
57

Why everyone should know how to program
a computer

Jeffrey L. Popyack
Nira Herrmann

Drexel University
Philadelphia
USA

ABS1RACT

The notion of programming a computer usually connotes the idea of writing
computer programs in general purpose, block structured languages such as
Pascal, C, FORTRAN, etc. The need for people to become proficient in such
languages, even for scientists and engineers, is perceived to have diminished as
powerful software tools have become available. In this paper we argue that the
need for students to be familiar with the basic fundamentals of programming a
computer are stronger than ever, regardless of whether they intend to become
computer programmers. We discuss a software based approach developed for
students in all curricula which addresses this need by introducing the concepts
of programming a computer in more intuitive and friendly environments than
those afforded by traditional programming languages.

Main conference themes: integration, methodologies, software

Educational areas: higher education, secondary education

Study topics: computer literacy

Secondary keywords: basic skills, computing, literacy, programming,
teaching materials

J. D. Tinsley et al. (eds.), World Conference on Computers in Education VI
© Springer Science+Business Media Dordrecht 1995

604 IFIP WCCE95 -Integration

INTRODUCTION

Computer literacy and computer programming
There seems to be little disagreement that computer literacy is a skill one needs
in order to function competently in today's and tomorrow's increasingly
technological society. Such literacy usually has as its goals the ability to use a
computer to perform common tasks such as word processing or information
retrieval, an understanding of commonly used computer terminology and
knowledge of the computer's role in society. This stands in stark contrast to
the early days of computing when anyone wanting to use a computer needed to
program it for the designated task themselves, either in an assembly language or
a higher level general purpose language such as COBOL or FORTRAN.
Indeed, most college curricula in technical areas have at some time required at
least one 'computer' or 'computer science' course which has been an
introduction to computer programming in a block structured language.

The late 1980s saw a trend in many disciplines away from computer
programming courses and toward computer literacy or 'software tools'
courses. There are many reasons for this, including:

The power of today 's software. It used to be the case that a short, simple
computer program produced an outcome which could not be produced through
other means and was therefore nontrivial. This quickly provided enough
positive feedback to motivate the introductory student to learn to write
computer programs. The proliferation of powerful user friendly software for
such tasks as word processing, database and spreadsheet applications has
raised the level of expectation for students and removed much of the motivation
for learning to write their own computer programs in a traditional block
structured language. Computer games with elaborate graphics and easy to
use/learn formats have also increased student expectations on what should be
produced for a certain amount of effort.

Demands of the job market. There are considerably more jobs available today
for persons having experience with particular software (say, Lotus 1-2-3) than
for persons experienced in programming with a particular high level language
(such as Pascal). Students are more likely to expect to see an immediate
benefit for material they are taught.

Few programming requirements in upper level classes. For students not
majoring in computer science there is a great chance they will never be required
to apply their programming skills in any other class they take. They may never
realize that their programming skills should transcend the particular language
they learned.

Why everyone should know how to program a computer 605

Clearly, these reasons have in common a perception that computer
programming is no longer relevant. In many cases this message is conveyed
from faculty and curriculum designers to their students. In the next section we
present reasons which show why this argument is incorrect.

WHY PROGRAM?

Computer programming concepts are more important than ever
A popular myth is that software has become so powerful that there is no longer
a need to write one's own programs. This argument ignores the true source of
the software's power. It is the user's ability to tell the software what to do--in
essence, to program it-which gives much software the generality which
makes it so powerful.

We cite the following examples as evidence of the need to understand
computer programming concepts:

• Today's major spreadsheet packages provide macro languages which allow
the user to custom design functions and procedures, set up nested iterations,
perform conditional branching and much more.

• Word processors provide 'mail merge' capabilities which allow the user to
specify a 'form letter' template which when merged with a separate data
file, produces outputs with the data values substituted for variables in the
template.

• Database packages allow the user to construct complex queries using AND,
OR, NOT and nested levels of parentheses.

