Skip to main content

Many-to-Many Graph Matching

  • Reference work entry
  • First Online:
Book cover Computer Vision

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bunke H (1982) Attributed graph grammars and their application to schematic diagram interpretation. IEEE Trans Pattern Anal Mach Intell 4:574–582

    Article  MATH  Google Scholar 

  2. Bunke H (1997) On a relation between graph edit distance and maximum common subgraph. Pattern Recognit Lett 18(8):689–694

    Article  MathSciNet  Google Scholar 

  3. Bunke H, Shearer K (1998) A graph distance metric based on the maximal common subgraph. Pattern Recognit Lett 19:255–259

    Article  MATH  Google Scholar 

  4. Caelli T, Kosinov S (2004) An eigenspace projection clustering method for inexact graph matching. IEEE Trans Pattern Anal Mach Intell 26:515–519

    Article  Google Scholar 

  5. Demirci F, Shokoufandeh A, Dickinson S (2009) Skeletal shape abstraction from examples. IEEE Trans Pattern Anal Mach Intell 31:944–952

    Article  Google Scholar 

  6. Demirci F, Shokoufandeh A, Keselman Y, Bretzner L, Dickinson S (2006) Object recognition as many-to-many feature matching. Int J Comput Vis 69(2):203–222

    Article  Google Scholar 

  7. Dickinson S (2009) The evolution of object categorization and the challenge of image abstraction. In: Dickinson S, Leonardis A, Schiele B, Tarr M (eds) Object categorization: computer and human vision perspectives. Cambridge University Press, New York, pp 1–37

    Chapter  Google Scholar 

  8. Ferrari V, Jurie F, Schmid C (2010) From images to shape models for object detection. Int J Comput Vis 87(3): 284–303

    Article  Google Scholar 

  9. Fischler MA, Eschlager RA (1973) The representation and matching of pictorial structures. IEEE Trans Comput 22(1):67–92

    Article  Google Scholar 

  10. Keselman Y, Dickinson S (2005) Generic model abstraction from examples. IEEE Trans Pattern Anal Mach Intell 27(7):1141–1156

    Article  Google Scholar 

  11. Lamdan Y, Schwartz J, Wolfson H (1990) Affine invariant model-based object recognition. IEEE Trans Rob Autom 6(5):578–589

    Article  Google Scholar 

  12. Levinshtein A, Sminchisescu C, Dickinson S (2005) Learning hierarchical shape models from examples. In: Proceedings of the EMMCVPR, St. Augustine. Springer, Berlin, pp 251–267

    Google Scholar 

  13. Lowe D (1985) Perceptual organization and visual recognition. Academic, Norwell

    Book  Google Scholar 

  14. Lowe D (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  15. Rubner Y, Tomasi C, Guibas LJ (2000) The earth mover’s distance as a metric for image retrieval. Int J Comput Vis 40(2):99–121

    Article  MATH  Google Scholar 

  16. Sebastian T, Klein P, Kimia B (2004) Recognition of shapes by editing their shock graphs. IEEE Trans Pattern Anal Mach Intell 26:550–571

    Article  Google Scholar 

  17. Shokoufandeh A, Bretzner L, Macrini D, Demirci MF, Jönsson C, Dickinson S (2006) The representation and matching of categorical shape. Comput Vis Image Underst 103(2):139–154

    Article  Google Scholar 

  18. Shokoufandeh A, Macrini D, Dickinson S, Siddiqi K, Zucker SW (2005) Indexing hierarchical structures using graph spectra. IEEE Trans Pattern Anal Mach Intell 27(7):1125–1140

    Article  Google Scholar 

  19. Siddiqi K, Shokoufandeh A, Dickinson S, Zucker S (1999) Shock graphs and shape matching. Int J Comput Vis 30: 1–24

    Google Scholar 

  20. Zaslavskiy M, Bach F, Vert J (2010) Many-to-many graph matching: a continuous relaxation approach. Lecture Notes in Computer Science, http://arxiv.org/abs/1004.4965, DBLP, http://dblp.uni-trier.de 6323:515–530

  21. Zhu S, Mumford D (2006) A stochastic grammar of images. Found Trends Comput Graph Vis 2:259–362

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Demirci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Demirci, F., Shokoufandeh, A., Dickinson, S. (2014). Many-to-Many Graph Matching. In: Ikeuchi, K. (eds) Computer Vision. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-31439-6_775

Download citation

Publish with us

Policies and ethics