Skip to main content

Inpainting

  • Reference work entry
  • First Online:

Synonyms

Disocclusion; Error concealment; Filling in

Footnote 1

Definition

Given an image and a region \(\Omega \) inside it, the inpainting problem consists in modifying the image values of the pixels in \(\Omega \) so that this region does not stand out with respect to its surroundings. The purpose of inpainting might be to restore damaged portions of an image (e.g., an old photograph where folds and scratches have left image gaps) or to remove unwanted elements present in the image (e.g., a microphone appearing in a film frame). See Fig. 1. The region \(\Omega \) is always given by the user, so the localization of \(\Omega \) is not part of the inpainting problem. Almost all inpainting algorithms treat \(\Omega \) as a hard constraint, whereas some methods allow some relaxing of the boundaries of \(\Omega \).

Inpainting, Fig. 1
figure 918 figure 918

The inpainting problem. Left: original image. Middle: inpainting mask \(\Omega \), in black. Right: an inpainting result (Figure taken from [20])

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This contribution is dedicated to the memory of Vicent Caselles, outstanding researcher, exceptional friend.

References

  1. Aharon M, Elad M, Bruckstein A (2006) K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311

    Article  Google Scholar 

  2. Ashikhmin M (2001) Synthesizing natural textures. In: Proceedings of the ACM symposium on interactive 3D graphics, Chapel Hill. ACM, pp 217–226

    Google Scholar 

  3. Auroux D, Masmoudi M (2006) A one-shot inpainting algorithm based on the topological asymptotic analysis. Comput Appl Math 25:1–17

    Article  MathSciNet  MATH  Google Scholar 

  4. Ballester C, Bertalmío, M, Caselles V, Sapiro G, Verdera J (2001) Filling-in by joint interpolation of vector fields and gray levels. IEEE Trans Image Process 10(8):1200–1211

    Article  MathSciNet  MATH  Google Scholar 

  5. Barnes C, Shechtman E, Finkelstein A, Goldman DB (2009) Patchmatch: a randomized correspondence algorithm for structural image editing. ACM Trans Graph 28(3):2

    Article  Google Scholar 

  6. Bertalmío M, Sapiro G, Caselles V, Ballester C (2000) Image inpainting. In: Proceedings of SIGGRAPH’00, New Orleans, USA, pp 417–424

    Google Scholar 

  7. Bertalmío M, Bertozzi A, Sapiro G (2001) Navier-Stokes, fluid dynamics, and image and video inpainting. In: Proceedings of the IEEE international conference on computer vision and pattern recognition (CVPR), Hawaï

    Google Scholar 

  8. Bertalmío M, Vese L, Sapiro G, Osher S (2003) Simultaneous structure and texture image inpainting. IEEE Trans Image Process 12(8):882–889

    Article  Google Scholar 

  9. Bornemann F, März T (2007) Fast image inpainting based on coherence transport. J Math Imaging Vis 28(3): 259–278

    Article  MathSciNet  Google Scholar 

  10. Chan TF, Shen J (2001) Mathematical models for local deterministic inpaintings. SIAM J Appl Math 62(3): 1019–1043

    MathSciNet  MATH  Google Scholar 

  11. Chan TF, Kang SH, Shen J (2002) Euler’s elastica and curvature based inpainting. SIAM J Appl Math 63(2): 564–592

    MathSciNet  MATH  Google Scholar 

  12. Criminisi A, Pérez P, Toyama K (2004) Region filling and object removal by exemplar-based inpainting. IEEE Trans Image Process 13(9):1200–1212

    Article  Google Scholar 

  13. Drori I, Cohen-Or D, Yeshurun H (2003) Fragment-based image completion. In: Proceedings of SIGGRAPH’03, vol 22(3), pp 303–312

    Google Scholar 

  14. Efros AA, Leung TK (1999) Texture synthesis by non-parametric sampling. In: Proceedings of the international conference on computer vision, Kerkyra, vol 2, pp 1033

    Google Scholar 

  15. Elad M, Starck JL, Querre P, Donoho DL (2005) Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA). Appl Comput Harmon Anal 19(3):340–358

    Article  MathSciNet  MATH  Google Scholar 

  16. Esedoglu S, Shen J (2002) Digital image inpainting by the Mumford-Shah-Euler image model. Eur J Appl Math 13:353–370

    Article  MathSciNet  MATH  Google Scholar 

  17. Esedoglu S, Ruuth S, Tsai R (2008) Threshold dynamics for high order geometric motions. Interfaces Free Boundaries 10(3):263–282

    Article  MathSciNet  MATH  Google Scholar 

  18. Hays J, Efros AA (2008) Scene completion using millions of photographs. Commun ACM 51(10):87–94

    Article  Google Scholar 

  19. Kokaram AC (1998) Motion picture restoration: digital algorithms for artefact suppression in degraded motion picture film and video. Springer, London

    Book  Google Scholar 

  20. Komodakis N, Tziritas G (2007) Image completion using efficient belief propagation via priority scheduling and dynamic pruning. IEEE Trans Image Process 16(11):2649

    Article  MathSciNet  Google Scholar 

  21. Mairal J, Elad M, Sapiro G (2008) Sparse representation for color image restoration. IEEE Trans Image Process 17(1):53

    Article  MathSciNet  MATH  Google Scholar 

  22. Mairal J, Sapiro G, Elad M (2008) Learning multiscale sparse representations for image and video restoration. SIAM Multiscale Model Simul 7(1):214–241

    Article  MathSciNet  MATH  Google Scholar 

  23. Masnou S, Morel J.-M. (1998) Level lines based disocclusion. In: 5th IEEE international conference on image processing, Chicago, IL, Oct 4–7

    Google Scholar 

  24. Ogden JM, Adelson EH, Bergen JR, Burt PJ (1985) Pyramid-based computer graphics. RCA Eng 30(5):4–15

    Google Scholar 

  25. Patwardhan KA, Sapiro G, Bertalmío M (2007) Video inpainting under constrained camera motion. IEEE Trans Image Process 16(2):545–553

    Article  MathSciNet  Google Scholar 

  26. Shiratori T, Matsushita Y, Tang X, Kang SB (2006) Video completion by motion field transfer. In: 2006 IEEE computer society conference on computer vision and pattern recognition (CVPR), New York, vol 1

    Google Scholar 

  27. Sun J, Yuan L, Jia J, Shum HY (2005) Image completion with structure propagation. In: ACM SIGGRAPH 2005 papers. ACM, New York, p 868

    Google Scholar 

  28. Tschumperlé D (2006) Fast anisotropic smoothing of multi-valued images using curvature-preserving PDE’s. Int J Comput Vis 68(1):65–82

    Article  Google Scholar 

  29. Wexler Y, Shechtman E, Irani M (2004) Space-time video completion. In: IEEE computer society conference on computer vision and pattern recognition (CVPR), Washington, DC, vol 1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Bertalmío, M., Caselles, V., Masnou, S., Sapiro, G. (2014). Inpainting. In: Ikeuchi, K. (eds) Computer Vision. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-31439-6_249

Download citation

Publish with us

Policies and ethics