• System software often allows the user to define scripts or macros to allow
storing and playing of sequences of commands.

• A telecommunications package which comes with a modem is likely to allow
the user to design scripts which remember how to configure the modem for
each remote machine it connects to, branch to another phone number if the
first one called is busy, etc.

• Users of network services such as ftp or World Wide Web (WWW)
browsers find their capabilities greatly enhanced by a knowledge of more
advanced features. For instance ftp users may define scripts which will
allow sequences of ftp commands to be executed. Files used for WWW
browsing are written in HTML (HyperText Markup Language) or HTML+
which include variables, comments, delimiters and pointers among other
features.

Each of these examples concerns concepts generally taught in a traditional
computer programming class albeit with a more traditional language such as

606 IFIP WCCE95 -Integration

Pascal or C. While these examples are hardly exhaustive, these are
representative of the major uses of computer software in the workplace today.

In the past we have professed the argument that students would be better
able to understand and use such advanced features of their software once they
understood how to program. Indeed our computer science majors routinely
confirm this. We have gradually come to realize that the idea of making
students program in a general purpose language before learning to use the
advanced features of their software is exactly backwards. Software packages
provide a rich set of resources for teaching programming concepts in a
framework students see as relevant to their future professional needs.
Furthermore our experience indicates that students are able to successfully
transfer the knowledge gained about concepts from the software environment
to a general purpose language in a way which makes the general purpose
language easier to learn.

This phenomenon is not restricted to software--devices such as Video Cam
Recorders (VCR), microwave ovens and Compact Disc players are common
fixtures in today's western society which can be used to greatest advantage if
the user knows how to program them. (Jokes about people who do not know
how to program their VCR abound.) We note here that the essentials of
programming a VCR are the same as those taught in an introductory computer
programming class-namely, storing a sequence of commands in the
machine's memory which will be executed when a certain set of conditions is
met; expecting input provided via external sources and producing output saved
on a secondary storage device.

It is because the user interface is so drastically different that one does not
often think of the command set for such a device as being an actual
programming language. Yet this is exactly what it is-a means for conveying
instructions to the machine in a manner it understands. Because such devices
are familiar to most students, they become another meaningful context for
comparison of programming features which transfer to other devices and to
software environments discussed above.

We expect this phenomenon to continue for the following reason: the
designers of today's software and hardware devices are experienced
programmers who also intend to use the products they create. As
programmers they recognize the desirability of programmable features
embedded in their products and are in a position to include them as
enhancements. There is a large market of potential customers to whom these
enhancements are also desirable. As a result we recommend strongly that
computer literacy and software tools courses contain a substantial
programming component covering variables, assignment statements, conditional
branching, looping, arrays, subprograms, files, absolute and relative addressing,

Why everyone should know how to program a computer 607

modular structure, comments, etc. In the next section we describe our efforts
to accomplish this at Drexel University.

OUR APPROACH

Since 1989 we have been developing an approach for teaching 'introduction to
computing' courses tailored to the needs of students in different curricula.
This approach is based on a recognition that students in all curricula need to
understand the concepts of programming a computer although not necessarily
how to write programs in traditional, block structured languages. These
concepts are introduced through the specialized built-in macro languages
available in software used by the students and through common programmable
devices such as those described above.

This approach allows the student to write programs immediately which
produce nontrivial results. It provides stronger motivation to learn
programming than traditional approaches, such as use of pseudocode or
immersion directly into a general purpose language which requires a
considerable start up effort to produce a program which displays 'Hello,
World!' on the screen. (Many students fmd this result is not in the least
commensurate with the amount of effort needed to learn the material to
produce it.) Our experience has shown that this concept oriented approach
prepares students to learn a general purpose programming language more easily
by teaching them the kinds of functionality common to all programming
languages. Our approach is based on teaching programming concepts and
techniques, not simply how to use software, and differs fundamentally from a
'computer literacy' or 'software tools' approach.

