Skip to main content

Self-Organization in Magnetohydrodynamic Turbulence

  • Reference work entry

Definition of the Subject

Plasma dynamics at low frequency, i.?e. at frequencies lower then the ion cyclotron frequency, can be described using a one-fluid modelusually called magnetohydrodynamics (MHD), where the main dynamical variables are represented by fluid velocity and magnetic field, which evolvenon-linearly being coupled to each other. This description applies both to laboratory plasma devices (tokamaks, reverse field pinch etc.), devotedto realize controlled nuclear fusion, and to space and astrophysical plasmas (Solar corona, Solar wind). Very often, when viscosity and resistivity aresufficiently small, the plasma behavior is characterized by the presence of a developed turbulence. In the last 20 years huge progress inunderstanding the properties of such turbulence has been realized, both by the use of high resolution computer simulations and by analysis of space andlaboratory data. One of the most fascinating results of these studies concerns the evidence of self...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Alfvén speed:

The Alfvén speed \( { c_{\text{A}} } \) is the propagation speed of Alfvén waves and is given by \( c_{\text{A}}=B_0/(4\pi\rho)^{1/2} \), where \( { \mathbf{B}_0 } \) is mean magnetic field and ? the plasma mass density. Alfvèn waves are transverse, incompressible magnetohydrodynamic waves that propagate along \( { \mathbf{B}_0 } \) and originate from the tension of magnetic field lines.

Elsässer variables:

Elsässer variables \( { \mathbf{z}^{\sigma} } \) are defined by \( { \mathbf{z}^{\sigma}=\mathbf{v}+\sigma \mathbf{B}/(4 \pi \rho)^{1/2} } \), with \( { \sigma=\pm 1 } \), v the velocity field, B the magnetic field and ? the plasma mass density. The equations of incompressible MHD are often written in terms of these variables in order to describe the propagation of Alfvén waves and the non-linear couplings occurring in MHD turbulence.

Magnetohydrodynamics :

Magnetohydrodynamics (abbreviated, MHD) represents a one-fluid mathematical model which describes plasma dynamics at low frequencies: The main dynamical variables are the velocity of the fluid and the magnetic field. The vector equations for these variables are the fluid momentum conservation and the induction Maxwell equation.

MHD turbulence:

MHD turbulence is that turbulence which develops inside plasmas at macroscopic level, when viscosity and resistivity are low. Apart from velocity fluctuations which are also present in ordinary fluids, it is characterized also by the presence of magnetic field fluctuations.

Reverse field pinch:

Reverse field pinch (abbreviated, RFP) are plasma fusion toroidal devices whose conception is based on the idea that non-linear interactions in plasmas spontaneously give rise to magnetic structures where the Laplace force is zero (force free structures).

Shell models :

Shell models of turbulence are dynamical systems consisting of a set of ordinary differential equations representing a simplified version of the Navier–Stokes or MHD equations in the wavevector space. These models provide the possibility to investigate turbulence at very high Reynolds number regimes at the cost of neglecting information about spatial structures.

Solar corona:

The solar corona is the region extending from the solar surface up to one million of kilometers in the space, which can be visible to the naked eye during the eclipses. It is constituted mainly by a hydrogen plasma (proton and electrons) at a temperature of about two million degrees. The corona is highly structured by the magnetic field generated at the sun surface.

Solar wind:

The solar wind is a stream of plasma mainly composed of protons and electrons (hydrogen plasma), which flows out of the sun, due to the fact that plasma pressure associated to the very high coronal temperature overcomes the sun gravity. The flow velocity ranges from 250?km/s in the equatorial plane to about 900?km/s in the polar regions. Solar wind represents an extremely efficient plasma laboratory where the turbulence associated with the supersonic flow can be studied using space experiment data.

