
76

A systemic approach to courseware
engineering

Frederic Blanc

API Laboratory-JUT Paul Sabatier
Toulouse
France

ABSTRACT

The development of an Intelligent Tutoring System is a complex process
which requires multiple knowledge sources. The aim of Courseware
Engineering is to reduce this complexity through flexible and domain
independent environments designed to ensure client satisfaction using fast
prototyping. An approach is presented for the production of complex
educational software based on the notion of open systems. Courseware/learner
interactions are considered the basis for adaptation and guidance. A
development method is used based on simulation for predicting the possible
behaviour of the system. Techniques come from Artificial Intelligence
(qualitative reasoning and causal ordering) and allow a particular didactic
strategy to be evaluated. Qualitative modelling is used to describe behavioural
knowledge in terms of positive or negative influences of the learner's actions to
simulate the partial functioning of the tutor during the development and after
adapting behaviour during use.

Main conference themes: methodologies, software

Educational areas:

Study topics:

Secondary keywords: modelling, open systems, simulation

J. D. Tinsley et al. (eds.), World Conference on Computers in Education VI
© Springer Science+Business Media Dordrecht 1995

816 IFIP WCCE95 -Methodologies

INTRODUCTION

Development of educational software is a complex process which requires
cooperation between users with various abilities: domain experts, pedagogical
people, media specialists and software engineers.

Recent work has shown that, except in simple cases, special educational
languages and author systems are not appropriate for developing complex
software such as learning environments or Intelligent Tutoring Systems [1, 2].
Change of didactic strategies and adaptation of the learning process to the
learner should be integrated. Courseware engineering should reduce the
complexity by providing automated modelling of the learning process. We
suggest a development approach based upon the notion of a complex open
learner driven structure. Techniques are presented which are based on
qualitative models for describing system behaviour in terms of causes and
effects.

In the first part of this paper we define the notion Courseware System
which is the basis of our approach. Then we present the systemic method
based on simulation of qualitative models. Finally we present the software
environment as it has been developed so far.

THE COURSEWARE SYSTEM

Objectives
An intelligent tutoring system allows changes of didactic strategy based on
learner profile and activities. The dynamics require guidance to be adapted
during the session and adequate flexibility [3].

Current approaches try build such software by identifying distinct
subproblems [4]. These are analytic methods which require a precise typology
of knowledge and which result in a closed system; these methods are:

• domain dependent specific for the particular type of tutor;
• centred on objects and data models, not on learner's activities.

As far as we can see these are not suitable for the production of flexible
educational software. We suggest a systemic method for courseware
engineering which allows collecting and organizing knowledge in a global,
domain independent approach which ensures flexibility and guidance [5]. In this
method:

• authors reason about tasks and activities, not only about system
components;

A systemic approach to courseware engineering 817

• behavioural knowledge, more than structural knowledge 1s taken into
account.

Theoretical aspects
We defme a courseware system as a system of dynamically interacting didactic
elements organized towards a goal, but modified and changed by interactions
with the learner. Its dynamic behaviour is based on interactions and feedback
loops [6].

The interactions between software and learner allow system evolution. The
educational software evolves in interaction with the learner's activities and
suggests in its tum tasks to make the learner progress (Fig. 1). It is able to
perceive changes in the student's profile.

Activities

Courseware
System

Learner

Task~

Fig. 1 Courseware system/learner interactions

To behave in a satisfactory way the system has to determine the didactic goals
and maintain constraints by setting bounds. This implies feedback loops which
stabilize the system around the didactic goals (Fig. 2).

Didactic situation

t
Control

+
-------OrientatioR-n------tlil'•

Fig. 2 System stability by feedback loops

Learner activities during the session, as well as the current state of the system
influence learner guidance and system regulation. This influence is based on
qualitative didactic expertise which judges the quality of the learning process
(Fig. 3).

818 IFIP WCCE95 -Methodologies

Activities

,, u
Qualitative!... I Didactic I
Reason in~ I Session

... Decision! I Tasks ,,
Fig. 3 Courseware system functioning

Courseware System development
In general in a courseware system there are three obvious constraints:

• decision rules which guide the learner and define system flexibility;
• qualitative expertise in support of decision making;
• analysis of learner tasks and activities which forms the basis of the

qualitative reasoning.

To help finding decision rules, the adopted development method is aimed at
building a first model of activities, tasks and qualitative expertise, and then
executing this model to study its behaviour. The reality known by the
pedagogue is compared with the results of this simulation and this serves as the
basis for a modification of the starting model and for describing guidance rules
(Fig. 4).

