pdf

  73. Sprik M, Demarchee E, Michel B, Rothlisberger U, Klein ML, Wolf H, Ringsdorf H(1994) Langmuir 10:4116

    Google Scholar 

  74. Yamamoto H, Watanabe T, Nishiyama K, Tatsumura K, Ohdomari I (2006) J Phys IV132:189

    Google Scholar 

  75. Mamatkulov SI, Khabibullaev PK, Netz TR (2004) Langmuir20:4756

    Google Scholar 

  76. Yu KQ, Li ZS, Sun JZ (2002) Langmuir 18:1419

    Google Scholar 

  77. Hackett E, Manias E, Giannelis EP (1998) J Chem Phys108:7410

    ADS  Google Scholar 

  78. Jang SS, Jang YH, Kim Y-H, Goddard III WA, Flood AH, Laursen BW, Tseng H-R,Stoddart JF, Jeppesen JO, Choi JW, Steuerman DW, DeIonno E, Heath JR (2005) J Am Chem Soc 127:1563

    Google Scholar 

  79. Striolo A, NcCabe C, Cummings PT (2006) J Chem Phys125:104904

    ADS  Google Scholar 

  80. Luo M, Mazyar OA, Zhu Q, Vaughn MW, Hase WL, Dai LL (2006) Langmuir22:6385

    Google Scholar 

  81. Wu J (2006) AIChE J 52:1169

    Google Scholar 

  82. Jallipalli A, Balakrishnan G, Huang SH, Khoshakhlagh A, Dawson LR, Huffaker DL(2007) J Cryst Growth 303:449

    ADS  Google Scholar 

  83. van Workum K, Douglas JF (2006) Phys Rev E73:031502

    ADS  Google Scholar 

  84. Ariga K, Hill JP, Ji Q (2007) Phys Chem Chem Phys9:2319

    Google Scholar 

  85. Cooper N (1987) Stanislaw Ulam 1909–1984. Los Alamos Sci, vol 15. Special Issue. See: http://www.fas.org/sgp/othergov/doe/lanl/pubs/number15.htm

  86. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AN, Teller E (1953) J ChemPhys 21:1087

    ADS  Google Scholar 

  87. Jayaram B (1996) J Math Chem 20:395

    Google Scholar 

  88. Ni R, Cao D, Wang WC (2007) J Phys Chem C111:11802

    Google Scholar 

  89. Pool R, Schapotschnikow P, Vlugt TJH (2007) J Phys Chem111:10201

    Google Scholar 

  90. Sinyagin AY, Belov A, Tang Z, Kotov NA (2006) J Phys Chem B110:7500

    Google Scholar 

  91. Reimer U, Zehl T, Wahab M, Schiller P, Moegel H-J (2006) Coll Surf A Phys ChemEng Asp 290:25

    Google Scholar 

  92. Reimer U, Wahab M, Schiller P, Moegel HJ (2006) Langmuir21:1640

    Google Scholar 

  93. Patti A, Mackie AD, Siperstein FR (2007) Langmuir23:6771

    Google Scholar 

  94. He XH, Song M, Liang HJ, Pan CY (2001) J Chem Phys114:10510

    ADS  Google Scholar 

  95. Wijmans C, Linse P (1995) Langmuir 11:3748

    Google Scholar 

  96. Wijmans C, Linse P (1996) J Phys Chem 100:12583

    Google Scholar 

  97. Wijmans C, Linse P (1997) J Chem Phys 106:328

    ADS  Google Scholar 

  98. Linse P (2000) In: Alexandridis P, Lindman B (eds) Amphiphilic BlockCopolymers: Self‐Assembly and Application. Elsevier Science, Amsterdam

