Skip to main content

Cellular Automata, Emergent Phenomena in

  • Reference work entry
Book cover Encyclopedia of Complexity and Systems Science

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Cellular automaton:

A spatially‐extended dynamical system in which spatially‐discrete cells take on discrete values, and evolve according to a spatially‐localized discrete‐time update rule.

Emergent phenomenon:

A phenomenon that arises as a result of a dynamical system's intrinsic dynamical behavior.

Domain:

A spatio‐temporal region of a cellular automation that conforms to a specific pattern.

Particle:

A spatially‐localized region of a cellular automaton that exists as a boundary or defect in a domain, and persists for a significant amount of time.

Bibliography

Primary Literature

  1. Boccara N, Nasser J, Roger M (1991) Particlelike structures and their interactions in spatio‐temporal patterns generated by one‐dimensional deterministic cellular automaton rules. Phys Rev A 44:866

    ADS  Google Scholar 

  2. Chate H, Manneville P (1992) Collective behaviors in spatially extended systems with local interactions and synchronous updating. Profress Theor Phys 87:1

    ADS  Google Scholar 

  3. Crutchfield JP, Hanson JE (1993) Turbulent pattern bases for cellular automata. Physica D 69:279

    MathSciNet  ADS  Google Scholar 

  4. Eloranta K, Nummelin E (1992) The kink of cellular automaton rule 18 performs a random walk. J Stat Phys 69:1131

    MathSciNet  ADS  Google Scholar 

  5. Fisch R, Gravner J, Griffeath D (1991) Threshold‐range scaling of excitable cellular automata. Stat Comput 1:23–39

    Google Scholar 

  6. Gallas J, Grassberger P, Hermann H, Ueberholz P (1992) Noisy collective behavior in deterministic cellular automata. Physica A 180:19

    ADS  Google Scholar 

  7. Grassberger P (1984) Chaos and diffusion in deterministic cellular automata. Phys D 10:52

    MathSciNet  Google Scholar 

  8. Griffeath D (2008) The primordial soup kitchen. http://psoup.math.wisc.edu/kitchen.html

  9. Hanson JE, Crutchfield JP (1992) The attractor‐basin portrait of a cellular automaton. J Stat Phys 66:1415

    MathSciNet  ADS  Google Scholar 

  10. Hanson JE, Crutchfield JP (1997) Computational mechanics of cellular automata: An example. Physica D 103:169

    MathSciNet  ADS  Google Scholar 

  11. Hopcroft JE, Ullman JD (1979) Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading

    Google Scholar 

  12. Lindgren K, Moore C, Nordahl M (1998) Complexity of two‐dimensional patterns. J Stat Phys 91:909

    MathSciNet  Google Scholar 

  13. Shalizi C, Haslinger R, Rouquier J, Klinker K, Moore C (2006) Automatic filters for the detection of coherent structure in spatiotemporal systems. Phys Rev E 73:036104

    MathSciNet  ADS  Google Scholar 

  14. Wojtowicz M (2008) Mirek’s cellebration. http://www.mirekw.com/ca/

  15. Wolfram S (1984) Universality and complexity in cellular automata. Physica D 10:1

    MathSciNet  ADS  Google Scholar 

Books and Reviews

  1. Das R, Crutchfield JP, Mitchell M, Hanson JE (1995) Evolving Globally Synchronized Cellular Automata. In: Eshelman LJ (ed) Proceedings of the Sixth International Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo

    Google Scholar 

  2. Gerhardt M, Schuster H, Tyson J (1990) A cellular automaton model of excitable medai including curvature and dispersion. Science 247:1563

    MathSciNet  ADS  Google Scholar 

  3. Gutowitz HA (1991) Transients, Cycles, and Complexity in Cellular Automata. Phys Rev A 44:R7881

    ADS  Google Scholar 

  4. Henze C, Tyson J (1996) Cellular automaton model of three‐dimensional excitable media. J Chem Soc Faraday Trans 92:2883

    Google Scholar 

  5. Hordijk W, Shalizi C, Crutchfield J (2001) Upper bound on the products of particle interactions in cellular automata. Physica D 154:240

    MathSciNet  ADS  Google Scholar 

  6. Iooss G, Helleman RH, Stora R (ed) (1983) Chaotic Behavior of Deterministic Systems. North-Holland, Amsterdam

    Google Scholar 

  7. Ito H (1988) Intriguing Properties of Global Structure in Some Classes of Finite Cellular Automata. Physica 31D:318

    ADS  Google Scholar 

  8. Jen E (1986) Global Properties of Cellular Automata. J Stat Phys 43:219

    MathSciNet  ADS  Google Scholar 

  9. Kaneko K (1986) Attractors, Basin Structures and Information Processing in Cellular Automata. In: Wolfram S (ed) Theory and Applications of Cellular Automata. World Scientific, Singapore, pp 367

    Google Scholar 

  10. Langton C (1990) Computation at the Edge of Chaos: Phase transitions and emergent computation. Physica D 42:12

    MathSciNet  ADS  Google Scholar 

  11. Lindgren K (1987) Correlations and Random Information in Cellular Automata. Complex Syst 1:529

    MathSciNet  Google Scholar 

  12. Lindgren K, Nordahl M (1988) Complexity Measures and Cellular Automata. Complex Syst 2:409

    MathSciNet  Google Scholar 

  13. Lindgren K, Nordahl M (1990) Universal Computation in Simple One-Dimensional Cellular Automata. Complex Syst 4:299

    MathSciNet  Google Scholar 

  14. Mitchell M (1998) Computation in Cellular Automata: A Selected Review. In: Schuster H, Gramms T (eds) Nonstandard Computation. Wiley, New York

    Google Scholar 

  15. Packard NH (1984) Complexity in Growing Patterns in Cellular Automata. In: Demongeot J, Goles E, Tchuente M (eds) Dynamical Behavior of Automata: Theory and Applications. Academic Press, New York

    Google Scholar 

  16. Packard NH (1985) Lattice Models for Solidification and Aggregation. Proceedings of the First International Symposium on Form, Tsukuba

    Google Scholar 

  17. Pivato M (2007) Defect Particle Kinematics in One-Dimensional Cellular Automata. Theor Comput Sci 377:205–228

    MathSciNet  Google Scholar 

  18. Weimar J (1997) Cellular automata for reaction-diffusion systems. Parallel Comput 23:1699

    MathSciNet  Google Scholar 

  19. Wolfram S (1984) Computation Theory of Cellular Automata. Comm Math Phys 96:15

    MathSciNet  ADS  Google Scholar 

  20. Wolfram S (1986) Theory and Applications of Cellular Automata. World Scientific Publishers, Singapore

    Google Scholar 

  21. Wuensche A, Lesser MJ (1992) The Global Dynamics of Cellular Automata. Santa Fe Institute Studies in the Science of Complexity, Reference vol 1. Addison-Wesley, Redwood City

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Hanson, J.E. (2009). Cellular Automata, Emergent Phenomena in. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_51

Download citation

Publish with us

Policies and ethics