Skip to main content

Charge-Based Solid-State Flying Qubits

  • Reference work entry
Encyclopedia of Complexity and Systems Science

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Bit:

Elementary unit of classical information represented by a binary digit.

Qubit (or quantum bit):

Elementary unit of quantum information. The qubit refers also to the physical system whose state encodes the qubit of information.

Quantum gate:

Logical operation performed on one or a few qubits, that change their state according to a unitary transformation. Quantum gates are reversible by definition.

Quantum entanglement:

Property possessed by two or more quantum systems, when the state of the global system that includes all of them cannot be described by the simple composition of their states. Two entangled systems show quantum correlations between their states that have no classical analogue.

Bell's inequality:

Relation between two sets of measurements performed on two quantum systems spatially separated. Bell's inequality can only be violated if the two systems are entangled.

Quantum wire:

Metallic or semiconductor wire with nanometric thickness. While the longitudinal current carrying states form a continuum in the energy spectrum, the transverse component of the carriers wave functions originates a discrete spectrum.

Two‐dimensional electron gas (2DEG):

Gas of electrons that are quantum‐confined in one dimension and free to move in the remaining two. In the confinement direction the single‐particle states have a quantized energy spectrum. 2DEGs are usually obtained through the modulation of the material conduction band in a semiconductor heterostructure.

Surface acoustic wave (SAW):

Elastic acoustic wave that propagates on the surface of a material. In piezoelectric materials SAWs couples with electrons through the SAW‐induced piezoelectric field.

Bibliography

Primary Literature

  1. Akguc GB, Reichl LE, Shaji A, Snyder MG (2004) Bell states in a resonant quantum waveguide network. Phys Rev A 69:42303

    ADS  Google Scholar 

  2. ARDA (2004) Quantum Computation Roadmap. http://qist.lanl.gov. Accessed 1 June 2008

  3. Aspect A, Grangier P, Roger G (1981) Experimental tests of realistic local theories via Bell’s theorem. Phys Rev Lett 47:460

    ADS  Google Scholar 

  4. Barenco A, Bennett CH, Cleve R, DiVincenzo DP, Margolus N, Shor P, Sleator T, Smolin JA, Weinfurter H (1995) Elementary gates for quantum computation. Phys Rev A 52:3457

    ADS  Google Scholar 

  5. Barnes CHW, Shilton JM, Robinson AM (2000) Quantum computation using electrons trapped by surface accoustic waves. Phys Rev B 62:8410

    ADS  Google Scholar 

  6. Bell JS (1964) On Einstein Podolsky Rosen paradox Physics 1:195

    Google Scholar 

  7. Bennett CH (1982) The thermodynamics of computation – a review. Int J Theor Phys 21:905

    Google Scholar 

  8. Bertoni A (2007) Perspectives on solid-state flying qubits. J Comp Electr 6:67

    Google Scholar 

  9. Bertoni A, Bordone P, Brunetti R, Jacoboni C, Reggiani S (2000) Quantum logic gates based on coherent electron transport in quantum wires. Phys Rev Lett 84:5912

    ADS  Google Scholar 

  10. Bertoni A, Bordone P, Brunetti R, Jacoboni C, Reggiani S (2002) Numerical simulation of coherent transport in quantum wires for quantum computing. J Mod Opt 49:1219

    ADS  Google Scholar 

  11. Bertoni A, Ionicioiu R, Zanardi P, Rossi F, Jacoboni C (2002) Simulation of entangled electronic states in semiconductor quantum wires. Physica B 314:10

    ADS  Google Scholar 

  12. Bertoni A, Reggiani S (2004) Entanglement and quantum computing with ballistic electrons. Semicond Sci Technol 19:S113

    ADS  Google Scholar 

  13. Bordone P, Bertoni A, Rosini M, Reggiani S, Jacoboni C (2004) Coherent transport in coupled quantum wires assisted by surface acoustic waves. Semicond Sci Technol 19:412

    ADS  Google Scholar 

  14. Braunstein SL, Mann A, Revzen M (1992) Maximal violation of bell inequalities for mixed states. Phys Rev Lett 68:3259

    MathSciNet  ADS  Google Scholar 

  15. Cunningham J, Pepper M, Talyanskii VI, Ritchie DA (2005) Acoustic transport of electrons in parallel quantum wires. Acta Phys Polonica A 107:38

    ADS  Google Scholar 

  16. Einstein A, Podolsky B, Rosen N (1935) Can quantum-mechanical description of physical reality be considered complete? Phys Rev 47:777

    ADS  Google Scholar 

  17. Ekert A, Jozsa R (1996) Quantum computation and shor’s factoring algorithm. Rev Mod Phys 68:733

    MathSciNet  ADS  Google Scholar 

  18. Eugster CC, delAlamo JA, Rooks MJ, Melloch MR (1994) One‐dimensional to onedimensional tunneling between electron waveguides. Appl Phys Lett 64:3157

    ADS  Google Scholar 

  19. Ferry DK (1997) Transport in Nanostructures. Cambridge University Press, Cambridge

    Google Scholar 

  20. Fischer SF (2007) Magnetotransport spectroscopy of dual one‐dimensional electron systems. Int J Mod Phys B 21:1326

    ADS  Google Scholar 

  21. Fischer SF, Apetrii G, Kunze U, Schuh D, Abstreiter G (2005) Tunnel‐coupled one‐dimensional electron systems with large subband separations. Phys Rev B 74:115324

