
33
Feasibility of a Software-based A TM
cell-level scheduler with advanced
shaping

J. Schiller
Institute ofTelematics
University of Karlsruhe
Karlsruhe, Germany
j.schiller@ ieee. org

P. Gunningberg
Department of Computer Systems
Uppsala University
Uppsala, Sweden
per.gunningberg@ docs. uu.se

Abstract
Future servers are expected to handle a large number of connections with different
Quality of Service (QoS) requirements. Networks, e.g., based on ATM technology,
provide QoS via standardized traffic parameters. While the control at the network edge
can handle these parameters, support for generating adequate traffic patterns (shaping)
in the end-systems is limited due to hardware restrictions. This paper presents a
software-based cell-level scheduler for ATM with advanced shaping mechanisms
supporting priorities and fair sharing in overload situations. Furthermore, a scalable
integration of the cell-level scheduling and the scheduling of DMA transfers is shown.

Keywords
ATM, shaping, scheduling, DMA, network adapter, proportional sharing, leaky bucket

1 INTRODUCTION
Future network servers are expected to handle a large number of concurrent
connections with varying Quality of Service (QoS) requirements (Campbell, 1996).
Examples of likely traffic sources are voice/video conferences integrated with
multimedia documents, multimedia document retrieval, WWW, file transfer and real
time interactive games. The bandwidth requirements will range from a few Kbit/s to

Broadband Communications P. Kiihn & R. Ulrich (Eds.)
© 1998 IFIP. Published by Chapman & Hall

424 Part B Traffic Control, Modelling and Analysis

several Mbit/s. Thus, servers using network technologies with link bandwidths of
hundreds of Mbit/s have the potential to carry a substantial number of these
connections. The problem which arises is to handle all these connections and their QoS
requirements. Current WWW servers serve requests using a best-effort method, which
is not sufficient when the individual connections have QoS requirements and as the
number of connections increases. We assume that a future large WWW server must
handle many concurrent connections with potentially highly different QoS
requirements.

The network adapter of such a server is responsible for several functions in the
outbound direction. It should transfer data from server memory, apply low level
protocol functions, control the transmission of data according to a traffic contract and
multiplex several connections. Furthermore, in our view a more advanced network
adapter is needed to perform traffic shaping. Our thesis is that a CPU based approach
for doing these functions for a large number of connections is both feasible and
efficient. Using software and state of the art microprocessors has several benefits. The
algorithms can easily be changed to suit the needs of different traffic types. In addition,
a software solution benefits of new on-board processors as they become available. Our
solution will scale with the increase in processing power provided the memory system
keeps up. An additional issue which is investigated in this paper is if and how the
traffic shaping and the scheduling of memory transactions can be combined.

The contribution of this work is a feasibility study of a software scheduler running on
an on-board network adapter CPU combining the traffic shaping functionality with the
scheduling of memory transactions. These operations are often decoupled, leading to
hardware redundancy, double buffering of data, and the limited capacity for shaping in
the 110 subsystem.

The network technology we have envisioned is ATM since it supports QoS
parameters and traffic contracts for every connection. However, the proposed traffic
shaping algorithms used by the network adapter are general and may be employed in
any network technology with flow reservations, such as the next generation Internet
protocols. In this work, we focus on how to schedule connections which have been
accepted by the system. The connection acceptance phase and the QoS architecture for
the applications and higher layer protocols (Campbell, 1996) which are also crucial to
the server is outside the scope of this work.

2 EXISTING HARDWARE SOLUTIONS AND THEIR
LIMITATIONS
Comparing our approach with the capabilities of actual shaper-chips the following
topics have to be addressed:
• Scalability: how does the approach scale in the number of connections, where are

restrictions introduced by hardware, data structures etc.
• Efficiency: how efficiently can the shaper utilize the outgoing bandwidth.
• Overhead: how large is the overhead of the implementation, e.g., how often has a

host system to be interrupted, how much control information has to be exchanged
between host memory and the adapter.