The authors have personally developed variants of this course for majors in
bioscience and biotechnology, and for majors in mathematics, computer
science, and information systems we judged at risk of not being prepared for a
traditional computer programming course. We have also worked closely with
others in developing this approach for majors in science, engineering, business
and design arts.

We have previously reported this approach in [1, 2, 3, 4, 5]. In [4] we
provided a course overview, syllabus and examples for the use of macro
languages in the Microsoft Excel spreadsheet package and in [3] we described
in detail how the use of the 'mail merge' facility in word processing packages
provides an excellent forum for introducing many features of programming
languages.

608 IFIP WCCE95 -Integration

EXAMPLES

Below we describe specific features of software available to our students and
how we have used them to explain programming concepts. Since 1984 all
entering freshmen at Drexel have been required to have individual access to a
microcomputer. To facilitate this Drexel provides Apple Macintoshes and an
accompanying bundle of software to freshmen for purchase at a very attractive
price. Virtually all freshmen take advantage of the bundle so that Drexel's
undergraduates essentially all own compatible hardware and software. The
hardware models and software platforms have varied as the state of
microcomputing has matured, but the software we use has always been
available in the mainstream and represents in each case a high standard of its
type (whether word processing, spreadsheet, database or other).

By focusing on these concepts as each piece of software is introduced, and
by illustrating how the concepts recur in each piece of software (even if the
syntax may change slightly) the student is able to compare and contrast the
underlying structures and how they are manifested in different contexts.

Macros
Macro utilities allow the user to store a sequence of keystrokes and/or mouse
clicks which can be 'played back' by invoking a key sequence assigned by the
user. Prior to System 7 a utility called MacroMaker was distributed freely with
the Macintosh. AppleScript, a more robust scripting language developed by
Apple, is now available with enhanced versions of the system. The following
concepts can be illustrated through macro utilities:

• Creation and use of a stored program (parameterless);
• The sensitivity of program performance to data (the positions of file and

folder icons used by a macro are important; the macro is defined for use
only within a specific application);

• Programs which build on subprograms (macros can call other macros in the
same domain of definition);

• Scoping (different macros defined for use with different applications can
have the same names);

• Data files (sets of macros are stored in files).

Programming with a word processor
Students receive Mac Write Pro for word processing. The following concepts
are illustrated through Mac Write:

• Input/output;
• Data files for storage/retrieval;

Why everyone should know how to program a computer 609

• Pass by reference, pass by value (the user may insert the date/time in a
document, and specify whether it is fixed or updated continuously).

Additionally MacWrite has a 'form letter' (or 'mail merge') feature which
allows the user to create a document containing substitution fields the values of
which are filled from a separate data document. Through this feature, the
following concepts are illustrated [3]:

• The use of variables and identifiers. The importance of order in specifying
input.

• Data files. Output files. The creation of output through specifications
written in a language understood by the computer.

• IF/THEN/ELSE statements. Nested and compound IF statements.
• Syntax vs. semantics.
• The concept of garbage in/garbage out, and debugging. (Nearly everyone

has received in the mail at some time a form letter whose fields were
mismatched or inappropriate)

Programming with a spreadsheet:
Students receive Microsoft Excel which can be used to illustrate the following
concepts [4]:

• Defining variable names;
• Data types;
• The use of variables in assignment statements;
• The use of intrinsic functions and parameters;
• Formatting, and characters as numbers;
• One and two dimensional arrays (we fmd this medium to be especially useful

for arrays, due to the immediate visual feedback);
• Records (Several fields associated together);
• Relative versus absolute addressing;
• IF /THEN/ELSE statements; nested and compound IF statements.

Further Excel comes with a rich macro language which can be used to illustrate
all features of a programming language, especially:

• Programs;
• Use of procedures and functions, with and without parameters;
• Defining one's own procedures and functions;
• Iteration, count controlled and conditional;
• Interactive input;
• Modular programs.

