Skip to main content

Complex Gene Regulatory Networks – from Structure to Biological Observables: Cell Fate Determination

  • Reference work entry
Book cover Encyclopedia of Complexity and Systems Science

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Transcription factor:

A protein that binds to the regulatory region of a target gene (its promoter or enhancer regions) and thereby, controls its expression (transcription of the target gene into a mRNA which is ultimately translated into the protein encoded by the target gene). Transcription factors account for temporal and contextual specificity of the expression of genes; for instance, a developmentally regulated gene is expressed only during a particular phase in development and in particular tissues.

Gene regulatory network (GRN):

Transcription factors regulate the expression of other transcription factor genes as well as other ‘non‐regulatory’ genes which encode proteins, such as metabolic enzymes or structural proteins. A regulatory relationship between two genes thus is formalized as: “transcription factor A is the regulator of target gene B” or: A → B. The entirety of such regulatory interactions forms a network = the gene regulatory network (GRN). Synonyms: genetic network or gene network, transcriptional network.

Gene network architecture and topology:

The GRN can be represented as a “directed graph”. The latter consists of a set of nodes (= vertices) representing the genes connected by arrows (directed links or edges) representing the regulatory interactions pointing from the regulator to the regulated target gene. [In contrast, in an undirected graph, the links are simple lines without arrowheads. The protein‐interaction network can be represented as undirected graph]. The topology of a network is the structure of this graph and is an abstract notation, without physicality, of all the potential regulatory interactions between the genes. Topology usually is used to denote the simple interactions captured by the directed graph. For defining the network dynamics, however, additional aspects of interactions need to be specified, including: modalities or “sign” of an arrow (inhibitory vs. activating regulation), the ‘transfer functions’ (relationship between magnitude of input to that of the output = target gene) and the logical function (notably, in Boolean network, defining how multiple inputs are related to each other and are integrated to shaping the output). In this article when all this additional information is implied to be included, the term gene network architecture is used. Thus, the graph topology is a subset of network architecture.

Gene network dynamics:

The collective change of the gene expression levels of the genes in a network, essentially, the change over time of the network state S.

State space:

Phase space = the abstract space that contains all possible states S of a dynamical system. For (autonomous) gene regulatory networks, each state S is specified by the configuration of the expression levels of each of the N genes of the network; thus a system state S is one point in the N‑dimensional state space. As the system changes its state over time, S moves along trajectories in the state space.

Transcriptome:

Gene expression pattern across the entire (or large portion of) the genome, measured at the level of mRNA levels. Used as synonym to “gene expression profile”. The transcriptome can in a first approximation be considered a snapshot of the network state S of the GRN in gene network dynamics.

Cell type:

A distinct, whole-cell phenotype characteristic of a mature cell specialized to exert an organ‐specific function. Example of cell types are: liver cell, red blood cell, skin fibroblast, heart muscle cell, fat cell, etc. Cell types are characterized by their distinct cell morphology and their gene expression pattern.

Cell fate:

A potential developmental outcome of a (stem or progenitor) cell. A cell fate of a stem cell can be the development into a particular mature cell type.

Multipotency:

The ability of a cell to generate multiple cell types; a hallmark of stem cells. Stem cells are said to be multipotent (see also under Stem cells).

Stem cell:

A multi‐potent cell capable of “self‐renewal” (division in which both daughter cells have the same degree of multi‐potency as the mother cell) and can give rise to multiple cell types. There is a hierarchy of multipotency: a toti‐potent embryonic stem cell can generate all possible cell types in the body, including extra‐embryonic tissues, such as placenta. A pluripotent embryonic stem cell can generate tissues of three germ layers, i. e., it can produce all cell types of the foetus and the adult. A multipotent (sensu stritiore) stem cell of a tissue (e. g., blood) can give rise to all cell types of that tissue (e. g., a hematopoietic stem cell can produce all the blood cells). A multipotent progenitor cell can give rise to more than one cell types within a tissue (e. g. the granulocyte‐monocyte progenitor cell).

Cell lineage:

Developmental trajectory of a multipotent cell towards one of multiple cell types, e. g., the “myeloid lineage” among blood cells, comprising the white blood cells granulocytes, monocytes, etc. Thus, a cell fate decision is a decision between multiple lineages accessible to a stem or progenitor cell.

Differentiation:

The process of cell fate decision in a stem or progenitor cell and the subsequent maturation into a mature cell type.

Bibliography

Primary Literature

  1. Adolfsson J, Mansson R, Buza-Vidas N, Hultquist A, Liuba K, Jensen CT, Bryder D, Yang L, Borge OJ, Thoren LA, Anderson K, Sitnicka E, Sasaki Y, Sigvardsson M, Jacobsen SE (2005) Identification of Flt3+ lympho‐myeloid stem cells lacking erythro‐megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121:295–306

    Google Scholar 

  2. Aittokallio T, Schwikowski B (2006) Graph-based methods for analysing networks in cell biology. Brief Bioinform 7:243–55

