
Peter Todorov

MULTI-CAMERA CALIBRATION

Calibration of Multi-camera Rig for Wide Field of View
Light Field Capture

Faculty of Information Technology and Communication Sciences
Bachelor’s Thesis

May 2019

i

ABSTRACT

Peter Todorov: Multi-camera Calibration
Bachelor’s Thesis
Tampere University
Signal Processing and Machine Learning
May 2019
Examiners: Suren Vagharshakyan and Laura Goncalves Ribeiro

3-D display technology is under development, and it has not yet become common among
people. In this project, we use light field display to create a multi-view image. This type of display
makes it possible to visualize objects from different perspectives on the screen by changing the
viewing angle. The display does not require additional equipment from the viewer, unlike the
older 3-D displays where the viewer can feel the depth of the image by using the polarizing 3-D
glasses. The aim of this study is not to get into the technology behind the light field displays but do
research on how to create tools to provide proper content for light field displays. In more detailed,
this study focuses on methods in multi-camera calibration where the multi-view image data has
to be parametrized accurately to know where and how these images have been obtained. Such
requirements need accurate calibration.

In general, camera calibration consists of color, focus, distortions and position calibration in
which the focus in this thesis is on the position calibration between cameras. In one camera
calibration, the goal is to remove the distortion caused by the camera lens and components to
which errors have occurred during the manufacturing process. Firstly, the distortions caused by
the lens will cause straight lines in the real world to be curved in the image. Secondly, imperfect
parallelism between the camera lens and the image sensor gives the image projective impression.
Thirdly, slight distortions can happen by the component errors which make the image skewed or
stretched.

The calibration of multiple cameras must take into account the relative translations and ro-
tations of the cameras. The unknown parameters describing the position and distortions of a
camera are estimated by minimizing the error between the model and the actual measurements.
The final result of the minimization is finally seen on the light field display where the image should
not have significant artifacts. To achieve this result, accurate methods are required to calibrate
the translations and rotations of the cameras.

The study provides tools for more accurate calibration and illustrates the less accurate pair-
wise calibration method. The calibration method can be seen in the image quality and on that
basis it is required to use better methods of calibrating a multi-camera camera rig.

Keywords: camera calibration, calibration pattern, ChArUco

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

PREFACE

This thesis was done for the Laboratory of Signal Processing at Tampere University, and
the project is done for the CIVIT laboratory. At the beginning of the thesis, I was rather
uncertain of what is the purpose of the project, and how does the mathematics work. The
topic was quite demanding, and a very deep jump to real computer vision after having
only a few introductory courses in signal processing. In the end, I learned a lot and was
able to get into the topic. I suppose this topic is highly beneficial for the work I start after
the thesis.

I want to thank my Ph.D. student supervisors Suren Vagharshakyan and Laura Goncalves
Ribeiro for teaching me in many areas in this field, and being very patient on things that
I did not understand immediately. I also want to thank professor Joni Kämäräinen for
setting up great deadlines for the thesis and giving suggestions for this thesis to make it
more compact and finish it in time. Thank you for professor Atanas Gotchev for giving me
an opportunity of continuing this project after finishing the thesis. It meets my interests
and both of our benefits. For the language part, I want to thank English teacher Anni Karo
who gave me unexpectedly detailed feedback of the language in the thesis. Her effort in
giving feedback is highly recommended. I also want to thank my girlfriend and peers for
setting up a competitive atmosphere during the studies.

In Tampere, 3rd May 2019

Peter Todorov

iii

CONTENTS

List of Figures . iv

List of Tables . vi

List of Programs and Algorithms . vi

List of Symbols and Abbreviations . vii

1 Introduction . 1

2 Camera Model . 3

2.1 Pinhole Camera Model . 3

2.2 Projective Geometry . 4

2.3 Lens Distortion . 8

2.4 Intrinsic and Extrinsic Parameters . 11

3 Camera Calibration . 13

3.1 Calibration Pattern . 13
3.1.1 Chessboard . 14
3.1.2 ChArUco . 15
3.1.3 Cicle-grid . 16

3.2 Reprojection Error . 17

3.3 Single Camera Calibration . 17
3.3.1 Linear Parameter Estimation . 17
3.3.2 Nonlinear Estimation . 19

3.4 Stereo Calibration . 20

3.5 Multi-Camera Calibration . 22

4 Experiment . 23

4.1 ChArUco Corner Detection . 23

4.2 Camera Parameters Estimation . 26

5 Results . 28

5.1 ChArUco Corner Detection Performance . 28

5.2 Camera Parameter Estimation Accuracy . 31

6 Conclusion . 35

References . 36

Appendix A Real-time Marker Detection . 38

Appendix B Still Image Corner Visualization . 40

Appendix C ChArUco Corner Detection Rate . 42

Appendix D Write Image Coordinates to Files . 44

Appendix E Read Image Coordinates from Files . 46

Appendix F Draw Detected ChArUco Corners . 47

iv

LIST OF FIGURES

2.1 Pinhole model. Light rays go through the pinhole aperture and the image is
formed on to the image plane by the rays. One point in the world coordinate
system can reach only one point or small area on the image plane so the
image will be focused. [22, p. 639] . 4

2.2 Pinhole camera model. The point C is the camera center placed in the
coordinate origin and p is the principal point. Image plane is placed in front
of the coordinate origin. [16, p. 154] . 4

2.3 Projective transform to homogeneous coordinates. Point p projected onto
the w = 1 plane. [6] . 5

2.4 By applying rotation R and translation t to world coordinate frame, it can
be known how it is related to the camera coordinate frame. [16, p. 156] . . . 7

2.5 On the left, only one light ray from one point goes through the pinhole, and
the image is dark. In the middle, large pinhole let many light rays from a
point go through the hole, and spread to a large area on the image plane.
Then the image becomes blurry. On the right, many light rays go through
the lens, and the rays are focused to one point on the image plane. The
image is getting more light and it is sharp. [5] 8

2.6 Image taken from the streets by a full frame fish-eye lens. Radial distortion
is strong especially near to the edges. [14] 9

2.7 Radial distortion effects. On the left the barrel distortion causes the lines
bulge out away from the image center. On the right the pincushion distor-
tion causes the lines bend towards the image center. [7, p. 30] 9

2.8 Tangential distortion in a camera. The lens is not fully parallel to the image
plane which may be due to the glue on the back of the camera. Resulting
image showed on the right. [22, p. 647] . 10

2.9 Applying affine transformation to such grid, it becomes skewed. Some
image sensors might have skewness that is taken into account in a calibra-
tion. [1] . 11

3.1 Chessboard calibration pattern. 14
3.2 ChArUco calibration pattern. The white squares are filled with the markers

to identify the corners. Each corner is surrounded by two markers. 15
3.3 Circle-grid calibration pattern. 16
3.4 A circle is mapped on the image plane as an ellipse if it is not coplanar

with the image plane. As a result, the center of the circle is shifted from the
center of the ellipse. [29] . 16

v

3.5 Epipolar geometry. Camera centers C and C′, and the object point X
define the epipolar plane π. The plane defines the epipolar line and the
corresponding point x′ must lie on the epipolar line l′. [16, p. 240] 20

5.1 Detecting corners from the ChArUco board was achieved by decreasing
shutter speed. The corners are blurry, and a single corner has a gap.
Markers are also unclear. 28

5.2 Shutter speed is increased, and the markers look visually clearer. The
checkerboard is close to the camera. Marker detection cannot detect any
marker. 29

5.3 Post-process done for the dark image. Marker detection cannot detect any
marker. 29

5.4 Marker detection works with more light directed to the board. All the mark-
ers are detected and the edges are visually clearer. 30

5.5 ChArUco corner detection works for fairly long distance between camera
and the board with more light directed to the board. All the markers except
one are detected. It means in this case that 86 out of 88 corners are detected. 30

5.6 Stereo calibration mean reprojection error per image. The average error of
every image is less than 0.2 pixels. 31

5.7 Pair-wise calibration errors in millimeters with increasing number of cameras. 33
5.8 Relative pair-wise calibration errors with increasing number of cameras. . . 33
5.9 Cameras 1 and 20 have long distance which decreases the overlapping

area and possible positions for the checkerboard. The positions for checker-
board are drawn to the overlapping area. 34

vi

LIST OF TABLES

4.1 ChArUco checkerboard specific parameters needed in corner detection. . . 24

5.1 Pair-wise camera calibration translation errors. The Euclidian distance is
computed from the translation error vector. 32

vii

LIST OF PROGRAMS AND ALGORITHMS

4.1 Compute ChArUco corners with OpenCV. 25
A.1 A real-time ChArUco marker detection, and a frame for how to use corner

detection functions. 38
B.1 Drawing corners for still image. 40
C.1 Compute detection rate for a set of images. 42
D.1 Write image coordinates and IDs to .mat files. 44
E.1 Read image coordinates and IDs from .mat files. 46
F.1 Draw detected ChArUco corners wrapper. 47

viii

LIST OF SYMBOLS AND ABBREVIATIONS

cx x coordinate of the principal point

cy y coordinate of the principal point

DLT direct linear transformation

E essential matrix

F fundamental matrix

f focal length in the world units

fx focal length divided by the size of a pixel in x direction, the length
is in pixels

fy focal length divided by the size of a pixel in y direction, the length
is in pixels

I identity matrix

K camera calibration matrix, intrinsic parameters

κ kappa, radial distortion parameter

NumPy a Python library for scientific computing

OpenCV open source computer vision, a library of programming functions
mainly aimed at real-time computer vision

ox x coordinate of the optical center

oy y coordinate of the optical center

P projection matrix

px pixel length in x direction

py pixel length in y direction

R rotation matrix, extrinsic parameters

S singular value matrix

s skew term, intrinsic parameter

SVD singular value decomposition

t translation vector, extrinsic parameters

θ theta, an angle formed by the intersection of two curves in a plane

U left orthogonal matrix

V right orthogonal matrix

W orthogonal matrix

1

1 INTRODUCTION

Visual information from the real world is carried by the light field. It means that the light
field is formed by light vectors consisting of light rays. A collection of light rays creates
the visual information of the surroundings. [23] Many computational imaging operations
can be done by capturing the light field properly. This study works on the visualization of
multi-view images taken from different perspectives. The images are shown on a single
light field display to create the feel of depth on a 2-D plane. This is one of the many
methods of creating a hologram effect.

