Skip to main content

Cellular Automata with Memory

  • Reference work entry
Book cover Encyclopedia of Complexity and Systems Science

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Cellular automata:

Cellular Automata (CA) are discrete, spatially explicit extended dynamic systems composed of adjacent cells characterized by an internal state whose value belongs to a finite set. The updating of these states is made simultaneously according to a common local transition rule involving only a neighborhood of each cell.

Memory:

Standard CA are ahistoric (memoryless): i. e., the new state of a cell depends on the neighborhood configuration only at the preceding time step. The standard framework of CA can be extended by the consideration of all past states (history) in the application of the CA rules by implementing memory capabilities in cells and links when topology is dynamic.

Bibliography

PrimaryLiterature

  1. Adamatzky A (1994) Identification of Cellular Automata. Taylor and Francis

    Google Scholar 

  2. Adamatzky A (2001) Computing in Nonlinear Media and Automata Collectives. IoP Publishing, London

    Google Scholar 

  3. Adamatzky A, Holland O (1998) Phenomenology of excitation in 2-D cellular automata and swarm systems. Chaos Solit Fract 9:1233–1265

    MathSciNet  ADS  Google Scholar 

  4. Aicardi F, Invernizzi S (1982) Memory effects in Discrete Dynamical Systems. Int J Bifurc Chaos 2(4):815–830

    MathSciNet  Google Scholar 

  5. Alonso-Sanz R (1999) The Historic Prisoner’s Dilemma. Int J Bifurc Chaos 9(6):1197–1210

    MathSciNet  Google Scholar 

  6. Alonso-Sanz R (2003) Reversible Cellular Automata with Memory. Phys D 175:1–30

    MathSciNet  Google Scholar 

  7. Alonso-Sanz R (2004) One‐dimensional, \( { r=2 } \) cellular automata with memory. Int J Bifurc Chaos 14:3217–3248

    MathSciNet  Google Scholar 

  8. Alonso-Sanz R (2004) One‐dimensional, \( { r=2 } \) cellular automata with memory. Int J BifurcChaos 14:3217–3248

    MathSciNet  Google Scholar 

  9. Alonso-Sanz R (2005) Phase transitions in an elementary probabilistic cellular automaton with memory. Phys A 347:383–401 Alonso-Sanz R, Martin M (2004) Elementary Probabilistic Cellular Automata with Memory in Cells. Sloot PMA et al (eds) LNCS, vol 3305. Springer, Berlin, pp 11–20

    Google Scholar 

  10. Alonso-Sanz R (2005) The Paulov versus Anti‐Paulov contest with memory. Int J Bifurc Chaos 15(10):3395–3407

    MathSciNet  Google Scholar 

  11. Alonso-Sanz R (2006) A Structurally Dynamic Cellular Automaton with Memory in the Triangular Tessellation. Complex Syst 17(1):1–15. Alonso-Sanz R, Martin, M (2006) A Structurally Dynamic Cellular Automaton with Memory in the Hexagonal Tessellation. In: El Yacoubi S, Chopard B, Bandini S (eds) LNCS, vol 4774. Springer, Berlin, pp 30-40

    MathSciNet  Google Scholar 

  12. Alonso-Sanz R (2007) Reversible Structurally Dynamic Cellular Automata with Memory: a simple example. J Cell Automata 2:197–201

    MathSciNet  Google Scholar 

  13. Alonso-Sanz R (2006) The Beehive Cellular Automaton with Memory. J Cell Autom 1:195–211

    MathSciNet  Google Scholar 

  14. Alonso-Sanz R (2007) A Structurally Dynamic Cellular Automaton with Memory. Chaos Solit Fract 32:1285–1295

    MathSciNet  ADS  Google Scholar 

  15. Alonso-Sanz R, Adamatzky A (2008) On memory and structurally dynamism in excitable cellular automata with defensive inhibition. Int J Bifurc Chaos 18(2):527–539