    Google Scholar 

  99. Abraham FF, White GM (1970) J Appl Phys 41:1841

    ADS  Google Scholar 

  100. Gilmer GH, Bennema P (1972) J Appl Phys 43:1347

    ADS  Google Scholar 

  101. Bortz AB, Kalos MH, Lebowitz JL (1975) J Comput Phys17:10

    ADS  Google Scholar 

  102. Gillespie DT (1977) J Phys Chem 81:2340

    Google Scholar 

  103. Chatterjee A, Vlachos DG (2007) J Computer‐Aided Matter Des14:253

    ADS  Google Scholar 

  104. Metiu H, Lu Y-T, Zhang Z (1992) Science255:1088

    ADS  Google Scholar 

  105. Much F, Ahr M, Biehl M, Kinzel W (2001) Europhys Lett56:791

    ADS  Google Scholar 

  106. Larsson MI (2004) Surf Sci 551:69

    ADS  Google Scholar 

  107. Kozak JJ, Nicolis C, Nicolis G (2007) J Chem Phys 126:154701

    ADS  Google Scholar 

  108. Zhu R, Pan E, Chung PW (2007) Phys Rev B75:205339

    ADS  Google Scholar 

  109. JS Rowlinson Notes (2003) Rec R Soc Lond 57:143

    Google Scholar 

  110. Wheeler AA, Boettinger WJ, McFadden GB (1992) Phys Rev A45:7424

    ADS  Google Scholar 

  111. Anderson DM, McFadden GB, Wheeler AA (1998) Ann Rev Fluid Mech30:139

    MathSciNet  ADS  Google Scholar 

  112. Lu W, Suo Z (2001) J Mech Phys Solids 49:1937

    ADS  Google Scholar 

  113. Chen LQ (2002) Annu, Rev Mater Res 32:113

    Google Scholar 

  114. Boettinger WJ, Warren JA, Beckermann C, Karma A (2002) Ann Rev Mater Res32:163

    Google Scholar 

  115. Thornton K, Ågren J, Voorhees PW (2003) Acta Mater51:5675

    Google Scholar 

  116. Beckermann C, Diepers H-J, Steinbach I, Karma A, Tong X (1999) J Comput Phys154:468

    ADS  Google Scholar 

  117. Boettinger WJ, Coriell SR, Greer AL, Karma A, Kurz W, Rappaz M, Trivedi R(2000) Acta Mater 48:43

    Google Scholar 

  118. Cahn JW, Hillard JE (1957) J Chem Phys 28:258

    ADS  Google Scholar 

  119. Cahn JW, Hillard JE (1959) J Chem Phys 31:688

    ADS  Google Scholar 

  120. Cahn JW (1961) Acta Metall 9:795

    Google Scholar 

  121. Allen SM, Cahn JW (1979) Acta Metall Mater27:1085

    Google Scholar 

  122. Chen LQ, Shen J (1998) Comput Phys Commun108:147

    ADS  Google Scholar 

  123. Elder KR, Grant M (2004) Phys Rev E 70:051605

    ADS  Google Scholar 

  124. Lu W, Salac D (2005) Phys Rev Lett 94:146103

    ADS  Google Scholar 

  125. Wang YU (2007) Acta Mater 55:3835

    Google Scholar 

  126. Inoue T (2004) J Phys IV 120:3

    Google Scholar 

  127. Inoue T (2004) Mater Sci Res Intl 10:1

    Google Scholar 

  128. Hoyt JJ, Sadigh B, Asta M, Foiles SM (1999) Acta Mater47:3181

    Google Scholar 

  129. Gránásy L, Börsönyi T, Pusztai T (2002) Phys Rev Lett 88:206105

    Google Scholar 

  130. Gránásy L, Börsönyi T, Pusztai T (2002) J Cryst Growth237–239:1813

    Google Scholar 

  131. Gránásy L, Pusztai T, James PF (2002) J Chem Phys117:6157

    Google Scholar 

  132. Gránásy L, Pusztai T, Warren JA, Douglas JF, Börsönyi T, Ferrero V (2003)Nat Mater 2:92

    Google Scholar 

  133. Kvamme B, Graue A, Aspenes E, Kuznetsova T, Gránásy L, Tóth G, PusztaiT, Tegze G (2004) Phys Chem Chem Phys 6:2327

    Google Scholar 