In this project, the light field is captured by a camera rig of 20 cameras. The multi-camera
images are stacked together to form a 3-D cube. This cube can then be shown on the
light field display to make an object look different when looking at it from different viewing
angles.

First of all, in order to visualize multi-camera images and 3-D view of the captured scene,
the relative positions of all the cameras must be known. Secondly, one needs to capture
the scene at the same time instant, and this is done by synchronously controlling all the
cameras’ shutters. The third required step is to correct the optical distortions caused by
the camera lenses and to equalize the colors in order to compensate for the eventual
color deviations between the different camera sensors. These procedures are referred
to as calibration. In this study, it was seen that with the manufacturer measures of the
camera rig, the result was extremely poor and the light field image had many artifacts.
This as a baseline proofs why more sophisticated calibration method – done by using
computer vision – is required for the multi-camera rig.

The aim of this thesis is to create tools to develop multi-camera calibration. The exper-
imental work was performed on the premises of the Centre for Immersive Visual Tech-
nologies (CIVIT). In the CIVIT laboratory, they have been able to take satisfactory light
field images. These images were taken by a camera system in the robot arm. Unfortu-
nately, the robot arm cannot be used for objects that are not stable, such as a human.
That is why the light field image for an unstable object must be captured in a short time
period. Multiple camera system where cameras are able to see the object from different
perspectives will solve this problem.

This thesis is structured as follows. Chapter 2 goes through the theory behind the camera,
and how it is modeled. It deals with the camera geometry of the model, and the different
distortions caused by the lenses. Chapter 3 covers the calibration of a different number of

2

cameras. It will tell in more detailed what kind of steps the calibration procedure consists
of, what kind of calibration objects can be used for different purposes, and how to get
the information of cameras’ relative positions. Chapter 4 describes the project steps,
problems, and solutions for them. The results are covered in Chapter 5. It analyses the
condition-dependent results of ChArUco checkerboard marker detection, and pair-wise
multi-camera calibration errors. The final chapter, Chapter 6, covers the conclusions of
the project. It presents the ideas for further development, introduces briefly the results,
and gives suggestions for further studies.

3

2 CAMERA MODEL

Vision starts with detecting light from the world. Much of the light is absorbed to the
surroundings but some of the light is reflected from the objects to our eyes. The geometry
of this arrangement – the light rays traveling from the object, through the lens in our eye
or camera, to the retina or imager – is important to model in computer vision applications.
[22, p. 637]

In order to create the mathematical model of the camera, we need to define the com-
ponents that affect the direction or focus of the light rays and form of the image. During
the vision, the 3-D space points are projected to a 2-D plane, and finally, a 2-D image
is formed. Between the 3-D points and 2-D plane, there are typically a lens or multiple
lenses, camera aperture and the image sensor also called as imager, that converts the
optical image to an electronic signal [30]. These together can create a complex camera
model but we start with a commonly used, simple pinhole camera model. A pinhole is a
tiny hole in an imaginary wall which passes only the light rays going through the pinhole.
[22, p. 637] The model is covered in the following section.

2.1 Pinhole Camera Model

The simplest way to model a camera is to use a pinhole model which basics are shown
in Figure 2.1. In the model, the center of projection is in the camera center which is
the origin of the Cartesian coordinate system. By definition, the plane Z = f is called
the image plane. In the pinhole camera model, the point in the real world coordinates
X = (X,Y, Z) is mapped to the point on the image plane where the line from the world
coordinate to the center of projection cuts the image plane. This projection is illustrated
in Figure 2.2. Based on similar triangles, the world coordinate point (X,Y, Z) can be
mapped to the image plane point as (fX/Z, fY/Z, f). Leaving the last image coordinate
out, the coordinate transformation can be shown as⎡⎢⎢⎢⎣

X

Y

Z

⎤⎥⎥⎥⎦ →

⎡⎣fX/Z

fY/Z

⎤⎦ (2.1)

that tells the central projection mapping from world coordinate system to image coordi-
nate system. [16, pp. 153–154]

4

Figure 2.1. Pinhole model. Light rays go through the pinhole aperture and the image is
formed on to the image plane by the rays. One point in the world coordinate system can
reach only one point or small area on the image plane so the image will be focused. [22,
p. 639]

Figure 2.2. Pinhole camera model. The point C is the camera center placed in the coor-
dinate origin and p is the principal point. Image plane is placed in front of the coordinate
origin. [16, p. 154]

The projection is centered through the camera center, also known as optical center. The
vertical line from the camera center perpendicular to the image plane is called the prin-
cipal axis. The ray going on this line is the principal ray, and the point where it meets
the image plane is called the principal point. The plane in parallel with the image plane
through the camera center is called the principal plane. The distance f between the cam-
era center and the image plane is called the focal length. Figure 2.2 shows how these
map to the image. [16, p. 154]

2.2 Projective Geometry

The relation that maps the points in the world coordinates (X,Y, Z) to the image coor-
dinates (X,Y) is called the projective transform [13, p. 424]. When working with such
transforms, it is convenient to use the homogeneous coordinates instead of Cartesian
coordinates. 3-D point coordinates in the world can be written using inhomogeneous co-
ordinates x = (x, y, z) ϵ R3, or homogeneous coordinates ˜︂X = (˜︁X, ˜︁Y , ˜︁Z,˜︂W) ϵ P3. [37,
p. 33] The transformation from inhomogeneous coordinates to homogeneous coordinates
are done by adding the extra coordinate W so that the dimensionality will be inceased by

5

1. All the points, Euclidian and ideal, in the homogeneous coordinate system are treated
equally in the projective plane. The homogeneous coordinate system is widely used in
computer graphics because it makes projective and affine transformations as matrix mul-
tiplications in a convenient way. [4] Projection transform to homogeneous coordinates is
shown in Figure 2.3.

Figure 2.3. Projective transform to homogeneous coordinates. Point p projected onto
the w = 1 plane. [6]

By representing the world and image coordinate points in homogeneous coordinates, the
central projection is done by a linear mapping between the coordinates. Equation 2.1 can
be continued, and be written as a matrix multiplication⎡⎢⎢⎢⎢⎢⎢⎣

X

Y

Z

1

⎤⎥⎥⎥⎥⎥⎥⎦ →

⎡⎢⎢⎢⎣
fX

fY

1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
f 0

f 0

1 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
X

Y

Z

1

⎤⎥⎥⎥⎥⎥⎥⎦ (2.2)

where the matrix is diag(f , f , 1)[I|0] in which the notation [I|0] means a 3x3 diagonal
indentity matrix plus a zero column vector. [16]

Changing the coordinates from the world to the image is done by transforming the world
Cartesian coordinates into homogeneous coordinates (X,Y, Z, 1)T . The image coordi-
nate in homogeneous 3-vector (X,Y,W)T is obtained by multiplying the homogeneous
world coordinate by the 3× 4 homogeneous camera projection matrix. Equation 2.2 can
then be expressed as

x = PX (2.3)

where x is the image coordinate point in homogeneous coordinates, P is the camera
projection matrix, and X is the world coordinate point in homogeneous coordinates. [16,
p. 154]

In Equation 2.1, the origin of image plane coordinates is assumed to be at the principal
point. In most cases, it is close to the principal point, but the deviation must still be taken

6

into account in the coordinate projection as⎡⎢⎢⎢⎣
X

Y

Z

⎤⎥⎥⎥⎦ →

⎡⎣fX/Z + cx

fY/Z + cy

⎤⎦ (2.4)

where (cx, cy)
T are the principal point coordinates. The camera central projection equa-

tion is now formed as⎡⎢⎢⎢⎢⎢⎢⎣
X

Y

Z

1

⎤⎥⎥⎥⎥⎥⎥⎦ →

⎡⎢⎢⎢⎣
fX + Zcx

fY + Zcy

Z

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
f cx 0

f cy 0

1 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
X

Y

Z

1

⎤⎥⎥⎥⎥⎥⎥⎦ (2.5)

where it can be seen that the principle point settles perfectly to the projection matrix.
From Equation 2.5 the projection matrix can be separated as

x = K[I|0]X (2.6)

where the K is defined as

K =

⎡⎢⎢⎢⎣
f cx

f cy

1

⎤⎥⎥⎥⎦ (2.7)

and it is called the camera calibration matrix. [16, pp. 154–155]

In Equation 2.6, it is assumed that the location of the camera is at the origin of the
Cartesian coordinate system, and the direction of the camera’s principal axis is down
along the z-axis. This coordinate system is called the camera coordinate frame. In space,
points are expressed in terms of a different Cartesian coordinate frame which is known
as the world coordinate frame. These two coordinate frames are related via rotation and
translation. The rotation matrix is 3 × 3 matrix that includes the orientation related to x,
y, and z-axis. In 3 dimensional space, as here the world coordinates are, the rotation
matrices for each axis are defined as

Rx =

⎡⎢⎢⎢⎣
1 0 0

0 cos(θx) −sin(θx)

0 sin(θx) cos(θx)

⎤⎥⎥⎥⎦ (2.8)

Ry =

⎡⎢⎢⎢⎣
cosθy 0 sinθy

0 1 0

−sinθy 0 cosθy

⎤⎥⎥⎥⎦ (2.9)

7

Rz =

⎡⎢⎢⎢⎣
cosθz −sinθz 0

sinθz cosθz 0

0 0 1

⎤⎥⎥⎥⎦ (2.10)

and applying rotation over every axis, the rotation matrix will come to form

R

= RxRyRz

=

⎡⎢⎢⎢⎣
cosθycosθz −cosθysinθz sinθy

cosθxsinθz + cosθzsinθxsinθy cosθxcosθz − sinθxsinθysinθz −cosθysinθx

sinθxsinθz − cosθxcosθzsinθy cosθzsinθx + cosθxsinθysinθz cosθxcosθy

⎤⎥⎥⎥⎦
(2.11)

where the θx is rotation on x-axis, θy is rotation on y-axis and θz is rotation on z-axis. [16,
pp. 155–157]

Figure 2.4. By applying rotation R and translation t to world coordinate frame, it can be
known how it is related to the camera coordinate frame. [16, p. 156]

The translation is the offset from one coordinate system origin to another. In 3-D space
it is expressed as 3 dimensional vector (x, y, z). By knowing rotation and translation
between the world and camera coordinate frames it is possible to know exactly how they
are related to each other. [16, p. 155] The relation has been shown in Figure 2.4.