MODELLING Execution.,
Activities .. SIMULATION

I Prediction table Analysis.., DESCRIPTION
Tasks I .. of

I Session example Decision rules
Qualitative expertise .. Modification

Fig. 4 Courseware system development process

A systemic approach to courseware engineering 819

SYS1EM MODELLING

In educational software production in general three types of complementary
knowledge [1] play a role:

• mastery of the subject (pedagogical model);
• strategies to be used (didactic model);
• different tactics with respect to strategies (mediatic model).

The aim is to provide a framework into which authors can organize the didactic
goals, the domain knowledge and in which the tasks, activities and factors can
be identified which contribute to the success or failure of a particular teaching
sequence. The analysis involves various experts: domain experts, pedagogues
and software engineers.

System Analysis
Our method of analysis is based on a formal approach supported by logical
notions. This mathematical basis allows precise definition of notions like
completeness, consistency or correctness [7]. The method is supported by a
formal specification language, Spec, in which first order logic expressions can
be directly expressed [8]. Spec specifications are organized in units called
modules which contain definitions for a set of concepts which are expressed in
logical statements built from functions and relationships by using & (and), I
(or), ~(not), => (implies),<=> (if and only it) and the quantifiers all (for all)
and some (there exists).

System analysis consists of four stages:

1. Domain analysis: specification of concepts defining domain knowledge.
Aim of the analysis is to describe, to structure and to give typical values to
objects as an environment for the simulation.

2. Analysis of didactic goals: definition of system goals to be reached by the
learner integrated into learner orientation rules. The difference between the
didactic goals and objects from the domain acquired during a session is used to
assess learner progress.

3. Task analysis: tasks are defined to allow the learner to reach the didactic
goals. A task is defined by a goal and constraints described in Spec. The
pedagogue defines the general learning scenario which does not take the user
activities into account.

820 IFJP WCCE95 -Methodologies

The following expression shows an example of a task concerning questions
about a concept:

concept setting_ questions (c: CAI_concept) -task example
value (1: set {question})
where all (q: question such that q in 1 :: q.CAI_concept =c)

4. Activity analysis: the interaction between a subject (the learner) and his
environment (the courseware) is analyzed by diagnosing learner actions: change
in the factors which play a role in the learner's orientation, as shown through
his activities (type of error, number of unfruitful tries ...). These rules diagnose
errors for which help is required. The following example is a very simple
diagnosis of an error in questions associated with a concept (error_type is the
concept associated with the exercise with the wrong answer).

concept question_error (c: CAl_ concept) -activity/task diagnosis
value (t: error_type)
where some (q: question, a: answer such that

t = q.associated_concept ::
q =setting_ exercises (c) & wrong_answer (q,a))

Qualitative modelling
Qualitative modelling attempts to formalize the reasoning of an engineer about a
system. It is not a precise system description, but models the perception of the
author (mental models) on the basis of qualitative data rather than precise
numerical data [9]. It allows one to describe didactic situations in terms of
positive or negative impacts of different factors on the quality of a given
didactic strategy. From these descriptions the pedagogue can simulate activities
to study and understand the behaviour of the tutor. This simulation allows one
to take into account several successive situations to determine pro/con
arguments for/against doing a particular action, then describing strategies or
modifying the qualitative model.

There are three different formalisms: the first based on constraints definition
[10], the second on the notion of component as described by qualitative
differential equations [11], and the third based on the notion of process as an
entity which regroups objects and their relations, and its activating conditions
[12]. Thus the model consists of a set of causal variables and causal
relationships representing the factors and links which express the qualitative
expertise.

A systemic approach to courseware engineering 821

Causal variables
There are four types of causal variables an author must consider when
developing his expertise:

• a factor used for capturing the learner's behaviour during the teaching
session (endogenous variable): type of answer, number of errors, type of
error ... ;

• environmental variables affecting the learner orientation (in principle the
student profile);

• types of interaction defming the nature of interactions with the learner, in
accordance with his profile and the way in which the session develops:
exercise, help, course, comment. .. ;

• operation (type of the associated problem: repetition, application,
conceptualization ...), importance and difficulty defming characteristics of
tasks.

Our objective is to use simple, but explicit causal variables. The aim is not to
precisely define didactic situations, but to reason about descriptions which are
qualitatively sufficient. Reasoning is done on a mental model of the situation,
not on a strict, precise model.