• Isolation: how well are different connections protected from each other, what
happens in transient overload situations, and how individual parameters can be
adjusted to the needs of a connection.

Feasibility of a software-based ATM cell-level scheduler 425

The scalability of all chip-based solutions is very limited. Values like the maximum
number of supported connections (VC) are of more theoretical nature and typically only
limited by the width of registers. More interesting is the number of simultaneously
supported connections or the number of connections supported on-chip. These numbers
of supported connections rely not only on the amount of memory to store connection
state date, but rather on the algorithms, data structures, and available processing power
for traversing connection information.

There are typically limits on the maximum number of different traffic characteristics.
Additionally, the question arises what parameters can be set and if they can be used
independently. Typical restrictions are 8-12 PCR (Peak Cell Rate) queues, every
connection has to be in one of these queues (Fujitsu, 1997), (SIEMENS, 1997).
Furthermore, the SCR (Sustainable Cell Rate) is often derived from the PCR via a per
connection ratio (e.g., Y2 or 'A of the PCR). These restrictions are due to the fact, that
the cell rates are generated using explicit hardware counters, only a very limited
number of these fit on a chip (c.f. (ATM Forum, 1996) for further explanation of ATM
traffic parameters).

Also due to space limitations, most of the data structures holding context information
for a connection are located in host memory. To update these structures the host system
has to be interrupted and the memory accessed. This can result in a large overhead,
especially when these data structures have to be checked with full PCR (Fujitsu, 1997).
Another topic is the DMA overhead, most of the approaches transfer single cells from
host memory 'just-in-time' due to very small transfer buffers on chip. Typically, the
receiving side has a higher priority to avoid cell losses. Thus, the sending side suffers if
cells arrive or even if control information has to be updated (SIEMENS, 1997).

The isolation between different connections sharing one PCR queue is typically not
addressed in any of the evaluated solutions. Some solutions provide additionally
priority classes, the behavior within a priority class during transient overloads is not
further determined.

2.1 UPC solutions
It is important to compare the capabilities of the UPC (Usage Parameter Control) chips
located at the UNI (User Network Interface) with those of the shapers due to the fact
that the UPC chips will decide if an incoming cell of a connection shaped by one of the
shapers is accepted or not. The first fact one notices is the more detailed control
capabilities and the variety of parameters to check. The ATM_POL3 from ATecoM
(Atecom, 1997) can control up to 64k VCs checking PCR, SCR, CDV (Cell Delay
Variation) and maximum burst size using a dual leaky bucket per VC. lgT has the
WAC-186-B (Integrated, 1995) which uses GCRA to monitor PCR, SCR, CDV and
burst tolerance for up to 16k active VCs for a bitrate up to 250 Mbit/s. Finally, the
BNP2010 UPC of National Semiconductor (National, 1997) checks up to 16k VC with
3 GCRAs per VC up to a speed of 622 Mbit/s. A simple comparison shows, that the
UPC can be much more precise and, hence, more restrictive than the capabilities of the
best shaper chips.

3 ARCHITECTURES
The overall architectural design is illustrated in Figure 1. The adapter has a buffer
memory to hold cells to be transmitted and a DMA engine that reads data from server

426 Part B Traffic Control, Modelling and Analysis

memory into the buffer memory. Each connection has a separate queue of cells in the
memory. Buffer memory is accessed from the ATM chip which does the actual
transmission. The purpose of the CPU is to schedule the DMA engine for a data
transfer, schedule the A TM chip to read a cell from the buffer memory according to the
traffic shape and multiplexing state, and exchange control messages with the host. Note
that the CPU does not touch data at all since this would be too time consuming.

PDUs

server memory

ATM
server interconnect

Figure 1 Network adapter architecture.

The CPU is running the following cycle for each transmitted cell.

shaped
traffic

1. Pick the first connection identifier in the ordered ready-list of active connections,
provided it is due for transmission.