The transformation from world coordinates to image coordinates can now be done as
x = RX + t. Now the camera projection matrix comes to form

P = K[R|t] (2.12)

where t = −RC in which C is the camera center in world coordinates. [16, p. 156]

In the image sensor, it is possible to have non-square pixels. So in that sense, the pixels
could have a different size in x and y-direction. The camera calibration matrix can now

8

be shown as

K =

⎡⎢⎢⎢⎣
fx cx

fy cy

1

⎤⎥⎥⎥⎦ (2.13)

where fx is the focal length f divided by the length of a pixel in x direction fx = f/px, and
fy is defined in a corresponging way fy = f/py. [16, pp. 156–157]

To add one more change to the camera calibration matrix it becomes to the following form

K =

⎡⎢⎢⎢⎣
fx s cx

fy cy

1

⎤⎥⎥⎥⎦ (2.14)

where s is the skew term [16, p. 157]. The skew is covered in Section 2.3.

2.3 Lens Distortion

The camera has usually a lens to create the pinhole structure and gather more light rays
from a point in the world rather than one light ray as in pinhole model. The light rays
from one point in the world are then focused on one point on the image plane. The lens
improves the lighting and reduces need of exposure. [12, pp. 159–187] Lens light rays
collection and focusing are shown in Figure 2.5.

Figure 2.5. On the left, only one light ray from one point goes through the pinhole, and
the image is dark. In the middle, large pinhole let many light rays from a point go through
the hole, and spread to a large area on the image plane. Then the image becomes blurry.
On the right, many light rays go through the lens, and the rays are focused to one point
on the image plane. The image is getting more light and it is sharp. [5]

The models in the previous section assume that the cameras do not have any distortion.
It means that the straight lines in the world are also straight lines in the image. Unfor-
tunately, many lenses, especially wide-angle lenses have considerable radial distortion.
Radial distortion creates curves to the image, and the closer you look the image edges,
the stronger are the curves. [37, p. 58] Strong radial distortion can be made by the fish-
eye lens which is strongly curved. Fish-eye effect is shown in Figure 2.6.

There are 2 types of radial distortion: barrel distortion and pincushion distortion. In

9

Figure 2.6. Image taken from the streets by a full frame fish-eye lens. Radial distortion
is strong especially near to the edges. [14]

barrel distortion, the coordinates in an image are displayed away from the image center.
Pincushion distortion, on the other hand, displays the coordinates in an image towards
the image center. [37, pp. 58–59] These two radial distortion types are shown in Figure
2.7.

Figure 2.7. Radial distortion effects. On the left the barrel distortion causes the lines
bulge out away from the image center. On the right the pincushion distortion causes the
lines bend towards the image center. [7, p. 30]

Considering (xc, yc) to be the image coordinates obtained by the perspective division, and
shifting by the optical center (ox, oy) before scaling by the focal length f , the coordinates
can be calculated as

xc =
rx · x+ tx
rz · x+ tz

yc =
ry · x+ ty
rz · x+ tz

(2.15)

where the rx, ry and rz are the three rows of rotation matrix R, x is the world coordinate
point, and tx, ty and tz are the translation components of translation vector t. Improving
the radial undistortion, it is possible to add low-order polynomials, and that is what the

10

simplest radial distortion models use. It is shown in Equation 2.16

x̂c = xc(1 + κ1r
2
c + κ2r

4
c)

ŷc = yc(1 + κ1r
2
c + κ2r

4
c)

(2.16)

where r2c = x2c +y2c , and κ1 and κ2 are called radial distortion parameters. [37, pp. 58–59]

Radial distortion might be significant depending on the lens. Another common distortion
is called tangential distortion. This distortion is not caused only by the lens but from the
assembly process of the camera as a whole. In an ideal situation, the camera lens and
the camera sensor are perfectly in parallel. During the camera manufacturing process,
the sensor and lens may not be assembled in parallel which causes tangential distortion.
The effect of tangential distortion causes the image to have a perspective view. Tangential
distortion is shown in Figure 2.8. [22, p. 647]

Figure 2.8. Tangential distortion in a camera. The lens is not fully parallel to the image
plane which may be due to the glue on the back of the camera. Resulting image showed
on the right. [22, p. 647]

Skew happens in some image sensors, but in most normal cameras it is zero [16, p. 157].
Skew means that the image sensor contains imperfections that cause the x- and y-axes
of the image not to be perpendicular. It makes the image have affine form which is shown
in Figure 2.9 [40]. The skew coefficient is defined by the angle between the x and y pixel
axes [38].

Decentering distortion is also caused by lenses but it is not covered in this thesis. More
information can be found from [3].

11

Figure 2.9. Applying affine transformation to such grid, it becomes skewed. Some image
sensors might have skewness that is taken into account in a calibration. [1]

2.4 Intrinsic and Extrinsic Parameters

Camera parameters are generally divided into intrinsic and extrinsic parameters. Extrinsic
parameters do the transform from object coordinates to a camera centered coordinate
frame which basically means that applying rotation and translation, the coordinate frame
can be changed. [18] In Section 2.2, it is described how the rotation and translation are
used for the coordinate frame transform.

In calibration, extrinsic parameters are used to express an arbitrary object point P at
location (Xi, Yi, Zi) in image coordinates to transform it to camera coordinates (xi, yi, zi)

[18]. By multiplying the object point P with the rotation matrix and adding translation to
it, the coordinate frame transform is achieved. This projection transform from the world
coordinate system to the image coordinate system is covered in more detailed in Section
2.2.

The camera intrinsic parameters include the parameters in camera calibration matrix,
which are the focal lengths fx and fy, principal point parameters cx and cy, and the skew
s which is assumed to be 0 in many cases such as in the calibration functions of OpenCV
library [18][22, p. 646]. The origin of the image coordinate system is in the upper left
corner of the image array so the principal point coordinate values (cx, cy) are typically
close to half of the image width and height in pixels [18].

The pinhole camera model is a very simple approximation of the projection for a real
camera. It enables a straightforward mathematical relationship between the world and
image coordinates. However, it does not give high accuracy, and that is why a more
complex camera model is required. Nonetheless, the pinhole is used as a basis with
some extensions. The extensions are corrections for the systematically distorted image
coordinates. As mentioned in Section 2.3, the radial distortion is the most common lens
distortion, and because of its significant effect, the radial distortion parameters are added
to the model as an extension. Mostly, two radial distortion coefficients are able to remove
the distortion well enough. [18]

Accurate calibration is achieved by a proper camera model that combines the pinhole

12

model with the correction for radial and tangential distortion coefficients. These distortion
coefficients combined with intrinsic parameters are called as physical camera parameters
since they have an obvious physical meaning. As mentioned previously, the camera
calibration procedure is to define optimal values for these parameters. [18]

13

3 CAMERA CALIBRATION

Camera calibration is required phase in 3-D computer vision for extracting metric infor-
mation from 2-D images [40]. In this study, the calibration is a part of creating a light field
image that can be shown on a light field display. Camera calibration, in the context of
3-D machine vision, is the mechanism of determining the internal camera geometric and
optical characteristics which are so-called intrinsic parameters. Another determination is
the 3-D position and orientation of the camera frame relative to a certain world coordinate
system. Those are known as the extrinsic parameters. Often, the accuracy of the camera
calibration is strongly related to the total performance of the machine vision system. [18]

The classic approach for camera calibration solves the problem of minimizing a nonlinear
error function to get accurate estimations for parameters in camera matrix [18]. In stereo
or multi-camera calibration, the relations, rotations and translations, between cameras
are required to compute. After the calibration is done, the unknown parameters are found
in the mathematical model which was fitted to the real measurements. [15] In terms of
light field display application, the multi-camera calibration result for the light field image is
strongly related to the accuracy of estimated parameters.

Multi-camera systems also require color calibration between each camera. Color calibra-
tion is not covered in this thesis but more information can be found from [24]. This thesis
explains the principles of commonly used Zhang’s [40] approaches to camera calibration.
The implementation of Zhang’s method is available in Matlab toolboxes and in OpenCV.
Zhang’s method relies on correspondences between image coordinate points and known
world reference points. Those correspondences can be obtained many ways of which
one way is through the use of 2-D calibration targets.

3.1 Calibration Pattern

In the mathematical camera model, there are multiple unknown parameters that have to
be solved. For this problem, we need external information or measurements of the scene
to determine the unknown parameters in the model. The usage of calibration patterns is a
way to obtain easily interpretable and more accurate measurements. The 3-D coordinate
measurements of the space are taken from the calibration pattern. [37, p. 327] There are
multiple different calibration patterns of which three are covered in this thesis.

If a calibration pattern is not available, it is also possible to perform calibration simultane-
ously with structure and pose recovery by using, for example, vanishing points. This is

14

known as self-calibration. However, to get accurate results such an approach requires a
large amount of imagery. [37, p. 328] The 3-D coordinates of the object points are also
included in the set of unknown parameters in self-calibration. However, in this thesis, the
calibration procedure is performed with a known object. [18]

3.1.1 Chessboard

Very common calibration pattern is chessboard pattern where the corner coordinates (in
world coordinates) in between white and black squares are known. This kind of board is
called the checkerboard [11]. The corner coordinates of projection on 2-D image plane
are easy to detect accurately [40]. Figure 3.1 shows the chessboard checkerboard.

Figure 3.1. Chessboard calibration pattern.

Using chessboard in the calibration, it requires that all the corners are visible and de-
tected. Otherwise, if not all the corners were detected, it would be hard for a computer
to know which corners were detected and define the 3-D coordinates for them. It would
require human labeling work to identify the detected corners or additional information
from the calibration pattern as in ChArUco. Because of the requirement of fully visible
chessboard pattern, chessboard pattern also limits the possible number of positions in
the calibration procedure. In stereo camera case, the chessboard must always been
placed perfectly in the overlapping areas of two cameras’ views. In case of wide multi-
camera rig, the overlapping area between the outermost cameras is small which reduces
the chessboard positions.