Causal relationships
Causal relationships link variables to describe the behaviour of the system
during the action of a user or a change of parameter. A causal relationship
describes each influence in terms of its positive or negative impact during the
learning process. Its recursive defmition acts as a propagation rule of the
learner actions through the whole system. It can be expressed by axioms
where 'Inf+' describes a direct influence and 'Cause' represents an influence
the impact of which is unknown (positive or negative).

concept Positive_influence (x: type, y: type)
value (b: boolean)
where b <=>some (z: type :: Inf+ (x,y) I

State of the system

(Inf+ (x,z) & lnf+ (z,y)) I
(lnf+ (x,z) & Positive_influence (z,y)) I
(lnf+ (x,z) & Cause (z,y)))

Authors have to be able to measure the evolution of the system after the
simulations are done. Three indicators are used:

• the gap with respect to the didactic goals;

822 IFIP WCCE95 -Methodologies

• the acquisition rate of concepts;
• the performance in performing a task.

These indicators are barometers of the quality. These are dynamically
updated during the session in accordance with positive or negative influences of
the learner's actions. 'Increase' and 'Decrease' functions allow continuous
modification ofthe state of the system by successive adjustments:

concept Positive _influence (d: diagnosis, dg: didactic _goal)
value (b: boolean)
where b <=>some (g: Gap:: Gap.current (dg, g) & Decrease (g,dg))

Temporal operators are associated with these indicators:

• create indicates the begin state;
• current indicates the current state;
• goal indicates the state to be reached.

For instance, 'Acquisition.create (CAI_concept, novice) fixes the acquisition
rate for a concept at the beginning of the session and 'Acquisition.goal
(CAI_concept, expert)' defines the goal for the acquisition of that concept.

COURSEWARE SYSTEM SIMULATION

The previous section has described the qualitative representation of a
courseware system. The current paragraph is concerned with the simulation
process, that is, the dynamic system behaviour resulting from the previous
descriptions.

Simulation generally produces the set of possible system behaviour from an
initial starting point. With the initial conditions fixed the pedagogue tries to
predict the future system behaviour by modifying groups of variables
(parameters). He is able to simulate a teaching session and can observe the
system evolution. The process is of course iterative (Fig. 5).

Fixing the initial conditions
The starting values of variables (actual gap relative to each didactic goal) and
indicators (acquisition rate required for each concept, level to be reached by the
learner ...) are fixed.

Predicting the system behaviour from the initial conditions
Prediction tables allow one to see the influences of a factor on the system
starting from a given initial situation. An influence is propagated through the
network of relationships and causal variables: its action can be followed through

A systemic approach to courseware engineering 823

the whole system. This mechanism is based on a test and case generation
technique. This interrogates the model as a network of variables and relations
placed in a given context (initial conditions) without simulating the actions in the
model.

Fig. 5 The simulation process

Simulating the learner's activities
From fixed initial conditions the pedagogue is able to simulate a teaching
session: setting an exercise, choosing an answer, setting the next exercise ...
Then he successively plays the role of teacher and of student in a simulated
situation.

Observing the system evolution
In addition to simulating a didactic session the environment supports model
interrogation mechanisms. This allows one to know the current state of the
system after the actions of the learner (their positive or negative influences on
the system).

Simulation produces sequences of actions/observation. The pedagogue is thus
able to predict the future system behaviour in a given situation and write
adapted contextual guidance rules.

DESCRIPTION OF DECISION RULES

Courseware system dynamics consists of the combined action of feedback
loops and activities. Feedback gives information about the state of the system
integrated in the diagnosis of learner actions. The decision process therefore

824 IFIP WCCE95 -Methodologies

involves activities, state indicators and environmental variables (student's
profile).

Initially, the system is presumed to be at equilibrium. This equilibrium is
disturbed by a change due to an action. The aim is to restore equilibrium by
fixing tasks and stating control mechanisms (Fig. 2): after the learner activity
the "disturbed" system has to react prescribing a task guaranteeing a good
future behaviour.

The objective is to maintain coherence:

• fixing the learner's degree of liberty according to the current situation
(regulation rules),

• guiding the learner to his didactic goals (orientation rules),
• controlling the learner towards the goals according to his degree of liberty

(control rules),
• updating the student's profile (revision rules).

