Skip to main content

Definition of the Subject

In this article, we discuss some of the key issues involved in the design and implementation of the emerging class of“invertebrate‐like” continuum robots . Using two case studies of continuumrobots developed recently at Clemson University, we overview the issues involved in realizing continuum robots and their deployment. The potential ofthese types of robots for enhanced productivity in novel applications is discussed.

In the first case study, we describe the design of the “OctArm” continuum manipulator robot hardware, and discuss the results of field testing of these novel “trunk‐like” robots. OctArmrobots are able to adapt their shape to their environment, to access difficult-to-reach areas, and to perform adaptive grasping using their entirearms. Lessons learned and implications for future robot manipulators in the field are discussed.

In the second case study, we describe the new “Animated Work Environment ” (AWE) concept. AWE is an...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Degree of freedom:

(Sub)set of a physically reconfigurable system whose configuration can always be specified by a single variable.

Kinematics:

Geometric (and differential geometric) models of mechanical systems, not including effects of dynamics (masses, forces, inertias, etc.).

Robot:

A physically reconfigurable system that has multiple degrees of freedom and is (at least partially) computer‐controlled.

Actuators:

Devices used to transfer mass (herein portions of a robot system) from one place to another within the system's environment.

Sensors:

Devices used to infer information, usually either about the internal state of a system, or about external environment surrounding that system.

Control:

Use of sensors and actuators to reconfigure a system (herein robots) according to a desired plan.

Continuum:

Continuous in nature; herein usually the backbone/core of a robot.

OctArm:

Continuum robot manipulator inspired by octopus arms.

AWE:

(“Animated Work Environment”) Reconfigurable environment featuring continuum robot components, focused on work environments featuring computing.

Bibliography

  1. Aarts E, Marzano S (2003) The New Everyday: Views on Ambient Intelligence. 010 Publishers, Rotterdam

    Google Scholar 

  2. Anderson VC, Horn RC (1967) Tensor arm manipulator design. Trans ASME, vol. 67-DE-57. American Society of Mechanical Engineers, New York, pp 1–12

    Google Scholar 

  3. Aoki T, Ochiai A, Hirose S (2004) Study on slime robot: development of the mobile robot prototype model using bridle bellows. In: Proc. IEEE International Conference on Robotics and Automation, New Orleans, Louisiana, pp 2808–2813

    Google Scholar 

  4. Bailly Y, Amirat Y (2005) Modeling and Control of a Hybrid Continuum Active Catheter for Aortic Aneurysm Treatment. In: Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp 936–941

    Google Scholar 

  5. Beyer H, Holtzblatt K (1999) Contextual Design: Defining Customer-Centered Systems. Morgan Kaufman Publishers, San Francisco

    Google Scholar 

  6. Binder T, De Michelis G, Gervautz M, Jacucci G, Matkovic K, Psik T, Wagner I (2004) Supporting configurability in a mixed-media environment for design students. In: Thomas P (ed) Personal Ubiquitous Computing, vol. 8, Issue 5. Springer, London, pp 310–325

    Google Scholar 

  7. Bondarenko O, Janssen R (2005) Documents at Hand: Learning from Paper to Improve Digital Technologies. In: Proceedings of the Computer-Human-Interaction (CHI) 2005 Conference, Association for Computing Machinery. ACM, New York

    Google Scholar 

  8. Braganza D, Nath N, Walker ID, Dawson D (2006) Neural Network Grasping Controller for Continuum Robots. Proc. IEEE Conference on Decision and Control, San Diego, CA, pp 6445–6449

    Google Scholar 

  9. Braganza D, McIntyre M, Walker ID, Dawson D (2006) Whole Arm Grasping Control for Redundant Robot Manipulators. In: Proc. American Control Conference, Minneapolis, MN, pp 3194–3199

    Google Scholar 

  10. Buckingham R (2002) Snake arm robots, Industrial Robot. Int J 29(3):242–245

    Google Scholar 

  11. Burry M (2004) Convergent Design. In: Redmond J, Durling D, de Bono A (eds) Futureground Design Research Society International Conference vol 2 Proc. Monash University Press, Victoria