  134. Gránásy L, Pusztai T, Börsönyi T, Warren JA, Douglas JF (2004) Nat Mater3:645

    Google Scholar 

  135. Svandal A, Kvamme B, Gránásy L, Pusztai T (2005) J Phase Equil Diff26:534

    Google Scholar 

  136. Pusztai T, Bortel G, Gránásy L (2005) Mater Sci Eng A413–414:412

    Google Scholar 

  137. Svandal A, Kvamme B, Gránásy L, Pusztai T, Buanes T, Hove J (2006) J CrystGrowth 486:1813

    Google Scholar 

  138. Tegze G, Pusztai T, Tóth G, Gránásy L, Svandal A, Buanes T, Kuznetsova T,Kvamme B (2006) J Chem Phys 124:234710

    Google Scholar 

  139. Gránásy L, Pusztai T, Saylor D, Warren JA (2007) Phys Rev Lett98:035703

    Google Scholar 

  140. Davidchack RL, Laird BB (1998) J Chem Phys108:9452

    ADS  Google Scholar 

  141. Davidchack RL, Laird BB (2000) Phys Rev Lett85:4751

    ADS  Google Scholar 

  142. Plapp M, Karma A (2000) J Comput Phys 165:592

    MathSciNet  ADS  Google Scholar 

  143. Raabe D (2002) Adv Mater Progr Rept 14:639

    Google Scholar 

  144. Penrose MD (2001) Commun Math Phys 218:153

    MathSciNet  ADS  Google Scholar 

  145. Bartelt MC, Privman V (1991) Intern J Mod PhysB5:2883

    MathSciNet  ADS  Google Scholar 

  146. Evans JW (1993) Rev Modern Phys 65:1281

    ADS  Google Scholar 

  147. Privman V (2000) Colloids Surf A 165:231

    Google Scholar 

  148. Talbot J, Tarjus G, van Tassel PR, Viot P (2000) Colloids Surf A165:287

    Google Scholar 

  149. Senger B, Voegel J-C, Schaaf P (2000) Colloids Surf A165:255

    Google Scholar 

  150. Rényi A (1963) Trans Math Stat Prob 4:205

    Google Scholar 

  151. D'Orsogna MR, Chou T, Antal T (2007) J Phys A Math Theor40:5575

    MathSciNet  ADS  Google Scholar 

  152. Ranjith P, Marko JF (2006) Phys Rev E 74:041602

    ADS  Google Scholar 

  153. Adamczyk Z, Weroński P, Barbasz J, Kolańsiska M (2007) Appl SurfSci 253:5776

    Google Scholar 

  154. Gray JJ, Klein DH, Korgel BA, Bonnecaze RT (2001) Langmuir17:2317

    Google Scholar 

  155. Breit M, Gao M, von Plessen G, Lemmer U, Feldmann J, Cundiff ST (2002) JChem Phys 117:3956

    ADS  Google Scholar 

  156. Yuan Y, Oberholzer MR, Lenhoff AM (2000) Colloids SurfA165:125

    Google Scholar 

  157. Erban R, Chapman SJ (2007) Phys Rev E 75:041116

    ADS  Google Scholar 

  158. Cadilhe A, Aráujo N, Privman V (2007) J Phys Condens Matter19:065124

    Google Scholar 

  159. Bohidar HB, Mohanty B (2004) Phys Rev E69:021902

    ADS  Google Scholar 

  160. Gray JJ, Bonnecaze RT (2001) J Chem Phys114:1366

    ADS  Google Scholar 

  161. Wolfram S (2002) A new kind of science. Wolfram Media,Champaign

    Google Scholar 

  162. Petri CA (1962) Kommunikation mit Automaten. Ph D Thesis, University ofBonn

    Google Scholar 

  163. Turing AM (1952) Phil Trans R Soc Lond B237:37

    ADS  Google Scholar 

  164. Wishart DS, Yang R, Arndt D, Tang P, Cruz J (2005) In Silico Biol5:139

    Google Scholar 

  165. Succi S (2001) The Lattice Boltzmann Equation for Fluid Dynamics andBeyond. Oxford University Press, Oxford

    Google Scholar 

  166. Tougaw PD, Lenta CS (1996) J Appl Phys 80:4722

    ADS  Google Scholar 

