Skip to main content

Geodesics, Distance Maps, and Curve Evolution

  • Reference work entry
  • First Online:
  • 177 Accesses

Synonyms

Geodesic active contour; Segmentation; Variational methods

Related Concepts

Edge Detection; Semantic Image Segmentation

Definition

Geodesics are locally the shortest paths in some space. Equivalently, geodesics are curves for which small perturbation increases their length according to some measure. A minimal geodesic corresponds to the shortest geodesic connecting two points. In computer vision and pattern recognition, the way distance is measured and the resulting geodesics define the specific application, see [1] for a pedagogical introduction to the field of numerical geometry of images.

Background

Edge detectors can be defined from a variational perspective where an edge is a curve along which the image gradient aligns with the curve’s normal [26]. These types of edges are geodesics in the sense of integrating the inner product between the curve’s normal and the image gradient and by Green’s Theorem can be shown to be the Marr-Hildreth edge detectors [7], also known as...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kimmel R (2003) Numerical geometry of images: theory, algorithms and applications. Springer, Boston. ISBN:0-387-95562-3

    Google Scholar 

  2. Vasilevskiy A, Siddiqi K (2002) Flux maximizing geometric flows. IEEE Trans Pattern Anal Mach Intell 24(12):1565–1578

    Article  Google Scholar 

  3. Kimmel R, Bruckstein AM (2003) On regularized Laplacian zero crossings and other optimal edge integrators. Int J Comput Vis 53(3):225–243

    Article  Google Scholar 

  4. Kimmel R (2003) Fast edge integration. In Geometric level set methods in imaging, vision, and graphics. Springer, New York, pp 59–77

    Google Scholar 

  5. Desolneux A, Moisan L, Morel JM (2003) Variational snake theory. In: Osher S, Paragios N (eds) Geometric level set methods in imaging, vision and graphics. Springer, New York, pp 79–99

    Chapter  Google Scholar 

  6. Fua P, Leclerc YG (1990) Model driven edge detection. Mach Vis Appl 3:45–56

    Article  Google Scholar 

  7. Marr D, Hildreth E (1980) Theory of edge detection. Proc R Soc Lond B 207:187–217

    Article  Google Scholar 

  8. Haralick R (1984) Digital step edges from zero crossing of second directional derivatives. IEEE Trans Pattern Anal Mach Intell 6(1):58–68

    Article  Google Scholar 

  9. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8(6):679–698

    Article  Google Scholar 

  10. Horn BKP (1986) Robot vision. MIT press. McGraw-Hill Higher Education, New York

    Google Scholar 

  11. Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput Vis 22(1):61–79

    Article  MATH  Google Scholar 

  12. Chan T, Vese L (1999) An active contour model without edges. In: Scale-space theories in computer vision. Springer, Berlin, pp 141–151

    Chapter  Google Scholar 

  13. Osher SJ, Sethian JA (1988) Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79:12–49

    Article  MathSciNet  MATH  Google Scholar 

  14. Cohen LD, Kimmel R (1997) Global minimum for active contours models: a minimal path approach. Int J Comput Vis 24(1):57–78

    Article  Google Scholar 

  15. Tsitsiklis JN (1995) Efficient algorithms for globally optimal trajectories. IEEE Trans Autom Control 40(9):1528–1538

    Article  MathSciNet  MATH  Google Scholar 

  16. Sethian JA (1996) A marching level set method for monotonically advancing fronts. Proc Natl Acad Sci 93(4):1591–1595

    Article  MathSciNet  MATH  Google Scholar 

  17. Kimmel R, Sethian JA (1998) Computing geodesic paths on manifolds. Proc Natl Acad Sci USA 95(15):8431–8435

    Article  MathSciNet  MATH  Google Scholar 

  18. Brockett RW, Maragos P (1992) Evolution equations for continuous-scale morphology. In: Proceedings IEEE international conference on acoustics, speech, and signal processing, San Francisco, pp 1–4

    Google Scholar 

  19. Sapiro G, Kimmel R, Shaked D, Kimia B, Bruckstein AM (1993) Implementing continuous-scale morphology via curve evolution. Pattern Recognit 26(9):1363–1372

    Article  Google Scholar 

  20. Kimmel R, Sethian JA (2001) Optimal algorithm for shape from shading and path planning. J Math Imaging Vis 14(3):237–244

    Article  MathSciNet  MATH  Google Scholar 

  21. Gage M, Hamilton RS (1986) The heat equation shrinking convex plane curves. J Diff Geom 23:69–96

    MathSciNet  MATH  Google Scholar 

  22. Grayson MA (1987) The heat equation shrinks embedded plane curves to round points. J Diff Geom 26:285–314

    MathSciNet  MATH  Google Scholar 

  23. Alvarez L, Guichard F, Lions PL, Morel JM (1993) Axioms and fundamental equations of image processing. Arch Ration Mech 123:199–257

    Article  MathSciNet  MATH  Google Scholar 

  24. Sapiro G, Tannenbaum A (1993) Affine invariant scale-space. Int J Comput Vis 11(1):25–44

    Article  Google Scholar 

  25. Rudin L, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Physica D 60:259–268

    Article  MathSciNet  MATH  Google Scholar 

  26. Bruckstein AM (1988) On shape from shading. Comput Vis Graph Image Process 44:139–154

    Article  Google Scholar 

  27. Horn BKP, Brooks MJ (eds) (1989) Shape from shading. MIT, Cambridge

    Google Scholar 

  28. Bronstein A, Bronstein M, Kimmel R (2008) Numerical geometry of non-rigid shapes. Springer, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Kimmel, R. (2014). Geodesics, Distance Maps, and Curve Evolution. In: Ikeuchi, K. (eds) Computer Vision. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-31439-6_769

Download citation

Publish with us

Policies and ethics