    Google Scholar 

  12. Chen G, Tu PM, Herve TR, Prelle C (2005) Design and modeling of a micro‐robotic manipulator for colonoscopy. In: Proc. 5th Int Workshop on Research and Education in Mechatronics, Annecy, France, pp 109–114

    Google Scholar 

  13. Chrikjian GS (1992) Theory and Applications of Hyperredundant Robotic Mechanisms. Ph D Thesis, Department of Applied Mechanics, California Institute of Technology. Pasadena

    Google Scholar 

  14. Chirikjian GS, Burdick JW (1991) Selected Applications and Intrinsic Kinematics of Hyper-Redundant Robots. In: Proc. 4th American Nuclear Society Topical Meeting on Robotics and Remote Systems, pp 61–70

    Google Scholar 

  15. Chirikjian GS, Burdick JW (1993) Design and Experiments with a 30 DOF Robot. In: Proc. IEEE International Conference on Robotics and Automation, Atlanta, pp 113–119

    Google Scholar 

  16. Chirikjian GS (1995) Hyper‐redundant manipulator dynamics: a continuum approximation. Adv Robot 9(3):217–243

    Google Scholar 

  17. Chirikjian GS, Burdick JW (1994) A modal approach to hyper‐redundant manipulator kinematics. IEEE Trans Robot Autom 10(3):343–354

    Google Scholar 

  18. Chitrakaran V, Behal A, Dawson D, Walker ID (2007) Setpoint Regulation of Continuum Robots Using a Fixed Camera. Robotica 25(5):581–586

    Google Scholar 

  19. Cieslak R, Morecki A (1999) Elephant trunk type elastic manipulator – a tool for bulk and liquid type materials transportation. Robotica 17:11–16

    Google Scholar 

  20. Csencsits M, Jones BA, McMahan W, Walker ID (2005) User interfaces for continuum robot arms. In: Proc. IEEE/RSJ Int Conf on Intelligent Robots and Systems, Edmonton, Canada, pp 3011–3018

    Google Scholar 

  21. deCOI (2004) Aegis Hypersurface. In: Mark Galthorpe/dECOi, “Precise Indeterminacy”, Praxis: J Writ Build, Issue 6:28–45

    Google Scholar 

  22. Ganz A (2006) Principal Investigator, NeTS: Animated Spaces for the Digital Society: The ASPEN Architecture, NSF Award Abstract – #0434985

    Google Scholar 

  23. Garlan D, Siewiorek D, Smailagic A, Steenkiste P (2002) Project Aura: Toward Distraction-Free Pervasive Computing. In: Satyanarayanan M (ed) IEEE Pervasive Computing. IEEE, New York, pp 22–30

    Google Scholar 

  24. Gravagne IA, Walker ID (2000) Kinematic Transformations for Remotely Actuated Planar Continuum Robots. In: Proc. IEEE International Conference on Robotics and Automation, San Francisco, CA. IEEE, New York, pp 19–26

    Google Scholar 

  25. Gravagne IA, Walker ID (2002) Manipulability, Force and Compliance Analysis for Planar Continuum Manipulators. IEEE Trans Robot Autom 18(3):263–273

    Google Scholar 

  26. Gravagne IA, Rahn CD, Walker ID (2003) Large deflection dynamics and control for planar continuum robots. IEEE/ASME Trans Mechatron 8(2):299–307

    Google Scholar 

  27. Green KE, Gugerty LJ, Walker ID, Witte JC (2005) AWE (Animated Work Environment): Ambient Intelligence in Working Life. In: Proc. Conference on Intelligent Ambience and Well–Being (Ambience 05), Tampere, Finland, September 2005, pp 1–7 (CD-ROM proceedings)

    Google Scholar 

  28. Green KE, Walker ID, Gugerty LJ, Witte JC (2006) Three Robot–Rooms/The AWE Project. In: Proc. CHI 2006, Montreal, Canada, April 2006, pp 809–814