Bibliography

Primary Literature

  1. Aschwanden MJ (2004) Physics of the solar corona: An introduction. Springer, Berlin

    Google Scholar 

  2. Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality: An explanation of \( { 1/f } \) noise. Phys Rev Lett 59:381–384

    MathSciNet  ADS  Google Scholar 

  3. Belcher JW, Davis L (1971) Large-amplitude Alfvèn waves in the interplanetary medium-II. J Geophys Res 76:3534–3563

    ADS  Google Scholar 

  4. Bellan PM (2000) Spheromaks: A practical application of magnetohydrodynamic dynamos and plasma self-organization. Imperial College Press, London

    Google Scholar 

  5. Biskamp D (1993) Non-linear magnetohydrodynamics. Cambridge University Press, Cambridge

    Google Scholar 

  6. Boffetta G, Carbone V, Giuliani P, Veltri P, Vulpiani A (1999) Power laws in solar flares: Self-organized criticality or turbulence? Phys Rev Lett 83:4662–4665

    ADS  Google Scholar 

  7. Bohr T, Jensen MH, Paladin G, Vulpiani A (1998) Dynamical systems approach to turbulence. Cambridge University Press, Cambridge

    Google Scholar 

  8. Burlaga LF (1991) Multifractal structure of the interplanetary magnetic field Voyager 2 observations near 25?AU, 1987 1988. Geophys Res Lett 18:69–72

    ADS  Google Scholar 

  9. Camussi R, Guj G (1997) Orthonormal wavelet decomposition of turbulent flows: Intermittency and coherent structures. J Fluid Mech 348:177–199

    MathSciNet  ADS  Google Scholar 

  10. Carbone V, Veltri P (1987) A simplified cascade model for M.H.D. turbulence. Astron Astrophys 188:239–250

    ADS  Google Scholar 

  11. Carbone V, Veltri P (1992) Relaxation processes in MHD: A triad-interaction model. Astron Astrophys 259:359–372

    ADS  Google Scholar 

  12. Carbone V (1994) Scaling exponents of the velocity structure functions in the interplanetary medium. Ann Geophys 12:585–590

    Google Scholar 

  13. Carbone V, Sorriso-Valvo L, Martines E, Antoni V, Veltri P (2000) Intermittency and turbulence in a magnetically confined fusion plasma. Phys Rev E 62:49–56

    Google Scholar 

  14. Carbone V, Cavazzana R, Antoni V, Sorriso-Valvo L, Spada E, Regnoli G, Giuliani P, Vianello N, Lepreti F, Bruno R, Martines E, Veltri P (2002) To what extent can dynamical models describe statistical features of turbulent flows? Europhys Lett 58:349–355

    Google Scholar 

  15. Carbone V, Lepreti F, Sorriso-Valvo L, Veltri P, Antoni V, Bruno R (2004) Scaling laws in plasma turbulence. Riv Nuovo Cim 27(8-9):1–108

    Google Scholar 

  16. Crosby NB, Aschwanden MJ, Dennis BR (1993) Frequency distributions and correlations of solar X-ray flare parameters. Solar Phys 143:275–299

    ADS  Google Scholar 

  17. Dahlburg JP, Montgomery D, Doolen GD, Turner R (1986) Turbulent relaxation to a force-free field-reversed state. Phys Rev Lett 57:428–431

    ADS  Google Scholar 

  18. De Bartolo R, Carbone V (2006) The role of the basic three-modes interaction during the free decay of magnetohydrodynamic turbulence. Europhys Lett 73:547–552

    ADS  Google Scholar 

  19. Desnyansky VN, Novikov EA (1974) Evolution of turbulence spectra to self-similar regime. Atmos Oceanic Phys 10:127–136

    Google Scholar 

  20. Dobrowolny M, Mangeney A, Veltri P (1980) Fully developed anisotropic hydromagnetic turbulence in interplanetary space. Phys Rev Lett 45:144–147

    MathSciNet  ADS  Google Scholar 

  21. Elsässer WM (1950) The hydromagnetic equations. Phys Rev 79:183–183

    Google Scholar 

  22. Farge M (1992) Wavelet transforms and their applications to turbulence. Ann Rev Fluid Mech 24:395–457

    MathSciNet  ADS  Google Scholar 

  23. Frisch U, Pouquet A, Leorat J, Mazure A (1975) Possibility of an inverse cascade of magnetic helicity in magnetohydrodynamic turbulence. J Fluid Mech 68:769–778