15

3.1.2 ChArUco

Another type of calibration pattern is called ChArUco calibration pattern. It combines
ArUco [9] and chessboard pattern where the white squares of a chessboard pattern are
filled with markers. The marker is a QR-code [39] which tells a unique ID (identification
number) for the marker. Because the detection of corners in the checkerboard is the
intention, the ChArUco board makes it possible to define an ID for every corner on the
board. The ID for a corner enables to know which corners are detected from the checker-
board. It is useful in many situations such as in pose estimation and in the case of a
partially visible checkerboard. [20] ChArUco board is shown in Figure 3.2.

Figure 3.2. ChArUco calibration pattern. The white squares are filled with the markers to
identify the corners. Each corner is surrounded by two markers.

Using ChArUco detection in the code, one must define the ChArUco dictionary which tells
the resolution of a marker, and the maximum number of IDs that are used in the detection
[20]. In this study, the marker resolution of the checkerboard is 5 × 5 and the number of
markers is 54. The predefined dictionaries are discretized so used dictionary is defined
to be DICT_5x5_100.

One disadvantage of ChArUco is the difficulty of marker detection since the markers are
small and require the image to be focused. It also requires enough pixels for the markers
so that they would be clear enough for detection. During the study, this was noticed to be
one major problem when gathering data.

16

3.1.3 Cicle-grid

The third covered calibration pattern is circle-grid where the 3-D points are detected from
the centers of the circles. A circle-grid pattern is shown in Figure 3.3. Circle, as a calibra-
tion pattern, enables the point detection in cases where the image is not totally focused.
However, it has disadvantages in asymmetric projection where the circle center have to
be corrected.

Figure 3.3. Circle-grid calibration pattern.

Two- and three-dimensional objects, which are not coplanar with the image plane, are
distorted. This is also true for any arbitrarily shaped objects. [18] There has been written
whole paper of correcting asymmetric circle center projection, more detailed mathematics
information can be found from [25]. The asymmetric projection is shown in Figure 3.4.

Figure 3.4. A circle is mapped on the image plane as an ellipse if it is not coplanar with
the image plane. As a result, the center of the circle is shifted from the center of the
ellipse. [29]

17

After correcting the asymmetric projection, the camera parameters are recomputed. The
obtained parameters are not optimal in the sense of least squares but the iterations for
these values are not needed since the remaining error is so small. [18] This is one calibra-
tion step and it corrects the systematic bias in all parameters caused by the asymmetric
projection [25].

3.2 Reprojection Error

The error metrics defined for estimation are done from the image points. It is usually done
by computing the Euclidian distance between the projected image coordinate point, and
the measured image coordinate point. [16, p. 95]

In the estimation process, the total error function will be minimized in the least squares
fashion [18]. The process is iterated where the reprojection error is computed during the
iterations, and the final target is to get the minimum reprojection error.

3.3 Single Camera Calibration

Calibration of a single camera – finding the individual cameras’ intrinsic parameters –
is the easiest step to start, and it is also gathered in multi-camera calibration [19]. The
following sections use the explained projection transform and lens distortions in the cam-
era calibration. Each calibration step covered here increases the accuracy of the camera
calibration in a way to create minimal reprojection error. [18].

The 3-D world coordinate points that are used in the calibration are measured from the
calibration patterns covered in Section 3.1. To gain better accuracy in the calibration,
there has to be taken 10 to 20 images of the calibration pattern [10]. These images
must be focused and taken from different rotations, distances and they should cover a
wide area in the field of view of a camera [37, p. 340]. Also, a higher number of object
points in the calibration object will provide more data for the calibration and result in better
accuracy. The corresponding 2-D image coordinate points for the world coordinate points
are measured where the object points appear in the image.

3.3.1 Linear Parameter Estimation

The radial and tangential distortion components are nonlinear. By removing them, the
equations become linear. The pinhole camera model is used as a basis in direct linear
transformation (DLT), which ignores the nonlinearity caused by the radial and tangential
distortions. In DLT, the calibration procedure is divided into two steps. In the first step, the
linear transformation from the world coordinates (Xi, Yi, Zi) to image coordinates (ui, vi)

is computed. A homogeneous 3 × 4 matrix representation for projection matrix P – as in

18

Equation 2.12 – does the projection as follows:

⎡⎢⎢⎢⎣
uiwi

viwi

wi

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
Xi

Yi

Zi

1

⎤⎥⎥⎥⎥⎥⎥⎦ (3.1)

where the image coordinates are in homogeneous form, and can be transformed to inho-
mogeneous by dividing with the term wi. [18]

The parameters p11, ..., p34 of the DLT matrix can be solved by eliminating wi. If A and p

are defined as

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1 Y1 Z1 1 0 0 0 0 −X1u1 −Y1u1 −Z1u1 −u1

0 0 0 0 X1 Y1 Z1 1 −X1v1 −Y1v1 −Z1v1 −v1
...

...
...

...
...

...
...

...
...

...
...

...

Xi Yi Zi 1 0 0 0 0 −Xiui −Yiui −Ziui −ui

0 0 0 0 Xi Yi Zi 1 −Xivi −Yivi −Zivi −vi
...

...
...

...
...

...
...

...
...

...
...

...

XN YN ZN 1 0 0 0 0 −XNuN −YNuN −ZNuN −uN

0 0 0 0 XN YN ZN 1 −XNvN −YNvN −ZNvN −vN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
p =

[︂
p11 p12 p13 p14 p21 p22 p23 p24 p31 p32 p33 p34

]︂T
,

the following matrix equation for N control points satisfies the equation

Ap = 0. (3.2)

By replacing the correct image coordinate values (ui, vi) with observed values from pro-
jection transform (Ui, Vi), the parameters in p can be estimated by using least squares.
The optimized parameters p11, ..., p34 do not have any physical meaning in terms of intrin-
sic and extrinsic parameters but despite of it this optimization procedure can be called as
implicit camera calibration stage. [18][35]

DLT is used to provide proper initial parameters that can be refined in the nonlinear esti-
mation. A method of estimating intrinsic and extrinsic parameters from projection matrix
P has been proposed by Melen [28]. In the method, a set of 11 physical camera pa-
rameters are extracted from the DLT projection matrix. The decomposition is as follows:

P = λV −1B−1FMT (3.3)

where λ is an overall scaling factor and the matrices M and T define the rotation and
translation from the world coordinate system to the camera coordinate system. The ma-

19

trices V , B and F contain the focal length, principal point and coefficients for the linear
distortion. [18]

3.3.2 Nonlinear Estimation

Linear parameter estimation is efficient but it has disadvantages. One disadvantage is
that the lens distortion effects are not generally corrected. There are presented a few
solutions for this, for example in [33], but the second disadvantage is not that easy to be
fixed. Due to the simplicity and nonlinear algorithm that the linear estimation provides,
the constraints in the intermediate parameters are not considered. In the presence of
noise, the accuracy is poor, and nonlinearity is needed in the calibration. [18]

When the noise is added to the image, the best estimate for the camera parameters can
be achieved by minimizing the residual between the model and N observations (Ui, Vi),
where i = 0, ..., N − 1. The noise can be considered to be white Gaussian noise, and in
that sense, the objective function is expressed as a sum of squared residuals

F =

N−1∑︂
i=0

(Ui − ui)
2 +

N−1∑︂
i=0

(Vi − vi)
2 (3.4)

where the N is the number of object points in the image, (Ui, Vi) is the projected point
based on the intrinsic and extrinsic parameters, and (ui, vi) is the ground truth that is the
target of the optimization. [18]

The least squares estimation based on the maximum-likelihood criterion is used to min-
imize Equation 3.4 [40]. The simultaneous estimation of the parameters is obtained by
applying an iterative algorithm for the nonlinear camera model. The fastest convergence
for this problem has been shown to be the Levenberg-Marquardt optimization method.
Despite the fast convergence, the method could stick in the local minimum without the
proper initial parameter values, and causes the calibration to be inaccurate. In this step,
the DLT comes to need for making the initial values for the optimization. With these ini-
tial parameters, the global minimum of the Equation 3.4 is usually obtained after a few
iterations. [18]

Research shows that two coefficients for both radial and tangential distortion are typically
enough [17]. The total number of estimated intrinsic parameters are then eight. Singu-
larity limits the number of parameters that can be estimated from a single view, and that
is why more views are required to compute all the intrinsic parameters. The number of
extrinsic parameters depends on the number of different camera views, but for a single
view, the number of extrinsic parameters is six. [18]

One last step to increase the accuracy is to do back projection from the image coordinates
to world coordinates. By doing this we can gain a very small increase in accuracy. The
mathematical notations for back projection are covered in [18].

20

3.4 Stereo Calibration

The process of computing the geometrical relationship between the two cameras in space
is called stereo calibration. As discussed in the single-camera case, the relationship be-
tween the camera and world coordinate frames is defined by the intrinsic and extrinsic
parameters. In stereo calibration, the rotation and translation are considered between
camera and calibration patterns as well as between the two cameras whose relative po-
sition is fixed. [2, p. 21] The new unknown parameters come from the relative position.

To estimate the relationship between two cameras, we need corresponding points taken
from two perspectives by the cameras. The corresponding points in stereo images can
be related by the fundamental matrix. The fundamental matrix F and a corresponding
point x define an epipolar line on which the corresponding point x′ on the other image
must lie. The epipolar geometry is the intrinsic projective geometry between two views.
[16, pp. 239–240] Figure 3.5 shows how the epipolar line is defined in epipolar geometry.

Figure 3.5. Epipolar geometry. Camera centers C and C′, and the object point X define
the epipolar plane π. The plane defines the epipolar line and the corresponding point x′

must lie on the epipolar line l′. [16, p. 240]

The fundamental matrix encapsulates intrinsic geometry. It is a 3 × 3 matrix of rank 2.
[16, p. 239] It is defined by the equation

x′TFx = 0 (3.5)

where x and x′ are the corresponding points in stereo images. Detailed mathematical
computation for fundamental matrix is done in [16, p. 279].