    Google Scholar 

  29. Greypilgrim Company http://www.greypilgrim.com. Accessed 2 Aug 1999

  30. Hannan MW, Walker ID (2001) Analysis and Experiments with an Elephant’s Trunk Robot. Adv Robot 15(8):847–858

    Google Scholar 

  31. Hannan MW, Walker ID (2003) Kinematics and the Implementation of an elephant’s trunk manipulator and other continuum style robots. J Robot Syst 20(2):45–63

    Google Scholar 

  32. Hannan MW, Walker ID (2005) Real-Time Shape Estimation for Continuum Robots Using Vision. Robotica 23(5):645–651

    Google Scholar 

  33. Hirose S (1993) Biologically inspired robots. Oxford University Press, New York

    Google Scholar 

  34. IBM Blue Space Research (2005) http://www.research.ibm.com/bluespace

  35. Ikuta K, Ichikawa H, Suzuki K, Yajima D, Multi‐degree of Freedom Hydraulic Pressure Driven Safety Active Catheter. In: Proc. IEEE International Conference on Robotics and Automation, pp 4161–4166

    Google Scholar 

  36. Immega G (1992) Tentacle‐like manipulators with adjustable tension lines. US Patent #5,317,952

    Google Scholar 

  37. Immega G, Antonelli K (1995) The KSI tentacle manipulator. In: Proc. IEEE Intl. Conf. Robotics and Automation, Nagoya, Japan, pp 3149–3154

    Google Scholar 

  38. Ivanescu M, Stoian V (1995) A variable structure controller for a tentacle manipulator. In: Proc. IEEE Intl. Conf. Robotics and Automation, Nagoya, Japan, pp 3155–3160

    Google Scholar 

  39. Ivanescu M, Bizdoaca N, Pana D (2003) Dynamic control for a tentacle manipulator with SMA actuators. In: Proc. IEEE Intl. Conf. Robotics and Automation, Taipei, Taiwan, pp 2079–2084

    Google Scholar 

  40. Ivanescu M, Popescu N, Popescu D (2005) A Variable Length Tentacle Manipulator Control System. In: Proc. IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp 3274–3279

    Google Scholar 

  41. Jones BA, McMahan W, Walker ID (2004) Design and analysis of a novel pneumatic manipulator. In: Proc. 3rd IFAC Symposium on Mechatronic Systems, Sydney, Australia, pp 745–750

    Google Scholar 

  42. Jones BA, Csencsits M, McMahan W, Chitrakaran V, Grissom M, Pritts M, Rahn CD, Walker ID (2006) Grasping, manipulation, and exploration tasks with the OctArm continuum manipulator, video in Proceedings of the International Conference on Robotics and Automation, Orlando, FL

    Google Scholar 

  43. Jones BA, Walker ID (2006a) Three-Dimensional Modeling and Display of Continuum Robots. In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Beijing, China, pp 5872–5877

    Google Scholar 

  44. Jones BA, Walker ID (2006b) Kinematics for Multi-Section Continuum Robots. IEEE Trans Robot 22(1):43–55

    Google Scholar 

  45. Jones BA, Walker ID (2006c) Practical Kinematics for Real-Time Implementation of Continuum Robots. IEEE Trans Robot 22(6):1087–1099

    Google Scholar 

  46. Kier WM, Smith KK (1985) Tongues, tentacles and trunks: The biomechanics of movement in muscular‐hydrostats. Zool. J Linn Soc 83:307–324

    Google Scholar 

  47. Lane DM, Davies JBC, Robinson G, O’Brien DJ, Sneddon J, Seaton E, Elfstrom E (1999) The AMADEUS dextrous subsea hand: design, modeling, and sensor processing. IEEE J Ocean Eng 24(1):96–111

    Google Scholar 

  48. Larson K (2004) House_n Current Projects http://architecture.mit.edu/%7Ekll/Project%20List%20Sept-2004.pdf. Accessed 2 Jun 2008

  49. McCarter R (ed) (1987) Building; Machines. Pamphlet Architecture/Princeton Architectural Press, New York

    Google Scholar 

  50. McMahan W, Jones BA, Walker ID, Chitrakaran V, Seshadri A, Dawson D (2004) Robotic manipulators inspired by cephalopod limbs. In: Proc. of the CDEN Design Conf., Montreal, Canada, pp 1–10