    Google Scholar 

  3. Albert R (2005) Scale-free networks in cell biology. J Cell Sci 118:4947–57

    Google Scholar 

  4. Albert R, Othmer HG (2003) The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J Theor Biol 223:1–18

    Google Scholar 

  5. Albert R, Jeong H, Barabasi AL (2000) Error and attack tolerance of complex networks. Nature 406:378–82

    ADS  Google Scholar 

  6. Aldana M, Cluzel P (2003) A natural class of robust networks. Proc Natl Acad Sci USA 100:8710–4

    ADS  Google Scholar 

  7. Aldana M, Balleza E, Kauffman S, Resendiz O (2007) Robustness and evolvability in genetic regulatory networks. J Theor Biol 245:433–48

    MathSciNet  Google Scholar 

  8. Aldana M, Coppersmith S, Kadanoff LP (2003) Boolean dynamics with random couplings. In: Kaplan E, Marsden JE, Sreenivasan KR (eds) Perspectives and problems in nonlinear science. A celebratory volume in honor of Lawrence Sirovich. Springer, New York

    Google Scholar 

  9. Alon U (2003) Biological networks: the tinkerer as an engineer. Science 301:1866–7

    ADS  Google Scholar 

  10. Amaral LA, Scala A, Barthelemy M, Stanley HE (2000) Classes of small-world networks. Proc Natl Acad Sci USA 97:11149–52

    ADS  Google Scholar 

  11. Anderson PW (1972) More is different. Science 177:393–396

    ADS  Google Scholar 

  12. Angeli D, Ferrell JE Jr., Sontag ED (2004) Detection of multistability, bifurcations, and hysteresis in a large class of biological positive‐feedback systems. Proc Natl Acad Sci USA 101:1822–1827

    ADS  Google Scholar 

  13. Arney KL, Fisher AG (2004) Epigenetic aspects of differentiation. J Cell Sci 117:4355–63

    Google Scholar 

  14. Artzy-Randrup Y, Fleishman SJ, Ben-Tal N, Stone L (2004) Comment on Network motifs: simple building blocks of complex networks and Superfamilies of evolved and designed networks. Science 305:1107; author reply 1107

    Google Scholar 

  15. Autumn K, Ryan MJ, Wake DB (2002) Integrating historical and mechanistic biology enhances the study of adaptation. Q Rev Biol 77:383–408

    Google Scholar 

  16. Babu MM, Luscombe NM, Aravind L, Gerstein M, Teichmann SA (2004) Structure and evolution of transcriptional regulatory networks. Curr Opin Struct Biol 14:283–91

    Google Scholar 

  17. Bagley RJ, Glass L (1996) Counting and classifying attractors in high dimensional dynamical systems. J Theor Biol 183:269–84

    Google Scholar 

  18. Balcan D, Kabakcioglu A, Mungan M, Erzan A (2007) The information coded in the yeast response elements accounts for most of the topological properties of its transcriptional regulation network. PLoS ONE 2:e501

    ADS  Google Scholar 

  19. Balleza E, Alvarez-Buylla ER, Chaos A, Kauffman A, Shmulevich I, Aldana M (2008) Critical dynamics in genetic regulatory networks: examples from four kingdoms. PLoS One 3:e2456

    ADS  Google Scholar 

  20. Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–12

    MathSciNet  ADS  Google Scholar 

  21. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113

    Google Scholar 

  22. Becskei A, Seraphin B, Serrano L (2001) Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. EMBO J 20:2528–2535

    Google Scholar 

  23. Berg J, Lassig M, Wagner A (2004) Structure and evolution of protein interaction networks: a statistical model for link dynamics and gene duplications. BMC Evol Biol 4:51

    Google Scholar 

  24. Bergmann S, Ihmels J, Barkai N (2004) Similarities and differences in genome‐wide expression data of six organisms. PLoS Biol 2:E9

    Google Scholar 

  25. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–26

    Google Scholar 

  26. Bird A (2007) Perceptions of epigenetics. Nature 447:396–8

    ADS  Google Scholar 

  27. Bloom JD, Adami C (2003) Apparent dependence of protein evolutionary rate on number of interactions is linked to biases in protein–protein interactions data sets. BMC Evol Biol 3:21

    Google Scholar 

  28. Bloom JD, Adami C (2004) Evolutionary rate depends on number of protein–protein interactions independently of gene expression level: response. BMC Evol Biol 4:14

    Google Scholar 

  29. Bork P, Jensen LJ, von Mering C, Ramani AK, Lee I, Marcotte EM (2004) Protein interaction networks from yeast to human. Curr Opin Struct Biol 14:292–9

    Google Scholar 

  30. Bornholdt S (2005) Systems biology. Less is more in modeling large genetic networks. Science 310:449–51

    Google Scholar 

  31. Bornholdt S, Rohlf T (2000) Topological evolution of dynamical networks: global criticality from local dynamics. Phys Rev Lett 84:6114–7

    ADS  Google Scholar 

  32. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–56

    Google Scholar 

  33. Brock A, Chang H, Huang SH Non‐genetic cell heterogeneity and mutation‐less tumor progression. Manuscript submitted

    Google Scholar 

  34. Brown KS, Hill CC, Calero GA, Myers CR, Lee KH, Sethna JP, Cerione RA (2004) The statistical mechanics of complex signaling networks: nerve growth factor signaling. Phys Biol 1:184–195

