Skip to main content

Cellular Automata in Hyperbolic Spaces

  • Reference work entry
Book cover Encyclopedia of Complexity and Systems Science

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Fibonacci sequence:

A sequence of natural integers, denoted by f n and defined by the recurrent equation \( { f_{n+2}=f_{n+1}+f_n } \), for all \( { n\in I\!\!N } \), and by the initial values \( { f_0=f_1=1 } \).

Hyperbolic geometry:

This geometry was discovered independently by both Nikolaj Lobachevsky and Jànos Bolyai around 1830. This geometry satisfies the axioms of Euclidean geometry, the axiom of parallels being excepted and replaced by the following one: through a point out of a line, there are exactly two parallels to the line. In this geometry, there are also lines which never meet: they are called non-secant. They are characterized by the existence, for any couple of such lines, of a unique common perpendicular. Also, in this geometry, the sum of the interior angles of a triangle is always less than π. The difference to π defines the area of the triangle. In hyperbolic geometry, distances are absolute: there is no notion of similarity. See also Poincaré's disc.

Pentagrid:

The tiling \( { \{5,4\} } \), with five sides and four tiles around a vertex. The angles are right angles.

Poincaré's disc:

A model of the hyperbolic plane inside the Euclidean plane. The points are the points which are interior to a fixed disc D. The lines are the trace in D of diameters or circles which are orthogonal to the border of D. The model was first found by Beltrami and then by Poincaré who also devised the half-plane model also called after his name. The half-plane model is a conformal image of the disc model.

Ternary heptagrid:

The tiling \( { \{7,3\} } \) with seven sides and three tiles around a vertex.

Tessellation:

A particular case of a finitely generated tiling. It is defined by a polygon and by its reflections in its sides and, recursively, of the images in their sides.

Tiling:

A partition of a geometric space; the closure of the elements of the partition are called the tiles. An important case is constituted by finitely generated tilings: there is a finite set of tiles G such that any tile is a copy of an element of G.

Tiling \( {\{p,q\}} \) :

This is tessellation based on the regular polygon with p sides and with vertex angle \( { {2\pi} / q } \).

Invariant group of a tiling:

A group of transformations which define a bijection on the set of tiles. Usually, in a geometrical space, they are required to belong to the group of isometries of the space.

Bibliography

Primary Literature

  1. Chelghoum K, Margenstern M, Martin B, Pecci I (2004) Celluladr automata in the hyperbolic plane: proposal for a new environment. In: Proceedings of ACRI’2004, Amsterdam, 25–27 October 2004. Lecture Notes in Computer Sciences, vol 3305. Springer, Berlin, pp 678–687

    Google Scholar 

  2. Fraenkel AS (1985) Systems of numerations. Amer Math Mon 92:105–114

    MathSciNet  Google Scholar 

  3. Gromov M (1981) Groups of polynomial growth and expanding maps. Publ Math IHES 53:53–73

    MathSciNet  Google Scholar 

  4. Herrmann F, Margenstern M (2003) A universal cellular automaton in the hyperbolic plane. Theor Comput Sci 296:327–364

    MathSciNet  Google Scholar 

  5. Iwamoto C, Margenstern M (2003) A survey on the Complexity Classes in Hyperbolic Cellular Automata. In: Proceedings of SCI’2003, V, pp 31–35

    Google Scholar 

  6. Iwamoto C, Margenstern M, Morita K, Worsch T (2002) Polynomial‐time cellular automata in the hyperbolic plane accept accept exactly the PSPACE Languages. SCI’2002, Orlando, pp 411–416

    Google Scholar 

  7. Margenstern M (2000) New tools for cellular automata in the hyperbolic plane. J Univers Comput Sci 6(12):1226–1252

    MathSciNet  Google Scholar 

  8. Margenstern M (2002) A contribution of computer science to the combinatorial approach to hyperbolic geometry. In: SCI’2002, Orlando, USA, 14–19 July 2002

    Google Scholar 

  9. Margenstern M (2002) Revisiting Poincaré’s theorem with the splitting method. In: Bolyai’200, International Conference on Geometry and Topology, Cluj-Napoca, Romania, 1–3 October 2002

    Google Scholar 

  10. Margenstern M (2003) Implementing Cellular Automata on the Triangular Grids of the Hyperbolic Plane for New Simulation Tools. ASTC’2003, Orlando, 29 March–4 April

    Google Scholar 

  11. Margenstern M (2004) The Tiling of the Hyperbolic 4D Space by the 120-cell is Combinatoric. J Univers Comput Sci 10(9):1212–1238

    MathSciNet  Google Scholar 

  12. Margenstern M (2006) A new way to implement cellular automata on the penta- and heptagrids. J Cell Autom 1(1):1–24

    MathSciNet  Google Scholar 

  13. Margenstern M (2007) A universal cellular automaton with five states in the 3D hyperbolic space. J Cell Autom 1(4):317–351

    MathSciNet  Google Scholar 

  14. Margenstern M (2007) On the communication between cells of a cellular automaton on the penta- and heptagrids of the hyperbolic plane. J Cell Autom 1(3):213–232