  167. Amlani I, Orlov AO, Snider GL, Lent CS, Bernstein GH (1998) Appl Phys Lett72:2179

    ADS  Google Scholar 

  168. Orlov AO, Amlani I, Bernstein GH, Lent CS, Snider GL (1997) Science277:928

    Google Scholar 

  169. Snider GL, Orlov AO, Amlani I, Zuo X, Bernstein GH, Lent CS, Merz JL, PorodW (1999) J Appl Phys 85:4283

    ADS  Google Scholar 

  170. Cole T, Lusth JC (2001) Progr Quant Electr25:165

    ADS  Google Scholar 

  171. Lent CS, Isaksen B, Lieberman M (2003) J Am Chem Soc125:1056

    Google Scholar 

  172. Israeli N, Goldenfeld N (2006) Phys Rev E73:026203

    MathSciNet  ADS  Google Scholar 

  173. Mayer B, Köhler G, Rasmussen S (1997) Phys Rev E55:4489

    Google Scholar 

  174. Nilsson M, Rasmussen S (2003) Discret Math Theor Comput SciAB(DMCS):31

    Google Scholar 

  175. Kier LB, Cheng C-K, Testa B, Carrupt P-A (1997) J Pharmac Sci86:774

    Google Scholar 

  176. Sreekumar P, Jayaraman VK, Kulkarni BD (1998) Ind Eng Chem Res37:2188

    Google Scholar 

  177. Demontis P, Pazzona FG, Suffritti GB (2007) J Chem Phys126:194709

    ADS  Google Scholar 

  178. Gumbsch P (1995) J Mater Res 10:2897

    ADS  Google Scholar 

  179. Lyubartsev AP, Laaksonen A (1995) Phys Rev E52:3730

    ADS  Google Scholar 

  180. Muller‐Plathe F (2002) Chem Phys Chem3:754

    Google Scholar 

  181. Izvekov S, Parrinello M, Burnham CJ, Voth GA (2004) J Chem Phys120:10896

    ADS  Google Scholar 

  182. Du MH, Cheng HP (2003) Int J Quant Chem 93:1

    Google Scholar 

  183. Mallik A, Taylor DCE, Runge K, Dufty JW (2004) Int J Quant Chem100:1019

    Google Scholar 

  184. Bartlett RJ, McClellan J, Greer JC, Monaghan S (2006) J Comp Aided Mater Des13:89

    ADS  Google Scholar 

  185. Zhu WM, Runge K, Trickey SB (2006) J Comp Aided Mater Des13:75

    ADS  Google Scholar 

  186. Faller R (2004) Polymer 45:3869

    Google Scholar 

  187. Buehler MJ, Hartmaier A, Gao H (2004) Model Sim Mater Sci12:S391

    ADS  Google Scholar 

  188. Doi M (2001) J Comp Appl Math 149:13

    ADS  Google Scholar 

  189. Kinjo T, Hyodo S (2007) Mol Simul 33:417

    Google Scholar 

  190. Hyodo S (2007) Mol Sim 33:279

    Google Scholar 

  191. Haslam AJ, Moldovan D, Phillpot SR, Wolf D, Gleiter H (2002) Comp Mater Sci23:15

    Google Scholar 

  192. Nakano A (1997) Comp Phys Commun 105:139

    ADS  Google Scholar 

  193. Shen LM, Chen Z (2005) Int J Solids Struct42:5036

    Google Scholar 

  194. Curtin WA, Miller RE (2003) Model Simul Mater Sci Eng11:R33

    ADS  Google Scholar 

  195. Rafii-Tabar H, Hua L, Cross M (1998) J Phys Cond Matter10:2375

    ADS  Google Scholar 

  196. Smit B, Krishna R (2003) Chem Eng Sci 58:557

    Google Scholar 

  197. Warrier M, Schneider R, Salonen E, Nordlund K (2004) Contr Plasma Phys44:307

    ADS  Google Scholar 

  198. Shibuta Y, Elliott JA (2006) Chem Phys Lett427:365

    ADS  Google Scholar 

  199. Sakaguchi N, Watanabe S, Takahashi H, Faulkner RG (2004) J Nucl Mater329:1166

    ADS  Google Scholar 

  200. Vasenkov AV, Fedoseyev AI, Kolobov VI, Choi HS, Hong KH, Kim K, Kim J, LeeHS, Shin JK (2006) J Comp Theor Nanosci 3:453