Another describing matrix for the relationship between two cameras is the essential ma-
trix. It relates points to each other in the world coordinates, not in the image coordinates.
The difference between the fundamental matrix and essential matrix is that the essential
matrix E is totally geometrical and does not know anything about imagers. It relates the
location, in the world coordinates for the corresponding point P which is seen by the left
camera to the location of the same point as seen by the right camera. The fundamental

21

matrix F relates the points in image coordinates on the image plane of one camera to the
points on the image plane of the other camera. The essential matrix can be represented
as

E = [t]×R = R[RT t]× (3.6)

where [t]× is the matrix representation of the cross product with t. The essential matrix
is also represented in normalized image coordinates respectively

y′TEy = 0 (3.7)

where the y and y′ are the corresponding normalized image coordinates in stereo im-
ages. The relationship between fundamental matrix and essential matrix is

E = K′TFK (3.8)

where the K′ and K are the stereo cameras intrinsic matrices. More information can be
found from [16, pp. 239–308].

The essential and fundamental matrices make it possible to calculate the rotation and
translation between the cameras. The parameters in the matrices are then optimized in
the same manner as in single camera calibration by calculating the residual error and
minimizing it with the least squares. The rotation and translation between cameras are
computed by using singular value decomposition (SVD) with the following form

E = USV T (3.9)

where the U is the 3×3 left orthogonal matrix and the V is the 3×3 right orthogonal
matrix. The resulting 3×3 singular-value matrix S contains only two non-zero and equal
singular values according to the properties of the essential matrix. [16, pp. 257–258]

The SVD of E gives the extrinsic parameters of the second camera with respect to the
first camera [2, p. 22]. In the case of fundamental matrix, a projective ambiguity exists,
and the camera matrices may be retrieved from the essential matrix up to scale and a
four-fold ambiguity. This means that the ambiguity makes there four possible solutions.
[16, p. 258] The two are for rotation and two for translation [2, p. 22]. They can be
determined as

R1 = UWV T

R2 = UW TV T

t1 = +u3

t2 = −u3

(3.10)

22

where u3 is the third column of U and W is the following orthogonal matrix

W =

⎡⎢⎢⎢⎣
0 −1 0

1 0 0

0 0 1

⎤⎥⎥⎥⎦ . (3.11)

More information and mathematical proofs can be found from [16, pp. 258–259].

Because stereo camera system has the relative position as a new unknown parameter
in addition to single camera calibration, the single camera calibration can be extended
to find the relative position. The standard approach is to calibrate two cameras indepen-
dently, and then calibrate only the relative pose between them. The measurements from
one camera can improve the calibration of the other camera which may not lead to the
optimal solution. Moreover, the independent depth camera calibration may require a high
precision 3-D calibration object that can be avoided using joint calibration. [19]

3.5 Multi-Camera Calibration

Calibration for multiple cameras means that the relationships – the new unknown param-
eters, rotations and translations – between all cameras are estimated. Good estimation
accuracy is gained when multiple cameras are calibrated simultaneously in order to deter-
mine the relative geometry between cameras [27, p. 27]. Computing intrinsic parameters
stays the same, and can be done individually for each camera as in stereo-calibration.
However, accurate extrinsic computation is still challenging. [2, p. 23]

One and easy way to calibrate multiple cameras is pair-wise stereo calibration. The pair-
wise multi-camera calibration does stereo calibration for adjacent camera pairs. As a
result, the calibration gives the relations between the cameras pairs. The results of this
method are covered in the next chapter but as mentioned before, the calibration should
be done simultaneously. However, this method provides good initial estimates for better
calibration methods. New techniques for multi-camera calibration have been proposed
in [8][21][36]. The pair-wise calibration provides coarse values for these methods after
which the values are then iteratively refined [2, pp. 23–24].

23

4 EXPERIMENT

The aim of the project was introduced in Chapter 1, and this chapter describes the actual
project. The project started by detecting the markers in ChArUco checkerboard. More
commonly used chessboard calibration pattern is not optimal for this project because
the views of all the cameras in the rig do not overlap with each other’s views at small
distances.

The camera calibration application in Matlab works for chessboard checkerboard pat-
terns. The application finds the corners of the checkerboard from the image but it rejects
those images from the calibration part where the found number of corners is not consis-
tent. In the case of this project, it means that it would be difficult to take the images with
chessboard calibration pattern, and only a few of the images would pass to the calibra-
tion part. The solution for this is to use a ChArUco board which gives IDs for the found
corners, and that is how the calibration does not need to see all the available corners in
the checkerboard.

In this study, the ChArUco corner detection was done in Python [32], and the library that
was used is OpenCV [31]. Once the image coordinates are detected they are transferred
to Matlab [26] which is then used for the estimation of intrinsic and extrinsic parameters.

4.1 ChArUco Corner Detection

Corner detection was done by using OpenCV 4.0.0 in Python 3.7.2. OpenCV provides
functions that have ChArUco marker detection, and the corner detection for the corners
between the found markers. The final result of the detection can be verified by drawing
the corners to the image, and visually check whether the corners have been detected
correctly. During the process, few problems were encountered due to camera hardware,
and Python to Matlab conversion. These problems are described here as well as the
scripts that help the process of taking images.

The hardware problem was a poor resolution, and the condition problem was a poor
lighting. In certain situations, they caused zero percent marker detection rate (the number
of detected corners divided by the maximum number of corners). In the cases where
the distance was too high between the camera and the ChArUco board, it was visually
checked from the images that the markers were not clear enough for recognition. When
the distance was suitable, and the markers were clear for the human eye, they were still
not recognized. It was later noticed to be caused by poor lighting. When the lighting was

24

improved, the corner detection rate increased. For time-saving and debugging purpose,
I created three scripts to help the process of getting satisfying images. The scripts are
real-time marker/corner detection for a video stream, corner drawing for still image, and
computation of detection rate for a set of images.

Python can be used from Matlab in many cases but Matlab has some limitations to
Python. In this project, it was noticed that Matlab (version R2018b) does not support
the NumPy library in Python version 3.7. Because of this constraint, and to avoid any
compatibility problems, the detection of image coordinates is done separately with the
calibration. The image coordinates from ChArUco board are read in Python and the re-
sults are written to .mat files. In Matlab, the image coordinates are then read, and used
in the calibration.

The corner detection has been created for a few different cases due to the errors that
were encountered during the project. The real-time marker detection has been done to
see how well the markers are detected with different distances and angles. The Program
A.1 shows the general frame how to detect the corners: which functions to call, what
parameters to give, and how to draw corners. The constant parameters that are always
defined for ChArUco board in every script are covered in Table 4.1.

Table 4.1. ChArUco checkerboard specific parameters needed in corner detection.

Parameter Description
CORNERS_X The number of checkerboard corners in x direction
CORNERS_Y The number of checkerboard corners in y direction

MARKER_DICT Marker dictionary, depends on the marker resolution
and the maximum number of needed marker IDs

SQUARE_LENGTH The side length of a square in ChArUco checkerboard in millimeters
MARKER_LENGTH The side length of a marker in ChArUco checkerboard in millimeters

The drawing of the corners to still image has been done to see which corners were
detected. It enables zooming to see how well the detection was in detailed. The image
can be given as an argument in the command line. The program call is done in the
following way

$ python draw_corners_still_image.py path/to/the/image.jpg

where the path to the image is given as an argument. The code of the corners drawing in
still image is provided in B.1.

Computing the detection rate for a set of images is informative, and helps to see fast how
good images were taken in the capturing process. The command line interface is similar
to the still image case. The path to the images or many paths of the images can be given
as arguments for the code. The call is as follows

$ python corner_detection_rate.py path/*.jpg another/path/*.jpg

where the number of arguments is not limited. The code is provided in C.1.

25

The number of detected image coordinate points is not fixed. This is why Python dict is
used for the writing, and the reading format in Matlab is cell structure. Running the code
is similar to previous ones:

$ python write_corners_to_file.py path/*.jpg another/path/*.jpg

Writing the image coordinates to files is provided in D.1. In Matlab, the coordinates are
read to matrix which is easier format than cell. Matrix also enables targeting the matching
extrinsic parameters with the image by using indexing. The code is provided in E.1.

All of the Python codes above use the one function that finds the corners of ChArUco
board. The function getCharucoCorners takes as parameters one image or the image
name, and the parameters defined in Table 4.1. At first, the function creates a ChArUco
board object that is defined by the parameters in Table 4.1. Secondly, the markers are
detected. In this step, the marker resolution must be set correctly. The maximum number
of markers can be set to maximum that the dictionary offers but it is unnecessary to
have a too big dictionary. The third step is to interpolate the corners between detected
markers. It has been done by calculating the corresponding homography between the
ChArUco plane and the ChArUco image projection. The homography is only performed
using the closest markers of each ChArUco corner to reduce the effect of distortion. [31]
The code of detecting ChArUco corners is below in the Program 4.1.

1 def getCharucoCorners (image , corners_x , corners_y , marker_dict ,
2 square_length , marker_length) :
3
4 # Define marker dictionary

5 d i c t i o n a r y = cv2 . aruco . ge tP rede f i nedD ic t i ona ry (marker_d ic t)
6
7 # Define Charuco board

8 board_squares_x = corners_x + 1
9 board_squares_y = corners_y + 1

10 board = cv2 . aruco . CharucoBoard_create (board_squares_x ,
11 board_squares_y ,
12 square_length /1000 ,
13 marker_length /1000 ,
14 d i c t i o n a r y)
15
16 # Read image if image name is given

17 i f (type (image) == st r) :
18 image = cv2 . imread (image)
19
20 # Detect markers

21 (markers , ids , _) = cv2 . aruco . detectMarkers (image ,
22 d i c t i o n a r y)

26

23 charuco_corners = np . ar ray ([])
24 charuco_ids = np . ar ray ([])
25
26 # At least one marker is detected

27 i f i ds is not None :
28 # Interpolate corners between markers

29 (_ , c_corners , c_ ids) = \
30 cv2 . aruco . in terpo la teCornersCharuco (markers ,
31 ids ,
32 image ,
33 board)
34
35 # At least one corner is detected

36 i f c_ids is not None :
37 charuco_corners = c_corners [: , 0]
38 charuco_ids = c_ids [: , 0]
39
40 return charuco_corners , charuco_ids

Program 4.1. Compute ChArUco corners with OpenCV.

The OpenCV’s drawing function cv2.aruco.drawDetectedCornersCharuco takes the cor-
ners as a parameter in shape of (number_of_detected_corners, 1, 2) and IDs in shape
of (number_of_detected_corners, 1). Corners and IDs are needed without the extra di-
mension, so that is why a wrapper has been created for this. It is provided in F.1.