    ADS  Google Scholar 

  35. Bulyk ML (2006) DNA microarray technologies for measuring protein‐DNA interactions. Curr Opin Biotechnol 17:422–30

    Google Scholar 

  36. Callaway DS, Hopcroft JE, Kleinberg JM, Newman ME, Strogatz SH (2001) Are randomly grown graphs really random? Phys Rev E Stat Nonlin Soft Matter Phys 64:041902

    ADS  Google Scholar 

  37. Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S (2008) Transcriptome‐wide noise controls lineage choice in mammalian progenitor cells. Nature 453:544–547

    ADS  Google Scholar 

  38. Chang HH, Oh PY, Ingber DE, Huang S (2006) Multistable and multistep dynamics in neutrophil differentiation. BMC Cell Biol 7:11

    Google Scholar 

  39. Chang WC, Li CW, Chen BS (2005) Quantitative inference of dynamic regulatory pathways via microarray data. BMC Bioinformatics 6:44

    Google Scholar 

  40. Chaves M, Sontag ED, Albert R (2006) Methods of robustness analysis for Boolean models of gene control networks. Syst Biol (Stevenage) 153:154–67

    Google Scholar 

  41. Chen K, Rajewsky N (2007) The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 8:93–103

    Google Scholar 

  42. Chen KC, Wang TY, Tseng HH, Huang CY, Kao CY (2005) A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae. Bioinformatics 21:2883–90

    Google Scholar 

  43. Chickarmane V, Troein C, Nuber UA, Sauro HM, Peterson C (2006) Transcriptional dynamics of the embryonic stem cell switch. PLoS Comput Biol 2:e123

    ADS  Google Scholar 

  44. Claverie JM (2001) Gene number. What if there are only 30,000 human genes? Science 291:1255–7

    Google Scholar 

  45. Collins SJ (1987) The HL-60 promyelocytic leukemia cell line: proliferation, differentiation, and cellular oncogene expression. Blood 70:1233–1244

    Google Scholar 

  46. Cordero OX, Hogeweg P (2006) Feed‐forward loop circuits as a side effect of genome evolution. Mol Biol Evol 23:1931–6

    Google Scholar 

  47. Cross MA, Enver T (1997) The lineage commitment of haemopoietic progenitor cells. Curr Opin Genet Dev 7:609–613

    Google Scholar 

  48. Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F (2006) The c-Myc target gene network. Semin Cancer Biol 16:253–64

    Google Scholar 

  49. Davidich MI, Bornholdt S (2008) Boolean network model predicts cell cycle sequence of fission yeast. PLoS ONE 3:e1672

    ADS  Google Scholar 

  50. Davidson EH, Erwin DH (2006) Gene regulatory networks and the evolution of animal body plans. Science 311:796–800

    ADS  Google Scholar 

  51. de la Serna IL, Ohkawa Y, Berkes CA, Bergstrom DA, Dacwag CS, Tapscott SJ, Imbalzano AN (2005) MyoD targets chromatin remodeling complexes to the myogenin locus prior to forming a stable DNA-bound complex. Mol Cell Biol 25:3997–4009

    Google Scholar 

  52. Deane CM, Salwinski L, Xenarios I, Eisenberg D (2002) Protein interactions: two methods for assessment of the reliability of high throughput observations. Mol Cell Proteomics 1:349–56

    Google Scholar 

  53. Delbrück M (1949) Discussion. In: Unités biologiques douées de continuité génétique Colloques Internationaux du Centre National de la Recherche Scientifique. CNRS, Paris

    Google Scholar 

  54. Deplancke B, Mukhopadhyay A, Ao W, Elewa AM, Grove CA, Martinez NJ, Sequerra R, Doucette‐Stamm L, Reece-Hoyes JS, Hope IA, Tissenbaum HA, Mango SE, Walhout AJ (2006) A gene‐centered C. elegans protein‐DNA interaction network. Cell 125:1193–205

    Google Scholar 

  55. Derrida B, Pomeau Y (1986) Random networks of automata: a simple annealed approximation. Europhys Lett 1:45–49

    ADS  Google Scholar 

  56. Dodd IB, Micheelsen MA, Sneppen K, Thon G (2007) Theoretical analysis of epigenetic cell memory by nucleosome modification. Cell 129:813–22

    Google Scholar 

  57. Eichler GS, Huang S, Ingber DE (2003) Gene Expression Dynamics Inspector (GEDI): for integrative analysis of expression profiles. Bioinformatics 19:2321–2322

    Google Scholar 

  58. Eisenberg E, Levanon EY (2003) Preferential attachment in the protein network evolution. Phys Rev Lett 91:138701

    ADS  Google Scholar 

  59. Enver T, Heyworth CM, Dexter TM (1998) Do stem cells play dice? Blood 92:348–51; discussion 352

    Google Scholar 

  60. Espinosa-Soto C, Padilla‐Longoria P, Alvarez-Buylla ER (2004) A gene regulatory network model for cell-fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles. Plant Cell 16:2923–39

    Google Scholar 

  61. Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, Kasif S, Collins JJ, Gardner TS (2007) Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 5:e8

    Google Scholar 

  62. Faure A, Naldi A, Chaouiya C, Thieffry D (2006) Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics 22:e124–31

    Google Scholar 

  63. Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C, Bozzoni I (2005) A minicircuitry comprised of microRNA‐223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 123:819–31