    MathSciNet  Google Scholar 

  16. Alonso-Sanz R, Cardenas JP (2007) On the effect of memory in Boolean networks with disordered dynamics: the \( { K=4 } \) case. Int J Modrn Phys C 18:1313–1327

    ADS  Google Scholar 

  17. Alonso-Sanz R, Martin M (2002) One‐dimensional cellular automata with memory: patterns starting with a single site seed. Int J Bifurc Chaos 12:205–226

    MathSciNet  Google Scholar 

  18. Alonso-Sanz R, Martin M (2002) Two‐dimensional cellular automata with memory: patterns starting with a single site seed. Int J Mod Phys C 13:49–65

    MathSciNet  ADS  Google Scholar 

  19. Alonso-Sanz R, Martin M (2003) Cellular automata with accumulative memory: legal rules starting from a single site seed. Int J Mod Phys C 14:695–719

    MathSciNet  ADS  Google Scholar 

  20. Alonso-Sanz R, Martin M (2004) Elementary cellular automata with memory. Complex Syst 14:99–126

    MathSciNet  Google Scholar 

  21. Alonso-Sanz R, Martin M (2004) Three-state one‐dimensional cellular automata with memory. Chaos, Solitons Fractals 21:809–834

    MathSciNet  ADS  Google Scholar 

  22. Alonso-Sanz R, Martin M (2005) One‐dimensional Cellular Automata with Memory in Cells of the Most Frequent Recent Value. Complex Syst 15:203–236

    MathSciNet  Google Scholar 

  23. Alonso-Sanz R, Martin M (2006) Elementary Cellular Automata with Elementary Memory Rules in Cells: the case of linear rules. J Cell Autom 1:70–86

    MathSciNet  Google Scholar 

  24. Alonso-Sanz R, Martin M (2006) Memory Boosts Cooperation. Int J Mod Phys C 17(6):841–852

    ADS  Google Scholar 

  25. Alonso-Sanz R, Martin MC, Martin M (2000) Discounting in the Historic Prisoner’s Dilemma. Int J Bifurc Chaos 10(1):87–102

    MathSciNet  Google Scholar 

  26. Alonso-Sanz R, Martin MC, Martin M (2001) Historic Life Int J Bifurc Chaos 11(6):1665–1682

    Google Scholar 

  27. Alonso-Sanz R, Martin MC, Martin M (2001) The Effect of Memory in the Spatial Continuous‐valued Prisoner’s Dilemma. Int J Bifurc Chaos 11(8):2061–2083

    Google Scholar 

  28. Alonso-Sanz R, Martin MC, Martin M (2001) The Historic Strategist. Int J Bifurc Chaos 11(4):943–966

    Google Scholar 

  29. Alonso-Sanz R, Martin MC, Martin M (2001) The Historic‐Stochastic Strategist. Int J Bifurc Chaos 11(7):2037–2050

    Google Scholar 

  30. Alvarez G, Hernandez A, Hernandez L, Martin A (2005) A secure scheme to share secret color images. Comput Phys Commun 173:9–16

    ADS  Google Scholar 

  31. Fredkin E (1990) Digital mechanics. An informal process based on reversible universal cellular automata. Physica D 45:254–270

    MathSciNet  ADS  Google Scholar 

  32. Grössing G, Zeilinger A (1988) Structures in Quantum Cellular Automata. Physica B 15:366

    Google Scholar 

  33. Hauert C, Schuster HG (1997) Effects of increasing the number of players and memory steps in the iterated Prisoner’s Dilemma, a numerical approach. Proc R Soc Lond B 264:513–519

    ADS  Google Scholar 

  34. Hooft G (1988) Equivalence Relations Between Deterministic and Quantum Mechanical Systems. J Statistical Phys 53(1/2):323–344

    ADS  Google Scholar 

  35. Ilachinski A (2000) Cellular Automata. World Scientific, Singapore

    Google Scholar 

  36. Ilachinsky A, Halpern P (1987) Structurally dynamic cellular automata. Complex Syst 1:503–527

    Google Scholar 

  37. Kaneko K (1986) Phenomenology and Characterization of coupled map lattices, in Dynamical Systems and Sigular Phenomena. World Scientific, Singapore