4.2 Camera Parameters Estimation

The simultaneous estimation of intrinsic and extrinsic parameters was started but due
to the timing of Bachelor’s thesis, it was not finished. The main principle is to estimate
all the camera parameters simultaneously computing the reprojection error between the
estimated corner coordinates and the detected ChArUco corners during the iterations.
Nonlinear least squares estimation is used for the iteration. However, pair-wise camera
calibration was done using Matlab Camera Calibration Toolbox to evaluate how good
estimate it can provide.

Pair-wise calibration using the Toolboxes in Matlab is a straightforward process, and only
images must be given for the calibration application. The error in pair-wise multi-camera
calibration can be seen by the simple case of three cameras. Considering the case of
cameras 1, 2 and 3. From single camera calibration, the camera center can be calculated
from the extrinsic parameters R and t. Because the translation error calculated between
the camera centers C1, C2 and C3 is easy to imagine so we can only take that into
consideration.

27

We can formulate the relation between the rotation matrix R and the camera’s orientation
Rc with respect to the world coordinate axes. The relations are formulated as follows:⎡⎣R t

0 1

⎤⎦ =

⎡⎣Rc C

0 1

⎤⎦−1

=

⎡⎣⎡⎣I C

0 1

⎤⎦⎡⎣Rc 0

0 1

⎤⎦⎤⎦−1

=

⎡⎣Rc 0

0 1

⎤⎦−1 ⎡⎣Ic C

0 1

⎤⎦−1

=

⎡⎣RT
c 0

0 1

⎤⎦⎡⎣I −C

0 1

⎤⎦
=

⎡⎣RT
c −RT

c C

0 1

⎤⎦
from where we can obtain the following relations:

R = RT
c

t = −RC

and finally the camera center C can be defined to be

C = −RT t

where the rotation matrix is orthogonal, and the transpose of it can be used instead of the
inverse. [34] For better accuracy, the camera center is calculated from every calibration
image and then the camera center is determined to be the average over all the calculated
camera center coordinates. The translation between 2 camera centers is then defined as

tmn = Cn −Cm

and the translations between the 3 camera pairs are then t12, t23 and t13. If the pair-wise
calibration would be accurate, the equation t13 = t12 + t23 should satisfy.

28

5 RESULTS

Here, the results present the problems, solutions, and accuracies for the experiment cov-
ered in Chapter 4. The problem in ChArUco corner detection was noticed to be condition
dependency, and the solution provided shows how the conditions are improved to gain
a higher corner detection rate. The pair-wise stereo calibration estimates the cameras’
relative poses in the calibration method and compares them with multiple other stereo
calibration estimations.

5.1 ChArUco Corner Detection Performance

The ChArUco marker detection worked well with lower resolution images taken in real
time with a web camera. At first, the detection did not work with the images that were
taken by the cameras in the camera rig in this project. It was noticed that the images
were not good enough for detecting any markers. I did some post-processing with Gimp2
to improve the edges in the images but it was not enough to make the code detect the
markers. Later on, it was noticed that bringing the checkerboard closer to the cameras
and decreasing the shutter speed, the code was able to detect about half of the visible
markers from the image. Despite the increase in the detection rate, the quality became
poor due to overexposing. An example of the overexposed image is seen in Figure 5.1.

Figure 5.1. Detecting corners from the ChArUco board was achieved by decreasing
shutter speed. The corners are blurry, and a single corner has a gap. Markers are also
unclear.

It is seen in Figure 5.1 that the quality is not satisfied. Because of the gap in a corner,
the corner detection could have an error of many pixels. Figure 5.2 shows the images

29

that have visually clearer markers but are little dark, and the OpenCV marker detection
cannot detect any markers in 1000 images that were taken in similar conditions.

Figure 5.2. Shutter speed is increased, and the markers look visually clearer. The
checkerboard is close to the camera. Marker detection cannot detect any marker.

The image in Figure 5.3 is post-processed by using bilinear interpolation and Laplacian
filter and changing brightness and contrast of the image. However, the marker detection
could not find any marker even if the black and white are stronger as in the image in
Figure 5.1.

Figure 5.3. Post-process done for the dark image. Marker detection cannot detect any
marker.

In order to take images where the desired corners can be detected, one needs to consider
the resolution, lighting, shutter speed, aperture, the distance of the checkerboard from
cameras, and larger squares in the checkerboard. In this project, the resolution is in its
maximum of 1920 × 1200 and it sets the boundaries. In the ChArUco board, the starting
step is to detect the markers. Because the resolution is fixed, the other parameters have
to be set that the markers can be detected.

First of all, the lighting could be increased easily by having more powerful lights. If the
lighting cannot be increased, then the shutter speed will have to compensate for it. The
second is to bring the checkerboard closer to the camera. In that case, the aperture
must be set so that the checkerboard looks sharp. If these do not help the detection,

30

then the checkerboard could be changed. Bigger markers or smaller marker resolution
increases the size of the small squares in a marker. If these steps do not satisfy, then the
marker detection code in OpenCV could be improved. Otherwise, having other calibration
pattern or higher resolution cameras could be considerable. Figure 5.4 shows the result
of having better lighting conditions where more light is directed to the ChArUco board. All
the corners were detected at small distances for less than 10 images that were taken, and
the markers were visually clearer as well. The markers were detected in longer distances
which was not achieved by low light or overexposure. The detection rate for few images
was noticed to be about 90 percent in such long distances as in Figure 5.5.

Figure 5.4. Marker detection works with more light directed to the board. All the markers
are detected and the edges are visually clearer.

Figure 5.5. ChArUco corner detection works for fairly long distance between camera and
the board with more light directed to the board. All the markers except one are detected.
It means in this case that 86 out of 88 corners are detected.

The overall corner detection – and visual quality – for ChArUco board was noticed to
improve significantly by having more light. The lack of high-resolution cameras was com-
pensated by the directed light.

31

5.2 Camera Parameter Estimation Accuracy

The simultaneous camera parameters estimation for multiple cameras has very high re-
projection error which is why pair-wise calibration result is shown here. A single stereo
calibration resulted in 0.2 pixel reprojection error on average for every image and corners.
From the multi-camera calibration, the desired reprojection error is also close to that level
what it was in the stereo calibration case. Figure 5.6 shows the reprojection error from
one pair of stereo calibration.

Figure 5.6. Stereo calibration mean reprojection error per image. The average error of
every image is less than 0.2 pixels.

The calibration pattern for this pair-wise calibration is chessboard instead of ChArUco.
The calibration was done for 20 pairs: 1 − 2, 2 − 3, ..., 19 − 20. The translation vectors
between camera centers were computed for the mentioned pair-wise calibrations, and
for the camera pairs: 1 − n, n = 3, ..., 20. This means that the translation error has been
computed for example for camera pair 1− 3 by comparing the distance between the pair
1 − 3 to the distance between the camera pairs 1 − 2 and 2 − 3. All the camera pairs
had 12 to 15 calibration images from where all the corresponding corners were found.
To make sure how the errors were computed, here are a few examples of the translation
errors between camera pairs

e13 = t13 − (t12 + t23)

e14 = t14 − (t12 + t23 + t34)

e15 = t15 − (t12 + t23 + t34 + t45)

where tmn = (∆xmn,∆ymn,∆zmn) is the translation vector between the camera centers
Cm and Cn. The total distance errors are then computed by the Euclidian distance of
the error vectors. The distance and translation errors are shown in Table 5.1. The table
has also relative error computed by dividing the Euclidian distance error with the distance

32

between the camera pair 1− n.

The stereo calibrations resulted always approximately 0.2 pixel reprojection error which
is something that is desired from the calibration. However, the pair-wise calibration for
multiple cameras resulted in much higher error in the estimation of the cameras’ positions.
From these results, it can be said that this calibration method – by alone – does not
provide desirable accuracy.

Table 5.1. Pair-wise camera calibration translation errors. The Euclidian distance is
computed from the translation error vector.

Camera
pair

Translation error (mm) Euclidian
distance (mm)

Relative
error (%)x y z

1–3 0.1250 0.2589 0.6619 0.7216 0.4223
1–4 -0.0052 0.5714 0.1322 0.5865 0.2295
1–5 -0.1727 0.5515 -0.6597 0.8770 0.2577
1–6 -0.0487 0.3787 -0.2861 0.4771 0.1123
1–7 -0.4140 -0.0427 -4.7568 4.7750 0.9357
1–8 -0.3949 0.3680 -0.4150 0.6809 0.1145
1–9 -0.5073 -0.9412 -0.4595 1.1638 0.1712

1–10 -0.7556 -0.5832 -0.5664 1.1099 0.1452
1–11 -0.4483 0.7343 -0.0896 0.8650 0.1017
1–12 -0.7386 -1.1734 0.1134 1.3911 0.1488
1–13 -0.8197 -1.4132 -9.4045 9.5453 0.9355
1–14 -1.6854 -0.0423 -3.8854 4.2354 0.3834
1–15 -1.1457 0.8476 0.1707 1.4353 0.1206
1–16 -1.4839 -1.5267 1.2548 2.4713 0.1939
1–17 -2.1753 -2.2384 -0.2934 3.1350 0.2307
1–18 -1.6641 -1.1881 -0.6170 2.1358 0.1478
1–19 -1.5476 -0.3863 -0.6332 1.7162 0.1121
1–20 -2.5888 -2.5303 6.0790 7.0752 0.4384

The error from pair-wise calibration was thought to be cumulating by increasing the num-
ber of cameras but it is not seen clearly in these results. There may be other factors that
caused the absolute and relative errors to increase with the higher number of cameras.
The translation errors in millimeters are shown in Figure 5.7 and the relative errors are
shown in Figure 5.8.

The translation error is high. The manufacturer’s measures of the camera’s positions in
the camera rig were millimeters and the errors pair-wise stereo calibration gave, have only
slightly higher accuracy. The cameras are mounted to straight row on the aluminum bar
which means that there are no high differences between camera positions in y-axis and
z-axis. However, the highest peaks in Figure 5.7 are from the situation where the pair-
wise calibration between camera pair 1 − n gave a high difference between the camera
positions in y and z directions. One thing that affects the accuracy of stereo calibration

33

Figure 5.7. Pair-wise calibration errors in millimeters with increasing number of cameras.