    Google Scholar 

  64. Ferrell JE Jr., Machleder EM (1998) The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science 280:895–8

    ADS  Google Scholar 

  65. Fisher AG (2002) Cellular identity and lineage choice. Nat Rev Immunol 2:977–82

    Google Scholar 

  66. Fox JJ, Hill CC (2001) From topology to dynamics in biochemical networks. Chaos 11:809–815

    MathSciNet  ADS  Google Scholar 

  67. Fraser HB, Hirsh AE (2004) Evolutionary rate depends on number of protein–protein interactions independently of gene expression level. BMC Evol Biol 4:13

    Google Scholar 

  68. Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW (2002) Evolutionary rate in the protein interaction network. Science 296:750–2

    ADS  Google Scholar 

  69. Fuks F (2005) DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev 15:490–495

    Google Scholar 

  70. Gao H, Falt S, Sandelin A, Gustafsson JA, Dahlman-Wright K (2007) Genome‐wide identification of estrogen receptor α binding sites in mouse liver. Mol Endocrinol 22:10–22

    Google Scholar 

  71. Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403:339–342

    ADS  Google Scholar 

  72. Gershenson C (2002) Classification of random Boolean networks. In: Standish RK, Bedau MA, Abbass HA (eds) Artificial life, vol 8. MIT Press, Cambridge, pp 1–8

    Google Scholar 

  73. Gisiger T (2001) Scale invariance in biology: coincidence or footprint of a universal mechanism? Biol Rev Camb Philos Soc 76:161–209

    Google Scholar 

  74. Glass L, Kauffman SA (1972) Co‐operative components, spatial localization and oscillatory cellular dynamics. J Theor Biol 34:219–37

    Google Scholar 

  75. Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128:635–8

    Google Scholar 

  76. Goldstein ML, Morris SA, Yen GG (2004) Problems with fitting to the power-law distribution. Eur Phys J B 41:255–258

    ADS  Google Scholar 

  77. Goodwin BC, Webster GC (1999) Rethinking the origin of species by natural selection. Riv Biol 92:464–7

    Google Scholar 

  78. Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B Biol Sci 205:581–98

    ADS  Google Scholar 

  79. Graf T (2002) Differentiation plasticity of hematopoietic cells. Blood 99:3089–101

    Google Scholar 

  80. Grass JA, Boyer ME, Pal S, Wu J, Weiss MJ, Bresnick EH (2003) GATA-1‑dependent transcriptional repression of GATA-2 via disruption of positive autoregulation and domain‐wide chromatin remodeling. Proc Natl Acad Sci USA 100:8811–6

    ADS  Google Scholar 

  81. Greil F, Drossel B, Sattler J (2007) Critical Kauffman networks under deterministic asynchronous update. New J Phys 9:373

    Google Scholar 

  82. Guelzim N, Bottani S, Bourgine P, Kepes F (2002) Topological and causal structure of the yeast transcriptional regulatory network. Nat Genet 31:60–3

    Google Scholar 

  83. Guo Y, Eichler GS, Feng Y, Ingber DE, Huang S (2006) Towards a holistic, yet gene‐centered analysis of gene expression profiles: a case study of human lung cancers. J Biomed Biotechnol 2006:69141

    Google Scholar 

  84. Hahn MW, Kern AD (2005) Comparative genomics of centrality and essentiality in three eukaryotic protein‐interaction networks. Mol Biol Evol 22:803–6

    Google Scholar 

  85. Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402:C47–52

    Google Scholar 

  86. Harris SE, Sawhill BK, Wuensche A, Kauffman SA (2002) A model of transcriptional regulatory networks based on biases in the observed regulation rules. Complexity 7:23–40

    Google Scholar 

  87. Hasty J, Pradines J, Dolnik M, Collins JJ (2000) Noise-based switches and amplifiers for gene expression. Proc Natl Acad Sci USA 97:2075–80

    ADS  Google Scholar 

  88. Haverty PM, Hansen U, Weng Z (2004) Computational inference of transcriptional regulatory networks from expression profiling and transcription factor binding site identification. Nucleic Acids Res 32:179–88

    Google Scholar 

  89. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–31

    Google Scholar 

  90. Hilborn R (1994) Chaos and nonlinear dynamics: An introduction for scientists and engineers, 2 edn. Oxford University Press, New York

    Google Scholar 

  91. Hochedlinger K, Jaenisch R (2006) Nuclear reprogramming and pluripotency. Nature 441:1061–7

    ADS  Google Scholar 

  92. Hu M, Krause D, Greaves M, Sharkis S, Dexter M, Heyworth C, Enver T (1997) Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev 11:774–85

    Google Scholar 

  93. Huang S (2004) Back to the biology in systems biology: what can we learn from biomolecular networks. Brief Funct Genomics Proteomics 2:279–297

    Google Scholar 

  94. Huang S (2007) Cell fates as attractors – stability and flexibility of cellular phenotype. In: Endothelial biomedicine, 1st edn, Cambridge University Press, New York, pp 1761–1779

    Google Scholar 

  95. Huang S, Ingber DE (2000) Shape‐dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks. Exp Cell Res 261:91–103

    Google Scholar 

  96. Huang S, Ingber DE (2006) A non‐genetic basis for cancer progression and metastasis: self‐organizing attractors in cell regulatory networks. Breast Dis 26:27–54