    ADS  Google Scholar 

  24. Fyfe D, Montgomery D (1976) High-beta turbulence in two-dimensional magnetohydrodynamics. J Plasma Phys 16:181–191

    ADS  Google Scholar 

  25. Heyvaerts J, Priest ER (1984) Coronal heating by reconnection in DC current systems – A theory based on Taylor's hypothesis. Astronom Astrophys 137:63–78

    ADS  Google Scholar 

  26. Gledzer EB (1973) System of hydrodynamic type admitting two quadratic integrals of motion. Sov Phys Dokl 18:216–217

    ADS  Google Scholar 

  27. Giuliani P, Carbone V (1998) A note on shell models for MHD turbulence. Europhys Lett 43:527–532

    ADS  Google Scholar 

  28. Giuliani P (1999) Non-linear MHD waves and turbulence, edited by Passot T, Sulem PL. Lect Notes Phys 536:331–345

    ADS  Google Scholar 

  29. Iroshnikov PS (1963) Turbulence of a conducting fluid in a strong magnetic field. Astron Zhur 40:742–750 (in Russian, translated in Sov Astron 7:566–571)

    ADS  Google Scholar 

  30. Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl Akad Nauk SSSR 30:299–303 (in Russian translated in Proc Royal Soc London 434:9–13)

    ADS  Google Scholar 

  31. Kraichnan RH (1965) Inertial range spectrum of hydromagnetic turbulence. Phys Fluids 8:1385–1387

    MathSciNet  ADS  Google Scholar 

  32. KruckerS, Benz AO (1998) Energy Distribution of Heating Processes in theQuiet Solar Corona. Astrophys J 501:L213–L216

    ADS  Google Scholar 

  33. Lepreti F, Carbone V, Veltri P (2001) Solar flare waiting time distribution: Varying rate Poisson or Lévy function? Astrophys J 555:L133–136

    ADS  Google Scholar 

  34. Lin RP, Schwartz RA, Kane SR, Pelling RM, Hurley KC (1984) Solar hard X-ray microflares. Astrophys J 283:421–425

    ADS  Google Scholar 

  35. Marsch E, Liu S (1993) Structure functions and intermittency of velocity fluctuations in the inner solar wind. Ann Geophys 11:227–238

    ADS  Google Scholar 

  36. Marsch E, Tu CY (1994) Non-Gaussian probability distributions of solar wind fluctuations. Ann Geophys 12:1127–1138

    ADS  Google Scholar 

  37. Tu CY, Marsch E (1995) MHD structures, waves and turbulence in the solar wind: Observations and theories. Space Sci Rev 73:1–210

    ADS  Google Scholar 

  38. Matthaeus WH, Montgomery D (1980) Selective decay hypothesis at high mechanical and magnetic Reynolds numbers. Ann NY Acad Sci 357:203–222

    ADS  Google Scholar 

  39. Matthaeus WH, Goldstein ML, Montgomery D (1982) Turbulent generation of outward-traveling interplanetary alfvnic fluctuations. Phys Rev Lett 51:1484–1487

    ADS  Google Scholar 

  40. Obukhov AM (1971) Some general characteristic equations of the dynamics of the atmosphere. Atmos Oceanic Phys 7:41–45

    Google Scholar 

  41. Onorato M, Camussi R, Iuso G (2000) Small scale intermittency and bursting in a turbulentchannel flow. Phys Rev E 61:1447–1454

    Google Scholar 

  42. Parker EN (1983) Magnetic neutral sheets in evolving fields. II. Formation of the solar corona. Astrophys J 264:642–647

    ADS  Google Scholar 

  43. Parker EN (1988) Nanoflares and the solar X-ray corona. Astrophys J 330:474–479

    ADS  Google Scholar 

  44. ParnellCE, Jupp PE (2000) Statistical Analysis of the Energy Distribution ofNanoflares in the Quiet Sun. Astrophys J 529:554–569