    Google Scholar 

  38. Kauffman SA (1993) The origins of order: Self‐Organization and Selection in Evolution. Oxford University Press, Oxford

    Google Scholar 

  39. Lindgren K, Nordahl MG (1994) Evolutionary dynamics of spatial games. Physica D 75:292–309

    ADS  Google Scholar 

  40. Love PJ, Boghosian BM, Meyer DA (2004) Lattice gas simulations of dynamical geometry in one dimension. Phil Trans R Soc Lond A 362:1667

    MathSciNet  ADS  Google Scholar 

  41. Margolus N (1984) Physics‐like Models of Computation. Physica D 10:81–95

    MathSciNet  ADS  Google Scholar 

  42. Martin del Rey A, Pereira Mateus J, Rodriguez Sanchez G (2005) A secret sharing scheme based on cellular automata. Appl Math Comput 170(2):1356–1364

    MathSciNet  Google Scholar 

  43. Nowak MA, May RM (1992) Evolutionary games and spatial chaos. Nature 359:826

    ADS  Google Scholar 

  44. Nowak MA, Sigmund K (1993) A strategy of win-stay, lose-shift that outperforms tit-for-tat in the Prisoner’s Dilemma game. Nature 364:56–58

    ADS  Google Scholar 

  45. Requardt M (1998) Cellular networks as models for Plank-scale physics. J Phys A 31:7797; (2006) The continuum limit to discrete geometries, arxiv.org/abs/math-ps/0507017

    MathSciNet  Google Scholar 

  46. Requardt M (2006) Emergent Properties in Structurally Dynamic Disordered Cellular Networks. J Cell Aut 2:273

    MathSciNet  Google Scholar 

  47. Ros H, Hempel H, Schimansky‐Geier L (1994) Stochastic dynamics of catalytic CO oxidation on Pt(100). Pysica A 206:421–440

    Google Scholar 

  48. Sanchez JR, Alonso-Sanz R (2004) Multifractal Properties of R90 Cellular Automaton with Memory. Int J Mod Phys C 15:1461

    ADS  Google Scholar 

  49. Stauffer D, Aharony A (1994) Introduction to percolation Theory. CRC Press, London

    Google Scholar 

  50. Svozil K (1986) Are quantum fields cellular automata? Phys Lett A 119(41):153–156

    MathSciNet  ADS  Google Scholar 

  51. Toffoli T, Margolus M (1987) Cellular Automata Machines. MIT Press, Massachusetts

    Google Scholar 

  52. Toffoli T, Margolus N (1990) Invertible cellular automata: a review. Physica D 45:229–253

    MathSciNet  ADS  Google Scholar 

  53. Vichniac G (1984) Simulating physics with Cellular Automata. Physica D 10:96–115

    MathSciNet  ADS  Google Scholar 

  54. Watts DJ, Strogatz SH (1998) Collective dynamics of Small-World networks. Nature 393:440–442

    ADS  Google Scholar 

  55. Wolf-Gladrow DA (2000) Lattice‐Gas Cellular Automata and Lattice Boltzmann Models. Springer, Berlin

    Google Scholar 

  56. Wolfram S (1984) Universality and Complexity in Cellular Automata. Physica D 10:1–35

    MathSciNet  ADS  Google Scholar 

  57. Wuensche A (2005) Glider dynamics in 3-value hexagonal cellular automata: the beehive rule. Int J Unconv Comput 1:375–398

    Google Scholar 

  58. Wuensche A, Lesser M (1992) The Global Dynamics of Cellular Automata. Addison‐Wesley, Massachusetts

    Google Scholar 

Books and Reviews

  1. Alonso-Sanz R (2008) Cellular Automata with Memory. Old City Publising, Philadelphia (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Alonso-Sanz, R. (2009). Cellular Automata with Memory. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_55

Download citation

Publish with us

Policies and ethics