    Google Scholar 

  97. Huang S, Wikswo J (2006) Dimensions of systems biology. Rev Physiol Biochem Pharmacol 157:81–104

    Google Scholar 

  98. Huang S, Eichler G, Bar-Yam Y, Ingber DE (2005) Cell fates as high‐dimensional attractor states of a complex gene regulatory network. Phys Rev Lett 94:128701

    ADS  Google Scholar 

  99. Huang S, Guo YP, May G, Enver T (2007) Bifurcation dynamics of cell fate decision in bipotent progenitor cells. Dev Biol 305:695–713

    Google Scholar 

  100. Hughes TR, Marton MJ, Jones AR, Roberts CJ, Stoughton R, Armour CD, Bennett HA, Coffey E, Dai H, He YD, Kidd MJ, King AM, Meyer MR, Slade D, Lum PY, Stepaniants SB, Shoemaker DD, Gachotte D, Chakraburtty K, Simon J, Bard M, Friend SH (2000) Functional discovery via a compendium of expression profiles. Cell 102:109–26

    Google Scholar 

  101. Hume DA (2000) Probability in transcriptional regulation and its implications for leukocyte differentiation and inducible gene expression. Blood 96:2323–8

    Google Scholar 

  102. Ihmels J, Bergmann S, Barkai N (2004) Defining transcription modules using large-scale gene expression data. Bioinformatics 20:1993–2003

    Google Scholar 

  103. Jablonka E, Lamb MJ (2002) The changing concept of epigenetics. Ann N Y Acad Sci 981:82–96

    ADS  Google Scholar 

  104. Jeong H, Mason SP, Barabasi AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411:41–42

    ADS  Google Scholar 

  105. Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome‐wide mapping of in vivo protein‐DNA interactions. Science 316:1497–502

    ADS  Google Scholar 

  106. Jordan IK, Wolf YI, Koonin EV (2003) No simple dependence between protein evolution rate and the number of protein–protein interactions: only the most prolific interactors tend to evolve slowly. BMC Evol Biol 3:1

    Google Scholar 

  107. Joy MP, Brock A, Ingber DE, Huang S (2005) High‐betweenness proteins in the yeast protein interaction network. J Biomed Biotechnol 2005:96–103

    Google Scholar 

  108. Kaern M, Elston TC, Blake WJ, Collins JJ (2005) Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet 6:451–64

    Google Scholar 

  109. Kaplan D, Glass L (1995) Understanding Nonlinear Dynamics, 1st edn. Springer, New York

    Google Scholar 

  110. Kashiwagi K, Urabe I, Kancko K, Yomo T (2006) Adaptive response of a gene network to environmental changes by fitness‐induced attractor selection. PLoS One, 1:e49

    ADS  Google Scholar 

  111. Kauffman S (1969) Homeostasis and differentiation in random genetic control networks. Nature 224:177–8

    ADS  Google Scholar 

  112. Kauffman S (2004) A proposal for using the ensemble approach to understand genetic regulatory networks. J Theor Biol 230:581–90

    MathSciNet  Google Scholar 

  113. Kauffman S, Peterson C, Samuelsson B, Troein C (2003) Random Boolean network models and the yeast transcriptional network. Proc Natl Acad Sci USA 100:14796–9

    ADS  Google Scholar 

  114. Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22:437–467

    MathSciNet  Google Scholar 

  115. Kauffman SA (1991) Antichaos and adaptation. Sci Am 265:78–84

    Google Scholar 

  116. Kauffman SA (1993) The origins of order. Oxford University Press, New York

    Google Scholar 

  117. Khorasanizadeh S (2004) The nucleosome: from genomic organization to genomic regulation. Cell 116:259–72

    Google Scholar 

  118. Kim KY, Wang J (2007) Potential energy landscape and robustness of a gene regulatory network: toggle switch. PLoS Comput Biol 3:e60

    MathSciNet  ADS  Google Scholar 

  119. Klemm K, Bornholdt S (2005) Stable and unstable attractors in Boolean networks. Phys Rev E Stat Nonlin Soft Matter Phys 72:055101

    MathSciNet  ADS  Google Scholar 

  120. Klevecz RR, Bolen J, Forrest G, Murray DB (2004) A genomewide oscillation in transcription gates DNA replication and cell cycle. Proc Natl Acad Sci USA 101:1200–5

    ADS  Google Scholar 

  121. Kloster M, Tang C, Wingreen NS (2005) Finding regulatory modules through large-scale gene‐expression data analysis. Bioinformatics 21:1172–9

    Google Scholar 

  122. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Google Scholar 

  123. Kramer BP, Fussenegger M (2005) Hysteresis in a synthetic mammalian gene network. Proc Natl Acad Sci USA 102:9517–9522

    ADS  Google Scholar 

  124. Krawitz P, Shmulevich I (2007) Basin entropy in Boolean network ensembles. Phys Rev Lett 98:158701

    ADS  Google Scholar 

  125. Krysinska H, Hoogenkamp M, Ingram R, Wilson N, Tagoh H, Laslo P, Singh H, Bonifer C (2007) A two-step, PU.1‑dependent mechanism for developmentally regulated chromatin remodeling and transcription of the c-fms gene. Mol Cell Biol 27:878–87