    Google Scholar 

  51. McMahan W, Jones BA, Walker ID (2005) Design and implementation of a multi‐section continuum robot: Air-Octor. In: Proc. IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, Edmonton, Canada, pp 3345–3352

    Google Scholar 

  52. McMahan W, Jones BA, Chitrakaran V, Csencsits M, Grissom M, Pritts M, Rahn CD, Walker ID (2006), Field trials and testing of the OctArm continuum manipulator. In: Proceedings of the International Conference on Robotics and Automation, Orlando, FL, USA, pp 2336–2341

    Google Scholar 

  53. Mehling JS, Diftler MA, Chu M, Valvo M (2006) A Minimally Invasive Tendril Robot for In-Space Inspection. In: Proc. BioRob 2006 Conference, pp 690–695

    Google Scholar 

  54. MIT Media Lab/FPC (2002), Media House Project: BCN, 26.09–06.10, Barcelona: FPC

    Google Scholar 

  55. Mitchell WJ (2000) City of Bits. MIT, Cambridge

    Google Scholar 

  56. Mitchell WJ (2000) e-topia. MIT, Cambridge

    Google Scholar 

  57. Mitchell WJ (2003) ME++. MIT, Cambridge

    Google Scholar 

  58. Mochiyama H, Shimemura E, Kobayashi H (1998) Shape Correspondence between a Spatial Curve and a Manipulator with Hyper Degrees of Freedom. Proc. IEEE International Conference on Robotics and Automation, pp 161–166

    Google Scholar 

  59. Mochiyama H, Suzuki T (2003) Kinematics and dynamics of a cable-like hyper‐flexible manipulator. ICRA, Taipei, Taiwan, pp 3672–3677

    Google Scholar 

  60. Niranjan RK, Ganz A (2004) Animated Space Architecture for Multimedia Experience – ASkME. In: Proceedings, Broadnets 2004, San Jose, pp 1–6

    Google Scholar 

  61. O. C. Robotics http://www.ocrobotics.com/mediagallery/images.htm. Accessed 30 May 2008

  62. Ohno H, Hirose S (2001) Design of slim slime robot and its gait of locomotion. In: Proc. IEEE/RSJ Int Conf on Intelligent Robots and Systems, Maui, Hawaii, pp 707–715

    Google Scholar 

  63. Oosterhuis K (2003) Hyperbodies: Towards an E‑motive architecture. Birkäuser, Basel

    Google Scholar 

  64. Pritts MB, Rahn CD (2004) Design of an artificial muscle continuum robot. In: Proc. IEEE Intl. Conf. Robotics and Automation, New Orleans, Louisiana, pp 4742–4746

    Google Scholar 

  65. ‘Q’ Mobile workstation concept for Steelcase (2005) http://www.ideo.com/portfolio/re.asp?x=12378. Accessed 2 Jun 2008

  66. Robinson G, Davies JBC (1999) Continuum robots – a state of the art. In: Proc. IEEE Intl. Conf. Robotics and Automation, Detroit, Michigan, pp 2849–2854

    Google Scholar 

  67. Salisbury K, Townsend W, Ebrman B, DiPietro D (1988) Preliminary design of a whole-arm manipulation system (WAMS). In: Proc. IEEE Intl. Conf. Robotics and Automation, Philadelphia, Pennsylvania, pp 254–260

    Google Scholar 

  68. Sears P, Dupont P (2006) A Steerable Needle Technology Using Curved Concentric Tubes. In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp 2850–2856

    Google Scholar 

  69. Simaan N (2005) Snake-Like Units Using Flexible Backbones and Actuation Redundancy for Enhanced Miniaturization. In: Proc. IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp 3023–3028