    MathSciNet  Google Scholar 

  15. Margenstern M (2007) Cellular Automata in Hyperbolic Spaces, vol 1: Theory. Old City Publishing, Philadelphia, p 422

    Google Scholar 

  16. Margenstern M (2008) A Uniform and Intrinsic Proof that there are Universal Cellular Automata in Hyperbolic Spaces. J Cell Autom 3(2):157-180

    MathSciNet  Google Scholar 

  17. Margenstern M (2008) The domino problem of thehyperbolic plane is undecidable. Theor Comput Sci (to appear)

    Google Scholar 

  18. Margenstern M, Morita K (1999) A Polynomial Solution for 3-SAT in the Space of Cellular Automata in the Hyperbolic Plane. J Univers Comput Syst 5:563–573

    MathSciNet  Google Scholar 

  19. Margenstern M, Morita K (2001) NP problems are tractable in the space of cellular automata in the hyperbolic plane. Theor Comput Sci 259:99–128

    MathSciNet  Google Scholar 

  20. Margenstern M, Skordev G (2003) The tilings \( { \{p,q\} } \) of the hyperbolic plane are combinatoric. In: SCI'2003, V, pp 42–46

    Google Scholar 

  21. Margenstern M, Skordev G (2003) Tools for devising cellular automata in the hyperbolic 3D space. Fundamenta Informaticae 58(2):369–398

    MathSciNet  Google Scholar 

  22. Margenstern M, Song Y (2008) A new universal cellular automaton on the pentagrid. AUTOMATA’2008, Bristol, UK, 12–14 June 2008

    Google Scholar 

  23. Martin B (2005) VirHKey: a VIRtual Hyperbolic KEYboard with gesture interaction and visual feedback for mobile devices. In: MobileHCI’05, September, Salzburg, Austria

    Google Scholar 

  24. Morgenstein D, Kreinovich V (1995) Which algorithms are feasible and which are not depends on the geometry of space-time. Geombinatorics 4(3):80–97

    Google Scholar 

  25. Róka Z (1994) One-way cellular automata on Cayley Graphs. Theor Comput Sci 132:259–290

    Google Scholar 

  26. Stewart I (1994) A Subway Named Turing. Math Recreat Sci Am 90–92

    Google Scholar 

Books and Reviews

  1. Alekseevskij DV, Vinberg EB, Solodovnikov AS (1993) Geometry of spaces of constant curvature. In: Vinberg EB (ed) Geometry II, Encyclopedia of Mathematical Sciences, vol 29. Springer, Berlin

    Google Scholar 

  2. Berlekamp ER, Conway JH, Guy RK (1982) Winning Ways for Your Mathematical Plays. Academic Press

    Google Scholar 

  3. Bonola R (1912) Non-Euclidean Geometry. Open Court Publishing Company (also, (1955) Dover, New York)

    Google Scholar 

  4. Codd EF (1968) Cellular Automata. Academic Press, New York

    Google Scholar 

  5. Coxeter HSM (1969) Introduction to Geometry. Wiley, New York

    Google Scholar 

  6. Coxeter HSM (1974) Regular Complex Polytopes. Cambridge University Press, Cambridge

    Google Scholar 

  7. Delorme M, Mazoyer J (eds) (1999) Cellular automata, a parallel model. Kluwer, p 460

    Google Scholar 

  8. Epstein DBA, Cannon JW, Holt DF, Levi SVF, Paterson MS, Thurston WP (1992) Word Processing in Groups. Jones and Barlett, Boston

    Google Scholar 

  9. Grünbaum B, Shephard GS (1987) Tilings and Patterns. Freeman, New York

    Google Scholar 

  10. Gruska J (1997) Foundations of computing. International Thomson Computer Press

    Google Scholar 

  11. Knuth DE (1998) The Art of Computer Programming, vol II: Seminumerical algorithms. Addison-Wesley

    Google Scholar 

  12. Meschkowski H (1964) Noneuclidean Geometry. Translated by Shenitzer A. Academic Press, New York

    Google Scholar 

  13. Millman RS, Parker GD (1981) Geometry, a metric approach with models. Springer

    Google Scholar 

  14. Minsky ML (1967) Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  15. Ramsay A, Richtmyer RD (1995) Introduction to Hyperbolic Geometry. Springer

    Google Scholar 

  16. Toffoli T, Margolus N (1987) Cellular automata machines. MIT Press, Cambridge

    Google Scholar 

  17. von Neuman J (1966) Theory of self-reproducing automata. Edited and completed by A.W. Burks. The University of Illinois Press, Urbana

    Google Scholar 

  18. Wolfram S (1994) Cellular Automata and Complexity. Addison-Wesley

    Google Scholar 

  19. Wolfram S (2002) A New Kind of Science. Wolfram Media

    Google Scholar 

Download references

Acknowledgments

The author is particularly in debt to Andrew Adamatzky for giving him the task to write this article.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Margenstern, M. (2009). Cellular Automata in Hyperbolic Spaces. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_53

Download citation

Publish with us

Policies and ethics