    Google Scholar 

  126. Kubicek S, Jenuwein T (2004) A crack in histone lysine methylation. Cell 119:903–6

    Google Scholar 

  127. Laslo P, Spooner CJ, Warmflash A, Lancki DW, Lee HJ, Sciammas R, Gantner BN, Dinner AR, Singh H (2006) Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell 126:755–66

    Google Scholar 

  128. Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E, Gifford DK, Young RA (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298:799–804

    ADS  Google Scholar 

  129. Levsky JM, Singer RH (2003) Gene expression and the myth of the average cell. Trends Cell Biol 13:4–6

    Google Scholar 

  130. Li F, Long T, Lu Y, Ouyang Q, Tang C (2004) The yeast cell-cycle network is robustly designed. Proc Natl Acad Sci USA 101:4781–6

    ADS  Google Scholar 

  131. Li H, Xuan J, Wang Y, Zhan M (2008) Inferring regulatory networks. Front Biosci 13:263–75

    Google Scholar 

  132. Lim HN, van Oudenaarden A (2007) A multistep epigenetic switch enables the stable inheritance of DNA methylation states. Nat Genet 39:269–75

    Google Scholar 

  133. Luo F, Yang Y, Chen CF, Chang R, Zhou J, Scheuermann RH (2007) Modular organization of protein interaction networks. Bioinformatics 23:207–14

    Google Scholar 

  134. Luscombe NM, Babu MM, Yu H, Snyder M, Teichmann SA, Gerstein M (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431:308–12

    ADS  Google Scholar 

  135. MacCarthy T, Pomiankowski A, Seymour R (2005) Using large-scale perturbations in gene network reconstruction. BMC Bioinformatics 6:11

    Google Scholar 

  136. Mangan S, Alon U (2003) Structure and function of the feed‐forward loop network motif. Proc Natl Acad Sci USA 100:11980–5

    ADS  Google Scholar 

  137. Manke T, Demetrius L, Vingron M (2006) An entropic characterization of protein interaction networks and cellular robustness. JR Soc Interface 3:843–50

    Google Scholar 

  138. Marcotte EM (2001) The path not taken. Nat Biotechnol 19:626–627

    Google Scholar 

  139. Margolin AA, Califano A (2007) Theory and limitations of genetic network inference from microarray data. Ann N Y Acad Sci 1115:51–72

    ADS  Google Scholar 

  140. Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296:910–3

    ADS  Google Scholar 

  141. Mattick JS (2007) A new paradigm for developmental biology. J Exp Biol 210:1526–47

    Google Scholar 

  142. May RM (1972) Will a large complex system be stable? Nature 238:413–414

    ADS  Google Scholar 

  143. Meissner A, Wernig M, Jaenisch R (2007) Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 25:1177–1181

    Google Scholar 

  144. Mellor J (2006) Dynamic nucleosomes and gene transcription. Trends Genet 22:320–9

    Google Scholar 

  145. Metzger E, Wissmann M, Schule R (2006) Histone demethylation and androgen‐dependent transcription. Curr Opin Genet Dev 16:513–7

    Google Scholar 

  146. Mikkers H, Frisen J (2005) Deconstructing stemness. Embo J 24:2715–9

    Google Scholar 

  147. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298:824–7

    ADS  Google Scholar 

  148. Monod J, Jacob F (1961) Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb Symp Quant Biol 26:389–401

    Google Scholar 

  149. Morceau F, Schnekenburger M, Dicato M, Diederich M (2004) GATA-1: friends, brothers, and coworkers. Ann N Y Acad Sci 1030:537–54

    ADS  Google Scholar 

  150. Morrison SJ, Uchida N, Weissman IL (1995) The biology of hematopoietic stem cells. Annu Rev Cell Dev Biol 11:35–71

    Google Scholar 

  151. Murray JD (1989) Mathematical biology, 2nd edn (1993). Springer, Berlin

    Google Scholar 

  152. Newman MEJ (2003) The structure and function of complex networks. SIAM Review 45:167–256

    MathSciNet  ADS  Google Scholar 

  153. Nykter M, Price ND, Aldana M, Ramsey SA, Kauffman SA, Hood L, Yli-Harja O, Shmulevich I (2008) Gene expression dynamics in the macrophage exhibit criticality. Proc Natl Acad Sci USA 105:1897–900

    ADS  Google Scholar 

  154. Nykter M, Price ND, Larjo A, Aho T, Kauffman SA, Yli-Harja O, Shmulevich I (2008) Critical networks exhibit maximal information diversity in structure‐dynamics relationships. Phys Rev Lett 100:058702

    ADS  Google Scholar 

  155. Odom DT, Zizlsperger N, Gordon DB, Bell GW, Rinaldi NJ, Murray HL, Volkert TL, Schreiber J, Rolfe PA, Gifford DK, Fraenkel E, Bell GI, Young RA (2004) Control of pancreas and liver gene expression by HNF transcription factors. Science 303:1378–81

    ADS  Google Scholar 

  156. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline‐competent induced pluripotent stem cells. Nature 448:313–7

    ADS  Google Scholar 

  157. Ozbudak EM, Thattai M, Lim HN, Shraiman BI, Van Oudenaarden A (2004) Multistability in the lactose utilization network of Escherichia coli. Nature 427:737–740