    Google Scholar 

  70. Smith KK, Kier WM (1989) Trunks, tongues, and tentacles: Moving with skeletons of muscle. Am Sci 77:28–35

    ADS  Google Scholar 

  71. Spong MW, Hutchinson S, Vidyasagar M (2006) Robot modeling and control. John Wiley & Sons, New York

    Google Scholar 

  72. Suzumori K, Iikura S, Tanaka H (1991) Development of flexible microactuator and its applications to robotic mechanisms. In: Proc. IEEE Intl. Conf. Robotics and Automation, Sacramento, California, pp 1622–1627

    Google Scholar 

  73. Suzumori K, Iikura S, Tanaka H (1992), Applying a flexible microactuator to robotic mechanisms. Control Syst Mag IEEE 12:21–27

    Google Scholar 

  74. Tatlicioglu E, Walker ID, Dawson D (2007) Dynamic Modelling for Planar Extensible Continuum Robot Manipulators. In: Proc. IEEE International Conference on Robotics and Automation, Rome, Italy, pp 1357–1362

    Google Scholar 

  75. Thomann F, Betemps M, Redarce T (2003) The development of a bendable colonoscopic tip. In: International Conference on Robotics and Automation, Taipei, Taiwan, pp 658–663

    Google Scholar 

  76. Tsukagoshi H, Kitagawa A, Segawa M (2001) Active Hose: an artificial elephant’s nose with maneuverability for rescue operation. In: Proc. IEEE Intl. Conf. Robotics and Automation, Seoul, Korea, pp 2454–2459

    Google Scholar 

  77. Vitruvius (1985) De Architectura [On Architecture]. trans. F. Granger. Harvard University Press, Cambridge

    Google Scholar 

  78. Walker ID (2000) Issues in Creating ‘Invertebrate’ Robots. In: Proc. Conference on Adaptive Manipulation with Animals and Machines, Montreal, Canada, pp 1–6

    Google Scholar 

  79. Walker ID, Dawson D, Flash T, Grasso F, Hanlon R, Hochner B, Kier WM, Pagano C, Rahn CD, Zhang Q (2005) Continuum Robot Arms Inspired by Cephalopods. In: Proc. SPIE Conference on Unmanned Ground Vehicle Technology VII, Orlando, FL, pp 303–314

    Google Scholar 

  80. Walker ID, Carreras C, McDonnell R, Grimes G (2006) Extension Versus Bending for Continuum Robots. Int J Adv Robot Syst 3(2):171–178

    Google Scholar 

  81. Wilson JF, Li D, Chen Z, George RT (1993) Flexible Robot Manipulators and Grippers: Relatives of elephant Trunks and Squid Tentacles. In: Dario P (ed) Robots and Biological Systems: Towards a New Bionics? Nato Asi Series. Springer, New York, pp 474–494

    Google Scholar 

  82. Xu K, Simaan N (2006) Actuation Compensation for Flexible Surgical Snake-like Robots with Redundant Remote Actuation. In: Proc. IEEE International Conference on Robotics and Automation, pp 4148–4154

    Google Scholar 

  83. Yamada H, Hirose S (2006) Study on the 3D Shape of Active Cord Mechanism. In: Proc. IEEE International Conference on Robotics and Automation, pp 2890–2895

    Google Scholar 

  84. Yang J, Potratz J, Abdel-Malek K (2006) A Hyper‐Redundant Continuous Robot. In: Proc. IEEE International Conference on Robotics and Automation. pp 1854–1859

    Google Scholar 

  85. Yang J, Pena Pitarch E, Potratz J, Beck S, Abdel-Malek K (2006) Synthesis and analysis of a flexible elephant trunk robot. Adv Robot 20(6): 631–659

    Google Scholar 

  86. Siciliano B, Khatib O (2008) Springer Handbook of Robotics. Chapter 11, Kinematically Redundant Manipulators. in press

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the US National Science Foundation under grant number IIS‐0534423, and from the Defense Advanced ResearchProjects Agency (DARPA) Defense Sciences Office through the Space and Naval Warfare Systems Center, San Diego, Contract Number N66001-03-C-8043.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Walker, I.D., Green, K.E. (2009). Continuum Robots. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_96

Download citation

Publish with us

Policies and ethics