    ADS  Google Scholar 

  45. Pearce G, Rowe A, Yeung J (1993) A statistical analysis of HRD X-ray solar flares. Astrophys Space Sci 208:99–111

    ADS  Google Scholar 

  46. Pouquet A, Meneguzzi M, Frish U (1986) Growth of correlations in magnetohydrodynamic turbulence. Phys Rev A 33:4266–4276

    Google Scholar 

  47. Rosenbluth MN, Monticello DA, Strauss HR (1976) Numerical studies of non-linear evolution of kink modes in tokamaks. Phys Fluids 19:1987–1996

    ADS  Google Scholar 

  48. Rostagni G (1995) RFX: An expected step in RFP research. Fusion Eng Design 25:301–313

    Google Scholar 

  49. Servidio S, Carbone V (2005) Non-linear dynamics of inviscid reduced MHD plasmas: The appearance of quasi-single-helicity states. Phys Rev Lett 95:045001

    ADS  Google Scholar 

  50. Sorriso-Valvo L, Carbone V, Veltri P, Consolini G, Bruno R (1999) Intermittency in the solar wind turbulence through probability distribution functions of fluctuations. Geophys Res Lett 26:1801–1804

    Google Scholar 

  51. Taylor JB (1974) Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys Rev Lett 33:1139–1141

    ADS  Google Scholar 

  52. Taylor J (1986) Relaxation and magnetic reconnection in plasmas. Rev Mod Phys 58:741–763

    ADS  Google Scholar 

  53. Ting AC, Matthaeus WH, Montgomery D (1986) Turbulent relaxation processes in magnetohydrodynamics. Phys Fluids 29:3261–3274

    ADS  Google Scholar 

  54. Veltri P, Mangeney A (1999) Scaling laws and intermittent structures in solar wind MHD turbulence. In: Habbal SR, Esser R, Hollweg JV, Isenberg PA (eds) Solar wind nine, Proceedings of the ninth international solar wind conference, AIP Conference Proceedings vol 471 pp 543–546

    Google Scholar 

  55. Veltri P, Nigro G, Malara F, Carbone V, Mangeney A (2005) Intermittency in MHD turbulence and coronal nanoflares modelling. Non-lin Proc Geophys 12:245–255

    ADS  Google Scholar 

  56. Wesson J (2003) Tokamaks. Oxford Science, Oxford

    Google Scholar 

  57. Wheatland MS, Sturrock PA, McTiernan JM (1998) The waiting-time distribution of solar flare hard X-Ray bursts. Astrophys J 509:448–455

    ADS  Google Scholar 

  58. Woltjer L (1958) A theorem on force-free magnetic fields. Proc Natl Acad Sci 44:489–491

    MathSciNet  ADS  Google Scholar 

  59. Yamada M (1999) Study of magnetic helicity and relaxation phenomena in laboratory plasmas. AGU Geophys Monogr 111:129–140

    Google Scholar 

  60. Yamada M, Ohkitani K (1987) Lyapunov spectrum of a chaotic model of three dimensional turbulence. J Phys Soc Japan 56:4210–4213

    ADS  Google Scholar 

  61. Zank GP, Matthaeus WH (1992) The equations of reduced magnetohydrodynamics. J Plasma Phys 48:85–100.

    ADS  Google Scholar 

Books and Reviews

  1. Bruno R, Carbone V (2005) The solar wind as a turbulence laboratory. Living Rev Solar Phys. 2: http://www.livingreviews.org/lrsp-2005-4

  2. Biskamp D (2003) Magnetohydrodynamic turbulence. Cambridge University Press, Cambridge

    Google Scholar 

  3. Frisch U (1995) Turbulence: The legacy of A.?N. Kolmogorov. Cambridge University Press, Cambridge

    Google Scholar 

  4. Moffat HK (1978) Magnetic field generation in electrically conducting fluids. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Veltri, P., Carbone, V., Lepreti, F., Nigro, G. (2009). Self-Organization in Magnetohydrodynamic Turbulence. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_473

Download citation

Publish with us

Policies and ethics