    Google Scholar 

  201. Zhang J, Adams JB (2004) Comp Mater Sci 31:317

    Google Scholar 

  202. La Magna A, Coffa S, Libertino S, Brambilla L, Alippi P, Colombo L (2001)Nucl Instr Meth Phys Res B 178:154

    ADS  Google Scholar 

  203. Haran M, Goose JE, Clote NP, Clancy P (2007) Langmuir23:4897

    Google Scholar 

  204. Netz RR (2004) J Phys Cond Mat 16:S2353

    ADS  Google Scholar 

  205. Ma J, Lu H, Wang B, Roy S, Hornung R, Wissink A, Komanduri R (2005) CompModel Eng Sci 8:135

    Google Scholar 

  206. Izvekov S, Violi A (2006) J Chem Theory Comput2:504

    Google Scholar 

  207. Izvekov S, Violi A, Voth GA (2005) J Phys Chem B Lett109:17019

    Google Scholar 

  208. Akkermans RLC, Warren PB (2004) Phil Trans Royal Soc A362:1783

    ADS  Google Scholar 

  209. Liu WK, Karpov EG, Zhang S, Park HS (2004) Comp Meth Appl Mech Eng193:1529

    MathSciNet  Google Scholar 

  210. Starrost F, Carter EA (2002) Surf Sci 500:323

    ADS  Google Scholar 

  211. Lium WK, Park HS, Qian D, Karpov EG, Kadowaki H, Wagner GJ (2006) Comp MethAppl Mech Eng 195:1407

    Google Scholar 

  212. Csanyi G, Albaret T, Moras G, Payne MC, De Vita A (2005) J Phys Cond Matter17:R691

    ADS  Google Scholar 

  213. Rudd E, Broughton JQ (2000) Physica, Status Solidi B – Basic Res217:251

    Google Scholar 

  214. Nieminen RM (2002) J Phys Cond Matter 14:2859

    ADS  Google Scholar 

  215. Vvedensky DD (2004) J Phys Condens Matter16:R1537

    ADS  Google Scholar 

  216. Buryachenko VA, Roy A, Lafdi K, Anderson KL, Chellapilla S (2005) Compos SciTech 65:2435

    Google Scholar 

  217. Gates TS, Odegard GM, Frankland SJV, Glancy TC (2005) Compos Sci Tech65:2416

    Google Scholar 

  218. Rafii-Tabar H (2000) Phys Rept Rev Sect Phys Lett325:240

    Google Scholar 

  219. Weinan E, Engquist B, Li X, Ren WQ, vanden‐Eijnden E (2007) CommunComp Phys 2:367

    Google Scholar 

  220. Ghoniem NM, Cho K (2002) Comp Model Eng Sci3:147

    Google Scholar 

  221. Theodorou N (2005) Comp Phys Commun 169:82

    ADS  Google Scholar 

  222. Liu ZK, Chen LQ, Rajan K (2006) JOM 58:42

    Google Scholar 

  223. Wilson M (2005) Intl Rev Phys Chem 24:421

    Google Scholar 

  224. Shelley JC, Shelley MY (2000) Curr Opin Coll Interf Sci5:101

    Google Scholar 

  225. Glotzer SC, Solomon MJ, Kotov NA (2004) AIChE J50:2978

    Google Scholar 

  226. Karakasidis TE, Charitidis CA (2007) Mater Sci Eng C27:1082

    Google Scholar 

  227. Rafii-Tabar H, Chirazi A (2002) Phys Rep365:145

    ADS  Google Scholar 

  228. Rajagopalan R (2001) Curr Opin Coll Interf Sci6:357

    Google Scholar 

Download references

Acknowledgments

Both authors are connected to the Berzelii centre EXSELENT on porous materials at Stockholm University(http://www.exselent.su.se/).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Laaksonen, A., Bergström, L. (2009). Self-assembled Materials. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_470

Download citation

Publish with us

Policies and ethics