610 IFIP WCCE95- Integration

The release of Excel VS.O includes Visual Basic as another macro language.
Ironically our approach of teaching programming with nontraditional languages
now involves a traditional language! This affirms the notion that programmable
features are becoming an increasingly indispensable part of today's software
products.

Programming with a computer algebra system:
Students receive the student edition of Maple which can be used to provide
further reinforcement of the following concepts in a setting useful for other
courses (particularly calculus where symbolic algebra systems are seeing
increasing use):

• The use of intrinsic functions and parameters;
• Defining one's own procedures and functions;
• IFfrHEN/ELSE statements (For instance, to define step functions whose

characteristics are provided as function arguments);
• Iteration (For instance, to study the limit of a sequence).

The preceding examples are illustrations of how these concepts have been used
with particular pieces of software in use at our institution-comparable features
exist in other software commonly used elsewhere.

CONCLUSIONS

While computer literacy is important in allowing users to understand and cope
with computers, computer programming skills allow the user to control the
computer. These skills can be learned through a concept based approach using
software rather than a traditional language. Thus it may not be necessary for
students and practitioners in many fields to know how to program in a general
purpose language, yet the underlying concepts are more important and useful
than ever and should be learned by all students. These concepts may be taught
in more intuitive, powerful and user friendly environments as exist in popular
software such as word processors, spreadsheets and database managers, and in
common devices such as VCRs, CD players, programmable thermostats and
microwave ovens.

We have been teaching introductory courses using this approach at our
institution. We have found that students are more readily able to accept this
approach to programming than traditional approaches using a general purpose
language. Students taking this course leave it with not only a sense of
computer literacy and familiarity with selected software tools, but deeper
understandings of the essential components of computer software, how to

Why everyone should know how to program a computer 611

identify and use advanced features, and a readiness for computer programming
in other more traditional forms. We have used this approach for majors outside
computer science and for computer science majors who we deemed at risk of
not passing the traditional introductory computer programming course because
of lack of previous programming experience.

We believe such an approach is feasible for a wide variety of students
because it relies less on mathematical skills than traditional approaches. In
addition the immediate creation of nontrivial results motivates students to
persevere, particularly when the examples can be linked to activities they find
important to them in their studies. Finally we remark that this concept based
approach using software should be readily accessible to secondary school
students as well as undergraduates. We feel that it can be used as a successful
introduction to computing which will ready these students for further
programming in whatever form they choose.

ACKNOWLEDGEMENT

Partial support for this work was provided by the National Science
Foundation's Division of Undergraduate Education through grants DUE
#9254013 and DUE-#9354589 to the authors.

REFERENCES

1. Popyack, J.L. and Herrmann, N. (1991) Using Software to Teach
Computer Programming Concepts. MacAdemia'91, University of Pennsylvania,
Philadelphia, P A.

2. Herrmann, N. and Popyack, J.L. (1992) A Software-Based Approach to
Scientific and Statistical Computing for Science, Social Science, and
Engineering Freshmen. Computers Across the Curriculum: A Conference on
Technology in the Freshman Year, City University of New York, New York,
NY.

3. Popyack J. L. and Herrmann, N. (1993) Mail Merge as a First
Programming Language. SIGSCE Bulletin: The Papers of the Twenty-Fourth
SIGSCE Technical Symposium on Computer Science Education, 25 (1) pp.
136-140.

612 IFIP WCCE95- Integration

4. Herrmann, N and Popyack, J.L. (1994) An Integrated, Software-based
Approach to Teaching Introductory Computer Programming. SIGSCE Bulletin:
The Papers of the Twenty-Fifth SIGCSE Technical Symposium on Computer
Science Education, 26 (1) pp. 92-96.

5. Herrmann, N and Popyack, J.L. (1995) Creating an Authentic Learning
Experience in Introductory Programming Courses. SIGSCE Bulletin: The
Papers of the Twenty-Sixth SIGCSE Technical Symposium on Computer
Science Education, 27 (1).