These decision rules are based on the implemented qualitative expertise which
allow analysis of the current situation in the session:

Control rules act to keep the learner within the framework fixed by the
pedagogue. These are based on the measurement of the current state (gap,
acquisition), compared with the starting state which defines the learner's degree
of liberty.

If Gap.current (didactic_goal, gl) -current gap
and Gap. create (didactic _goal, g2) -starting gap
and gl > g2 -non authorized gap

Then IfPositive_influence (q, didactic_goal) -type ofq: question
Then Set (q) -setting right questions

Orientation rules are classical guidance rules: task prescription according to a
diagnosis of activities.

If Acquisition.goal (CAI_concept, understanding) -important goal
and Difficulty.current (taskl, hard) -difficult task
and non Error_type (CAl_ concept) -no error

Then task2 -next task

Regulation rules allow dynamic modification of the learner's framework
(changing his goals for example), using increases and decreases of the values
of indicators.

A systemic approach to courseware engineering 825

IfLevel.goal (toto, deepening) -level to reach
and Difficulty.current (task, easy) -easy task
and Answer_type (question, CAI_concept, wrong)

-but errors
Then Acquisition.goal (CAI_concept, a)

Increase (a, CAI_concept)

Gap.goal (didactic _goal, g)
Decrease (g, didactic_goal)

-increase the acquisition
rate required

-the goal become less
easy to reach

Revision rules are used to update the student's profile. In the following example
the learner progresses because he did not make errors on questions.

If Level.current (toto, novice)
and non Error (CAI_conceptl) -no error
and Answer_time (calculation, CAI_concept2) < 10

Then Level.create (toto, medium)

CONCLUSION

In this paper, we have presented an approach of complex educational software
development based on the notion of open system.

This approach tries to really integrate the learner (activities and profile) at
the beginning of the courseware design. It is a global, domain independent
approach based on tasks and activity descriptions to ensure flexibility. Its
primary contribution is a simple, clear system for qualitative modelling of the
effects of actions on the system in a specific didactic situation (behavioural
knowledge).

The artificial intelligence techniques and tools used, based on a formal
specification language, the qualitative modelling and the simulation are being
tested on an example problem concerning the functioning of aeroplane engines.
We are currently experimenting with a version of the system which was
designed to test our approach on this example. Implemented in Prologii+ it
provides a Spec editor, tools to transform Spec code into Prolog (to ensure
executability), an evaluation tool (completeness, consistency) and a simple
simulation tool (Fig. 6). Possible future enhancements include mechanisms for
representing time explicitly and integrating refined qualitative expertise.

826 IFIP WCCE95 -Methodologies

Fig. 6 The environment constructed

REFERENCES

Modele Prot~l'P'QUO
moteu

1. Bessagnet, M.N., Nodenot, T. and Gouarderes, G. (1990) A new
paradigm: Software Engineering. 5th IFIP World Conference on Computers in
Education, WCCE'90, Sydney.

2. Major, N. and Reichgel, H. (1993) COCA: a Shell for Intelligent Tutoring
Systems. Intelligent Tutoring Systems Conference, ITS '92, LNCS 608,
Springer-Verlag.

3. Wenger, E. (1987) Artificial Intelligence and Tutoring Systems. Morgan
Kaufmann Pub.

4. Schoenmaker, J., Nienhuis, J., Scholten, E. and Titulaer, J. (1990) A
methodology for Educational Software Engineering. 5th IFIP World
Conference on Computers in Education, WCCE'90, Sydney.

A systemic approach to courseware engineering 827

5. Woolf, B. (1991) Representing, acquiring and reasoning about tutoring
knowledge. Intelligent Tutoring Systems-Evolutions in design. (ed Bums),
Parlett, Redfield.

6. Andreewsky, E. (1991) Systemique et cognition. Dunod AFCET
Systemes.

7. Wing, J. (1990) A specifier's introduction to formal methods. IEEE
Computer.

8. Berzins, V. Luqi (1990) Software Engineering with Abstractions. Addison­
Wesley Publishing Company.

9. Clancey, W.J. (1989) Viewing knowledge bases as Qualitative Models.
IEEE Expert.

10. Kuipers, B.J. (1993) Reasoning with qualitative models. Artificial
Intelligence 59, pp. 125-132.

11. De K1eer, J. and Brown, J.S (1986) Theories of Causal Ordering. Artificial
Intelligence 29, pp. 33-61.

12. Forbus, K.D. (1993) Qualitative process theory: twelve years after.
Artificial Intelligence 59 , pp. 115-123.