    ADS  Google Scholar 

  22. Fischer SF, Apetrii G, Kunze U, Schuh D, Abstreiter G (2006) Energy spectroscopy of controlled coupled quantum‐wire states. Nature Phys 2:91

    ADS  Google Scholar 

  23. Furuta S, Barnes CH, Doran CJL(2004) Single‐qubit gates and measurements in the surface acoustic wave quantum computer. Phys Rev B 70:205320

    ADS  Google Scholar 

  24. Governale M, Macucci M, Pellegrini P (2000) Shape of the tunneling conductance peaks for coupled electron waveguides. Phys Rev B 62:4557

    ADS  Google Scholar 

  25. Ionicioiu R, Amaratunga, Udrea F (2001) Quantum computation with balistic electrons. Int J Mod Phys B 15:125

    ADS  Google Scholar 

  26. Ionicioiu R, Zanardi P, Rossi F (2001) Testing bell’s inequality with ballistic electrons in semiconductors. Phys Rev A 63: 50101

    ADS  Google Scholar 

  27. Knill E, Laflamme R, Martinez R, Tseng C-H (2000) An algorithmic benchmark for quantum information processing. Nature 404:368

    ADS  Google Scholar 

  28. Landauer R (1961) Irreversibility and heat generation in the computing process. IBM J Res Dev 5:183

    MathSciNet  Google Scholar 

  29. Marchi A, Bertoni A, Reggiani S, Rudan M (2004) Investigation on single‐electron dynamics in coupled gaas‐algaas quantum wires. IEEE Trans Nanotech 3:129

    ADS  Google Scholar 

  30. Messiah A (1961) Quantum Mechanics. North‐Holland, Amsterdam

    Google Scholar 

  31. Pingue P, Piazza V, Beltram F, Farrer I, Ritchie DA, Pepper M (2005) Coulomb blockade directional coupler. Appl Phys Lett 86:52102

    ADS  Google Scholar 

  32. Polizzi E, Ben Abdallah N (2002) Self‐consistent three‐dimensional models for quantum ballistic transport in open systems. Phys Rev B 66:245301

    ADS  Google Scholar 

  33. Preskill J (1998) Caltech lecture notes. http://www.theory.caltech.edu/%7Epreskill/ph229. Accessed 1 June 2008

  34. Preskill J (1998) Reliable quantum computers. Proc R Soc Lond A 454:3851

    MathSciNet  Google Scholar 

  35. Ramamoorthy A, Bird JP, Reno JL (2006) Quantum asymmetry of switching in laterally coupled quantum wires with tunable coupling strength. Appl Phys Lett 89:153128

    ADS  Google Scholar 

  36. Ramamoorthy A, Bird JP, Reno JL (2006) Switching characteristics of coupled quantum wires with tunable coupling strength. Appl Phys Lett 89:13118

    ADS  Google Scholar 

  37. Rodriquez R, Oi DK, Kataoka M, Barnes CH, Ohshima T, Ekert AK (2005) Surface‐acoustic‐wave single‐electron interferometry. Phys Rev B 72:85329

    ADS  Google Scholar 

  38. Sabathil M, Mamaluy D, Vogl P (2004) Prediction of a realistic quantum logic gate using the contact block reduction method. Semicond Sci Technol 19:S137

    ADS  Google Scholar 

  39. Tinkham M (1964) Group Theory and Quantum Mechanics. McGraw‐Hill, New York

    Google Scholar 

  40. DiVincenzo DP (1995) Two-bit gates are universal for quantum computation. Phys Rev A 50:1015

    ADS  Google Scholar 

  41. DiVincenzo D (2000) The physical implementation of quantum computation. quant-ph/0002077

    Google Scholar 

  42. Zibold T, Vogl P, Bertoni A (2007) Theory of semiconductor quantum‐wire based single- and two-qubit gates. Phys Rev B 76:195301

    ADS  Google Scholar 

Books and Reviews

  1. Benenti G, Casati G, Strini G (2004) Principles of Quantum Computation and Information, vol 1. World Scientific, Singapore. ISBN 9-812-38858-3

    Google Scholar 

  2. DiVincenzo DP (1995) Quantum Computation. Science 270:255

    MathSciNet  ADS  Google Scholar 

  3. Harrison P (2005) Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures. Wiley‐Interscience, Chichester. ISBN 0-470-01080-0

    Google Scholar 

  4. Hurt NE (2000) Mathematical Physics of Quantum Wires and Devices: From Spectral Resonances to Anderson Localization. Kluwer, Dordrecht. ISBN 0-792-36288-8

    Google Scholar 

  5. Nielsen M, Chuang I (2000) Quantum Computation and Quantum Information. Cambridge University Press, Cambridge. ISBN 0‑521-63503-9

    Google Scholar 

Download references

Acknowledgment

I would like to express my sincere thanks to the groups of Carlo Jacoboni and Massimo Rudan,that performed, together with the author, a large part of the work here reported. Furthermore, I thank, for most fruitful discussions, Marco Fanciulliand Peter Vogl.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Bertoni, A. (2009). Charge-Based Solid-State Flying Qubits. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_67

Download citation

Publish with us

Policies and ethics