Figure 5.8. Relative pair-wise calibration errors with increasing number of cameras.

between camera pairs 1−n is the lack of widely positioned checkerboard in the calibration
images. The cameras are focused between 2 and 3 meters so the overlapping area for the
long-distance camera centers will become small. Even if the number of used calibration
images is recommended for the accurate result – more than 10 images for every camera
pair – the checkerboard was positioned almost in the same place, to the small overlapping
area. The problem is illustrated in Figure 5.9.

The relative pair-wise calibration errors in Figure 5.8 have almost the same relations
between the other calibration errors as in the absolute error values in Figure 5.7. The
only major difference is that the shorter the translations are between the camera centers,

34

the higher the relative calibration error is. It is due to the fact that the smaller the distance
with the cameras, the smaller is the angle between the views. Decent error in depth in the
world causes an only small error in the images and the error is not then optimized. With
a longer distance between cameras, the same decent depth error will be noticed better
and it affects the optimization of the camera parameters. This just means that the longer
the distance is with the cameras, the more accurate is the measure of depth.

Figure 5.9. Cameras 1 and 20 have long distance which decreases the overlapping area
and possible positions for the checkerboard. The positions for checkerboard are drawn
to the overlapping area.

All the calibrations between all possible camera pairs gave the 0.2 pixel reprojection error.
That result can be achieved even if the estimation for camera center position has many
millimeters error in y and z directions. One reason for that could be the small position
variation for checkerboard in the calibration images as in Figure 5.9.

35

6 CONCLUSION

The goal of this thesis was to do ChArUco checkerboard corner detection and multi-
camera calibration of a camera rig of 20 cameras. The corner detection consists of
marker detection and corner interpolation between detected markers. The result of this
step outputs the image coordinates of the corners and the corresponding IDs for them.
The calibration for multiple cameras was supposed to do simultaneously to get accurate
results. Due to the timing, it was done pair-wisely which was proved at the same time to
be inaccurate for the purpose of knowing the cameras’ relative positions in capturing the
light field.

The scripts built during this thesis are able to detect corners in different ChAcUro boards
in good conditions. However, the cameras set the boundaries, since the price of cam-
eras is fairly high, and cannot be replaced. This is why the marker detection should be
improved or the conditions should be tested better to capture images from where the all
visible markers can be detected. Other codes are beneficial for debugging this marker
detection problem. The real-time marker detection A.1 helps to see when, at what dis-
tances and lighting, the markers are detected. The still image corner visualization B.1
helps to see how the corners were detected, and how did the conditions look. File writing
D.1 and reading E.1 for the image coordinates and IDs work, and can be used for later
usage in Matlab.

The multi-camera calibration, done by stereo calibrating camera pairs, was shown to
be inaccurate for the purpose of capturing light field. Based on the results we can re-
quire more accurate methods which are in the case of this project using the ChArUco
checkerboard and simultaneous multi-camera calibration. The expected error from these
methods is less than one pixel as it is in stereo calibration.

36

REFERENCES

[1] Affine and Projective Transformations. URL: https://www.graphicsmill.com/
docs/gm/affine-and-projective-transformations.htm (visited on 03/26/2019).

[2] S. Beriault. Multi-camera system design, calibration and three-dimensional recon-
struction for markerless motion capture. PhD Thesis. 2008.

[3] D. C. Brown. Decentering Distortion of Lenses. (1965).
[4] A. Butterfield & G. E. Ngondi. A Dictionary of Computer Science. 2016.
[5] Camera Lens. Mar. 13, 2019. URL: https://en.wikipedia.org/wiki/Camera_

lens (visited on 03/26/2019).
[6] Cartography for Swiss Higher Education. Jan. 26, 2012. URL: http://www.e-

cartouche . ch / content _ reg / cartouche / graphics / en / html / Transform _

learningObject2.html (visited on 03/10/2019).
[7] D. H. Castro. From Images to Point Clouds. Practical Considerations for Three-

Dimensional Computer Vision. PhD Thesis. 2015.
[8] X. Chen, J. Davis & P. Slusallek. Wide area camera calibration using virtual cal-

ibration objects. Proceedings IEEE Conference on Computer Vision and Pattern
Recognition. CVPR 2000 (Cat. No.PR00662). Vol. 2. 2000, 520–527 vol.2.

[9] Detection of Aruco Markers. URL: https://docs.opencv.org/3.2.0/d5/dae/
tutorial_aruco_detection.html.

[10] J.-E. H. Dong-Joong Kang & M.-H. Jeong. Detection of Calibration Patterns for
Camera Calibration with Irregular Lighting and Complicated Backgrounds. 2008.

[11] M. Drennan. An Implementation of Camera Calibration Algorithms. (2008).
[12] H. Eugene. Optics. Fifth edition. Pearson, 2017. ISBN: 987-1-292-09693-3.
[13] D. Forsyth & J. Ponse. Computer Vision: A Modern Approach. Pearson, 2003.
[14] Full Frame Fisheye Lenses. URL: https://int-store.bitplayinc.com/products/

36-full-frame-fisheye-lens (visited on 03/21/2019).
[15] Y. Furukawa & J. Ponse. Accurate Camera Calibration from Multi-View Stereo and

Bundle Adjustment. International Journal of Computer Vision 84.3 (2009). ISSN:
1573-1405.

[16] R. Hartley & A. Zisserman. Multiple View Geometry in Computer Vision. Second
edition. Cambridge University Press, 2003.

[17] J. Heikkila & O. Silven. Calibration procedure for short focal length off-the-shelf
CCD cameras. 1 (1996), 166–170 vol.1. ISSN: 1051-4651.

[18] J. Heikkila & O. Silven. A four-step camera calibration procedure with implicit image
correction. (1997), 1106–1112. ISSN: 1063-6919.

[19] D. Herrera C., J. Kannala & J. Heikkilä. Joint Depth and Color Camera Calibration
with Distortion Correction. IEEE Transactions on Pattern Analysis and Machine In-
telligence 34.10 (2012), 2058–2064. ISSN: 0162-8828.

https://www.graphicsmill.com/docs/gm/affine-and-projective-transformations.htm
https://www.graphicsmill.com/docs/gm/affine-and-projective-transformations.htm
https://en.wikipedia.org/wiki/Camera_lens
https://en.wikipedia.org/wiki/Camera_lens
http://www.e-cartouche.ch/content_reg/cartouche/graphics/en/html/Transform_learningObject2.html
http://www.e-cartouche.ch/content_reg/cartouche/graphics/en/html/Transform_learningObject2.html
http://www.e-cartouche.ch/content_reg/cartouche/graphics/en/html/Transform_learningObject2.html
https://docs.opencv.org/3.2.0/d5/dae/tutorial_aruco_detection.html
https://docs.opencv.org/3.2.0/d5/dae/tutorial_aruco_detection.html
https://int-store.bitplayinc.com/products/36-full-frame-fisheye-lens
https://int-store.bitplayinc.com/products/36-full-frame-fisheye-lens

37

[20] D. Hu, D. DeTone, V. Chauhan, I. Spivak & T. Malisiewicz. Deep ChArUco: Dark
ChArUco Marker Pose Estimation. (2018).

[21] I. Ihrke, L. Ahrenberg & M. Magnor. External Camera Calibration for Synchronized
Multi-Video Systems. Journal of WSCG 12 (Feb. 2004).

[22] A. Kaehler & G. Bradski. Learning OpenCV 3. Computer Vision in C++ with the
OpenCV Library. O’Reilly Media, 2017.

[23] M. Levoy & P. Hanrahan. Light Field Rendering. SIGGRAPH 96, 1996, 31–42.
[24] K. Li, Q. Dai & W. Xu. Collaborative color calibration for multi-camera systems.

Elsevier (2011).
[25] Q. Liu & H. Su. Camera calibration based on correction of asymmetric circle center

projection. 17 (2009), 3103–3108.
[26] Matlab Documentation. URL: https://se.mathworks.com/help/matlab/.
[27] G. Medioni & S. B. Kang. Emerging Topics in Computer Vision. Prentice Hall, 2005.

ISBN: 978-0-13-101366-7.
[28] T. Melen. Geometrical modelling and calibration of video cameras for underwater

navigation. (1994).
[29] X. L. Meng, W. T. He, X. Q. Che & C. Zhao. Correction of the Asymmetrical Projec-

tion for Accurate Camera Calibration Using Co-Planar Circular Feature. 397 (2013),
1016–1020.

[30] S. K. Moore. Self-Powered Image sensor Could Watch You Forever. IEEE Spectrum
(2018).

[31] OpenCV Documentation. URL: https://docs.opencv.org/.
[32] Python Documentation. URL: https://docs.python.org/3/.
[33] S.-W. Shih, Y.-P. Hung & W.-S. Lin. Accurate linear technique for camera calibration

considering lens distortion by solving an eigenvalue problem. Optical Engineering
- OPT ENG 32 (1993), 138–149.

[34] K. Simek. Dissecting the Camera Matrix, Part 2: The Extrinsic Matrix. 2012.
[35] K. H. Strobl & G. Hirzinger. More accurate pinhole camera calibration with imperfect

planar target. 2011 IEEE International Conference on Computer Vision Workshops
(ICCV Workshops). IEEE Computer Society, 2011, 1068–1075.

[36] T. Svoboda, D. Martinec & T. Pajdla. A Convenient Multi-Camera Self-Calibration
for Virtual Environments. Presence 14 (Aug. 2005), 407–422.