    ADS  Google Scholar 

  158. Pennisi E (2003) Human genome. A low number wins the GeneSweep Pool. Science 300:1484

    Google Scholar 

  159. Picht P (1969) Mut zur utopie. Piper, München

    Google Scholar 

  160. Proulx SR, Promislow DE, Phillips PC (2005) Network thinking in ecology and evolution. Trends Ecol Evol 20:345–53

    Google Scholar 

  161. Raff M (2003) Adult stem cell plasticity: fact or artifact? Annu Rev Cell Dev Biol 19:1–22

    Google Scholar 

  162. Ralston A and Rossant J (2005) Genetic regulation of stem cell origins in the mouse embryo. Clin Genet 68:106–12

    Google Scholar 

  163. Ramo P, Kesseli J, Yli-Harja O (2006) Perturbation avalanches and criticality in gene regulatory networks. J Theor Biol 242:164–70

    MathSciNet  Google Scholar 

  164. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL (2002) Hierarchical organization of modularity in metabolic networks. Science 297:1551–5

    ADS  Google Scholar 

  165. Reik W, Dean W (2002) Back to the beginning. Nature 420:127

    ADS  Google Scholar 

  166. Resendis-Antonio O, Freyre-Gonzalez JA, Menchaca-Mendez R, Gutierrez-Rios RM, Martinez-Antonio A, Avila-Sanchez C, Collado-Vides J (2005) Modular analysis of the transcriptional regulatory network of E. coli. Trends Genet 21:16–20

    Google Scholar 

  167. Robins H, Krasnitz M, Barak H, Levine AJ (2005) A relative‐entropy algorithm for genomic fingerprinting captures host-phage similarities. J Bacteriol 187:8370–4

    Google Scholar 

  168. Roeder I, Glauche I (2006) Towards an understanding of lineage specification in hematopoietic stem cells: a mathematical model for the interaction of transcription factors GATA-1 and PU.1. J Theor Biol 241:852–65

    MathSciNet  Google Scholar 

  169. Salgado H, Santos-Zavaleta A, Gama-Castro S, Peralta-Gil M, Penaloza-Spinola MI, Martinez-Antonio A, Karp PD, Collado-Vides J (2006) The comprehensive updated regulatory network of Escherichia coli K-12. BMC Bioinformatics 7:5

    Google Scholar 

  170. Samonte RV, Eichler EE (2002) Segmental duplications and the evolution of the primate genome. Nat Rev Genet 3:65–72

    Google Scholar 

  171. Sandberg R, Ernberg I (2005) Assessment of tumor characteristic gene expression in cell lines using a tissue similarity index (TSI). Proc Natl Acad Sci USA 102:2052–7

    ADS  Google Scholar 

  172. Shivdasani RA (2006) MicroRNAs: regulators of gene expression and cell differentiation. Blood 108:3646–53

    Google Scholar 

  173. Shmulevich I, Kauffman SA (2004) Activities and sensitivities in boolean network models. Phys Rev Lett 93:048701

    ADS  Google Scholar 

  174. Shmulevich I, Kauffman SA, Aldana M (2005) Eukaryotic cells are dynamically ordered or critical but not chaotic. Proc Natl Acad Sci USA 102:13439–44

    ADS  Google Scholar 

  175. Siegal ML, Promislow DE, Bergman A (2007) Functional and evolutionary inference in gene networks: does topology matter? Genetica 129:83–103

    Google Scholar 

  176. Smith MC, Sumner ER, Avery SV (2007) Glutathione and Gts1p drive beneficial variability in the cadmium resistances of individual yeast cells. Mol Microbiol 66:699–712

    Google Scholar 

  177. Southall TD, Brand AH (2007) Chromatin profiling in model organisms. Brief Funct Genomic Proteomic 6:133–40

    Google Scholar 

  178. Southan C (2004) Has the yo-yo stopped? An assessment of human protein‐coding gene number. Proteomics 4:1712–26

    Google Scholar 

  179. Stern CD (2000) Conrad H. Waddington’s contributions to avian and mammalian development, 1930–1940. Int J Dev Biol 44:15–22

    Google Scholar 

  180. Strohman R (1994) Epigenesis: the missing beat in biotechnology? Biotechnology (N Y) 12:156–64

    Google Scholar 

  181. Stumpf MP, Wiuf C, May RM (2005) Subnets of scale-free networks are not scale-free: sampling properties of networks. Proc Natl Acad Sci USA 102:4221–4

    ADS  Google Scholar 

  182. Suzuki M, Yamada T, Kihara-Negishi F, Sakurai T, Hara E, Tenen DG, Hozumi N, Oikawa T (2006) Site‐specific DNA methylation by a complex of PU.1 and Dnmt3a/b. Oncogene 25:2477–88

    Google Scholar 

  183. Swiers G, Patient R, Loose M (2006) Genetic regulatory networks programming hematopoietic stem cells and erythroid lineage specification. Dev Biol 294:525–40

    Google Scholar 

  184. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–76

    Google Scholar 

  185. Tapscott SJ (2005) The circuitry of a master switch: Myod and the regulation of skeletal muscle gene transcription. Development 132:2685–95