[37] R. Szeliski. Computer Vision: Algorithms and Applications. Springer, 2010.
[38] R. Unnikrishnan & M. Hebert. Fast Extrinsic Calibration of a Laser Rangefinder to

a Camera. (2005).
[39] What is a QR-code. URL: https://www.qrcode.com/en/about/.
[40] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on

Pattern Analysis and Machine Intelligence 22.11 (2000), 1330–1334. ISSN: 0162-
8828.

https://se.mathworks.com/help/matlab/
https://docs.opencv.org/
https://docs.python.org/3/
https://www.qrcode.com/en/about/

38

A REAL-TIME MARKER DETECTION

1 # Checkerboard parameters

2 CORNERS_X = 11
3 CORNERS_Y = 8
4 MARKER_DICT = 5
5 SQUARE_LENGTH = 60
6 MARKER_LENGTH = 47
7
8
9 def main () :

10 # Start capturing frames from camera

11 cap = cv2 . VideoCapture (0)
12 while True :
13
14 # Read one frame

15 _ , frame = cap . read ()
16 charuco_corners , charuco_ids \
17 = getCharucoCorners (frame ,
18 CORNERS_X,
19 CORNERS_Y,
20 MARKER_DICT,
21 SQUARE_LENGTH,
22 MARKER_LENGTH)
23
24 # At least one corner is detected, draw corner

25 i f (charuco_ids . s i ze > 0) :
26 drawDetectedCornersCharuco (frame ,
27 charuco_corners ,
28 charuco_ids)
29
30 # Draw image or quit

31 cv2 . imshow (’ v ideo ’ , frame)
32 i f cv2 . waitKey (1) & 0xFF == ord (’ q ’) :
33 break
34

39

35 # Release camera instance and close window

36 cap . re lease ()
37 cv2 . destroyAl lWindows ()

Program A.1. A real-time ChArUco marker detection, and a frame for how to use corner
detection functions.

40

B STILL IMAGE CORNER VISUALIZATION

1 import cv2
2 import numpy as np
3 import sys
4 from get_charuco_corners import getCharucoCorners , \
5 drawDetectedCornersCharuco
6
7 CORNERS_X = 11
8 CORNERS_Y = 8
9 MARKER_DICT = 5

10 SQUARE_LENGTH = 60
11 MARKER_LENGTH = 47
12
13
14 def main () :
15
16 f i le_name = " . . / data / tes t_ im / img3 .bmp"
17
18 # If argument was given

19 i f len (sys . argv) > 1 :
20 f i le_name = sys . argv [1 :] [0]
21
22 frame = cv2 . imread (f i le_name)
23 charuco_corners , charuco_ids \
24 = getCharucoCorners (frame ,
25 CORNERS_X,
26 CORNERS_Y,
27 MARKER_DICT,
28 SQUARE_LENGTH,
29 MARKER_LENGTH)
30
31 # If any corner is detected, draw corner

32 i f (charuco_ids . s i ze > 0) :
33 drawDetectedCornersCharuco (frame , charuco_corners ,
34 charuco_ids)

41

35 pr in t ("Number o f detected corners : " ,
36 charuco_corners . shape [0])
37
38 # Draw image or quit

39 cv2 . imshow (’ Image ’ , frame)
40 i f cv2 . waitKey (0) & 0 x f f == 27:
41 cv2 . destroyAl lWindows ()

Program B.1. Drawing corners for still image.

42

C CHARUCO CORNER DETECTION RATE

1 CORNERS_X = 11
2 CORNERS_Y = 8
3 MARKER_RESOLUTION = 5
4 SQUARE_LENGTH = 60
5 MARKER_LENGTH = 47
6
7
8 def main () :
9 detected_images = 0

10 detected_corners = 0
11 image_names = glob (" . . / data / RigCalibImagesV3 / ∗ . bmp")
12
13 # If argument was given

14 i f len (sys . argv) > 1 :
15 image_names = sys . argv [1 :]
16
17 for i in range (len (image_names)) :
18 charuco_corners , charuco_ids = \
19 getCharucoCorners (image_names [i] ,
20 CORNERS_X,
21 CORNERS_Y,
22 MARKER_RESOLUTION,
23 SQUARE_LENGTH,
24 MARKER_LENGTH)
25
26 # If any corner is detected, count it

27 i f (charuco_ids . s i ze > 0) :
28 detected_images += 1
29 detected_corners += charuco_corners . shape [0]
30
31 pr in t (" Image : { } / { } , Detected : { } "
32 . format (i +1 , len (image_names) ,
33 detected_images) ,
34 end=" \ r ")

43

35
36 pr in t (" \ nSuccess fu l l y detected corners i n images : { } / { } "
37 . format (detected_images , len (image_names)))
38 pr in t (" Detec t ion ra te on average : { } %"
39 . format (round (detected_corners /
40 (CORNERS_X ∗ CORNERS_Y ∗ len (image_names))
41 ∗ 100 , 2)))

Program C.1. Compute detection rate for a set of images.

44

D WRITE IMAGE COORDINATES TO FILES

1 import numpy as np
2 from glob import glob
3 import sc ipy . i o
4 import sys
5 from get_charuco_corners import getCharucoCorners
6
7 CORNERS_COORS_FNAME = " coords . mat "
8 CORNERS_IDS_FNAME = " ids . mat "
9 CORNERS_X = 11

10 CORNERS_Y = 8
11 MARKER_DICT = 5
12 SQUARE_LENGTH = 60
13 MARKER_LENGTH = 47
14 NUMBER_OF_CAMERAS = 20
15
16
17 def w r i t e T o F i l e (corners_coords , corners_ ids) :
18 sc ipy . i o . savemat (CORNERS_COORS_FNAME, mdict=corners_coords)
19 sc ipy . i o . savemat (CORNERS_IDS_FNAME, mdict=corners_ ids)
20 pr in t (" Corners and IDs has been w r i t t e n to f i l e s : " ,
21 CORNERS_COORS_FNAME, CORNERS_IDS_FNAME)
22
23
24 def main () :
25 detected_corners_images = 0
26 image_names = glob (" . . / data / RigCalibImagesV3 / ∗ . bmp")
27 coords = { }
28 ids = { }
29 images_no_corners = []
30
31 # If argument was given, change image location(s)

32 i f len (sys . argv) > 1 :
33 image_names = sys . argv [1 :]
34

45

35 for i in range (len (image_names)) :
36 # Detect corners

37 charuco_corners , charuco_ids = \
38 getCharucoCorners (image_names [i] ,
39 CORNERS_X,
40 CORNERS_Y,
41 MARKER_DICT,
42 SQUARE_LENGTH,
43 MARKER_LENGTH)
44
45 # Add corners to dictionary

46 key = " pos_ " + st r (i n t (i / NUMBER_OF_CAMERAS)) \
47 + "_cam_" + st r (i n t (i % NUMBER_OF_CAMERAS))
48 coords [key] = charuco_corners
49 ids [key] = charuco_ids
50
51 # Count the number of detected images

52 # Save image names without detected corners

53 i f (charuco_ids . s i ze > 0) :
54 detected_corners_images += 1
55 else :
56 parsed_name = image_names [i] . s p l i t (’ / ’) [−1] \
57 . s p l i t (’ . ’) [0]
58 images_no_corners . append (parsed_name)
59
60 pr in t (" Image : { } / { } , Images of detected corners : { } "
61 . format (i +1 , len (image_names) ,
62 detected_corners_images) ,
63 end=" \ r ")
64
65 pr in t (" \ nDetected corners i n images : { } / { } "
66 . format (detected_corners_images , len (image_names)))
67
68 # Print image names without detected corners

69 i f (len (images_no_corners)) :
70 pr in t (" Images w i thou t detected corners : ")
71 for i in range (len (images_no_corners)) :
72 pr in t (" { } . { } " . format (i +1 , images_no_corners [i]))
73
74 w r i t e T o F i l e (coords , i ds)

Program D.1. Write image coordinates and IDs to .mat files.

46

E READ IMAGE COORDINATES FROM FILES

1 function [imCorners , imIds] = . . .
2 read_coordinates_from_mat (maxNumberOfCorners , numberOfImages)
3
4 % Read checkerboard corners and corner IDs

5 charucoCornersXY = load (’ coords . mat ’) ;
6 corner Ids = load (’ i ds . mat ’) ;
7
8 % Get image names

9 corne rF ie lds = f ie ldnames (charucoCornersXY) ;
10 i d F i e l d s = f ie ldnames (corner Ids) ;
11
12 % Read all images if numberOfImages == -1

13 i f numberOfImages == −1
14 numberOfImages = numel (co rne rF ie lds) ;
15 end
16 imCorners = zeros (maxNumberOfCorners , 2 , numberOfImages) ;
17 imIds = zeros (numberOfImages , maxNumberOfCorners) ;
18
19 % Loop all images

20 for i = 1 : numberOfImages
21 corners = charucoCornersXY . (co rne rF ie lds { i }) ;
22 ids = corner Ids . (i d F i e l d s { i }) ;
23 missingNumberOfCorners = maxNumberOfCorners − length (i ds) ;
24
25 % Add -1 to the end

26 c o r n e r s F i l l e d = [corners ; . . .
27 −1∗ones (missingNumberOfCorners , 2)] ;
28 i d s F i l l e d = [ids −1∗ones (1 , missingNumberOfCorners)] ;
29 imCorners (: , : , i) = c o r n e r s F i l l e d ;
30 imIds (i , :) = i d s F i l l e d ;
31 end
32 end

Program E.1. Read image coordinates and IDs from .mat files.

47

F DRAW DETECTED CHARUCO CORNERS

1 def drawDetectedCornersCharuco (img , corners , i ds) :
2 i d _ c o l o r = (255 , 255 , 0)
3 corners = corners . reshape ((corners . shape [0] , 1 ,
4 corners . shape [1]))
5 ids = ids . reshape ((i ds . s ize , 1))
6 cv2 . aruco . drawDetectedCornersCharuco (img , corners , ids ,
7 i d _ c o l o r)

Program F.1. Draw detected ChArUco corners wrapper.

	List of Figures
	List of Tables
	List of Programs and Algorithms
	List of Symbols and Abbreviations
	Introduction
	Camera Model
	Pinhole Camera Model
	Projective Geometry
	Lens Distortion
	Intrinsic and Extrinsic Parameters

	Camera Calibration
	Calibration Pattern
	Chessboard
	ChArUco
	Cicle-grid

	Reprojection Error
	Single Camera Calibration
	Linear Parameter Estimation
	Nonlinear Estimation

	Stereo Calibration
	Multi-Camera Calibration

	Experiment
	ChArUco Corner Detection
	Camera Parameters Estimation

	Results
	ChArUco Corner Detection Performance
	Camera Parameter Estimation Accuracy

	Conclusion
	References
	Appendix Real-time Marker Detection
	Appendix Still Image Corner Visualization
	Appendix ChArUco Corner Detection Rate
	Appendix Write Image Coordinates to Files
	Appendix Read Image Coordinates from Files
	Appendix Draw Detected ChArUco Corners