    Google Scholar 

  186. Taylor JS, Raes J (2004) Duplication and divergence: The evolution of new genes and old ideas. Annu Rev Genet 38:615–643

    Google Scholar 

  187. Teichmann SA, Babu MM (2004) Gene regulatory network growth by duplication. Nat Genet 36:492–6

    Google Scholar 

  188. Thieffry D, Huerta AM, Perez-Rueda E, Collado-Vides J (1998) From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. Bioessays 20:433–40

    Google Scholar 

  189. Tinbergen N (1952) Derived activities; their causation, biological significance, origin, and emancipation during evolution. Q Rev Biol 27:1–32

    Google Scholar 

  190. Toh H, Horimoto K (2002) Inference of a genetic network by a combined approach of cluster analysis and graphical Gaussian modeling. Bioinformatics 18:287–97

    Google Scholar 

  191. Trojer P, Reinberg D (2006) Histone lysine demethylases and their impact on epigenetics. Cell 125:213–7

    Google Scholar 

  192. Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15:221–231

    Google Scholar 

  193. van Helden J, Wernisch L, Gilbert D, Wodak SJ (2002) Graph-based analysis of metabolic networks. Ernst Schering Res Found Workshop:245–74

    Google Scholar 

  194. van Nimwegen E (2003) Scaling laws in the functional content of genomes. Trends Genet 19:479–84

    Google Scholar 

  195. Vogel G (2003) Stem cells. ‘Stemness’ genes still elusive. Science 302:371

    Google Scholar 

  196. Waddington CH (1940) Organisers and genes. Cambridge University Press, Cambridge

    Google Scholar 

  197. Waddington CH (1956) Principles of embryology. Allen and Unwin Ltd, London

    Google Scholar 

  198. Waddington CH (1957) The strategy of the genes. Allen and Unwin, London

    Google Scholar 

  199. Watts DJ (2004) The “new” science of networks. Ann Rev Sociol 20:243–270

    Google Scholar 

  200. Webster G, Goodwin BC (1999) A structuralist approach to morphology. Riv Biol 92:495–8

    Google Scholar 

  201. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–24

    ADS  Google Scholar 

  202. Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE, Matese JC, Perou CM, Hurt MM, Brown PO, Botstein D (2002) Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell 13:1977–2000

    Google Scholar 

  203. Wilkins AS (2007) Colloquium Papers: Between “design” and “bricolage”: Genetic networks, levels of selection, and adaptive evolution. Proc Natl Acad Sci USA 104 Suppl 1:8590–6

    ADS  Google Scholar 

  204. Wuensche A (1998) Genomic regulation modeled as a network with basins of attraction. Pac Symp Biocomput:89–102

    Google Scholar 

  205. Xiong W, Ferrell JE Jr. (2003) A positive‐feedback‐based bistable ‘memory module’ that governs a cell fate decision. Nature 426:460–465

    ADS  Google Scholar 

  206. Xu X, Wang L, Ding D (2004) Learning module networks from genome‐wide location and expression data. FEBS Lett 578:297–304

    ADS  Google Scholar 

  207. Yu H, Greenbaum D, Xin Lu H, Zhu X, Gerstein M (2004) Genomic analysis of essentiality within protein networks. Trends Genet 20:227–31

    Google Scholar 

  208. Yu H, Kim PM, Sprecher E, Trifonov V, Gerstein M (2007) The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Comput Biol 3:e59

    MathSciNet  ADS  Google Scholar 

  209. Yuh CH, Bolouri H, Davidson EH (2001) Cis‐regulatory logic in the endo16 gene: switching from a specification to a differentiation mode of control. Development 128:617–29

    Google Scholar 

Books and Reviews

  1. Huang S (2004) Back to the biology in systems biology: what can we learn from biomolecular networks. Brief Funct Genomics Proteomics 2:279–297

    Google Scholar 

  2. Huang S (2007) Cell fates as attractors – stability and flexibility of cellular phenotype. In: Endothelial biomedicine, 1st edn. Cambridge University Press, New York, pp 1761–1779

    Google Scholar 

  3. Huang S, Ingber DE (2006) A non‐genetic basis for cancer progression and metastasis: self‐organizing attractors in cell regulatory networks. Breast Dis 26:27–54

    Google Scholar 

  4. Kaneko K (2006) Life: An introduction to complex systems biology, 1edn. Springer, Berlin

    Google Scholar 

  5. Kauffman SA (1991) Antichaos and adaptation. Sci Am 265:78–84

    Google Scholar 

  6. Kauffman SA (1993) The origins of order. Oxford University Press, New York

    Google Scholar 

  7. Kauffman SA (1996) At home in the universe: the search for the laws of self‐organization and complexity. Oxford University Press, New York

    Google Scholar 

  8. Laurent M, Kellershohn N (1999) Multistability: a major means of differentiation and evolution in biological systems. Trends Biochem Sci 24:418–422

    Google Scholar 

  9. Wilkins AS (2007) Colloquium papers: Between “design” and “bricolage”: Genetic networks, levels of selection, and adaptive evolution. Proc Natl Acad Sci USA 104 Suppl 1:8590–6

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Huang, S., Kauffman, S.A. (2009). Complex Gene Regulatory Networks – from Structure to Biological Observables: Cell Fate Determination . In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_79

Download citation

Publish with us

Policies and ethics