2. Initiate the ATM chip for a transfer of a cell from this connection.
3. Shape the connection and calculate the time when the next cell of this connection

should be sent according to the shaping state.
4. Insert the connection identifier again at a new place in the ready-list according to

the next transmission time.
5. Schedule a possible DMA transfer of data from server memory for this connection.

This cycle must finish well within the time it takes to send a cell. For a 622 Mbit/s this
means within 680 ns. Besides running this cycle, the CPU needs to synchronize PDU
information with the server and to allocate and deallocate buffer memory. But these
tasks are triggered by asynchronous events and can be done in the background.

The CPU needs a fairly large memory to hold the state of each connection and the
data structure for the ready-list. The access time to this memory is crucial for the
performance and it is expected that a large Level 2 (L2) cache memory is the most
appropriate. The actual scheduling code is small enough to fit into Level 1 (Ll)
instruction cache. The adapter may have other protocol hardware on board, such as for
AALS checksum calculation which also must be controlled by the CPU. In addition,
there is some control logic that is specific to the interconnect.

4 INTEGRA TED SCHEDULING, ADVANCED SHAPING, AND
DMA TRANSFER
The novelty of this design is the way shaper, scheduler, and DMA transfer cooperate to
fulfill the task of sending the right cell at the right time according to traffic contracts

Feasibility of a software-based ATM cell-level scheduler 427

and the actual load of the adapter. The design idea is that the CPU co-schedules both
the DMA and ATM functions. The CPU has enough information to bring in data from
the server memory just in time for transmission since it is deterministic when the next
cell in a connection is allowed to be sent according to the shaping algorithm.
Furthermore, the CPU is also in full control of the multiplexing of several cells by
maintaining an ordered ready-list of connections ready for transmission. With this
information it is predictable when a cell will be transmitted and hence the latest time
when data must be fetched from server memory. The focal point is the traffic shaper.
The shaper holds the context information of a connection, i.e., PCR (Peak Cell Rate),
SCR (Sustainable Cell Rate), CDVT (Cell Delay Variation Tolerance), burst size,
amount of data already sent etc. The scheduler hands over a pointer to the next
connection to be shaped and the shaper feeds the scheduler with timing information
about the earliest time a cell from the connection can be transmitted (Figure 2). The
shaper state holds information about the actual amount of data for a connection on the
adapter and the PDUs stored in host memory. By interpreting this state, new data can
be pre-fetched from server memory when it is necessary and viable.

4.1 The scheduler
The purpose of the scheduler is to determine when a connection is allowed to send. A
connection is assigned a cell slot for transmission sometime in the future, depending on
the connection state and the contention of slots between connections due to
multiplexing. The scheduler maintains an ordered data structure of connections, ordered
with the connection to send closest in time first and the latest at the end. The scheduler
gets the earliest possible time a connection can be scheduled from the shaper. It will
then try to allocate the corresponding cell slot time by checking the ready-list. If this
slot is already occupied by another connection the scheduler may try to find an empty
slot later in time or to reschedule the conflicting cells using the CDVT (Cell Delay
Variation Tolerance) parameter or to use a static priority. An earlier slot time cannot be
used by the scheduler, even if there are several empty slots since the cell will then
break the traffic parameters. Such a cell would most likely be discarded by the UPC
(Usage Parameter Control) mechanism as an early cell outside the contract. Scheduling
later is always acceptable by UPC, but may affect the end-to-end guarantees and results
in less bandwidth efficiency. Design issues for the scheduler include efficient
utilization of the bandwidth, fairness at overload situations and the minimizing of the
number of CPU cycles needed for the scheduling. Our fairness proposal and our
measurements on CPU cycles will be discussed later.

4.2 The ready-list data structure
The ready-list has one entry for each active connection. For 64K connections, the size
of this list is considerable and the time it takes to keep the list sorted is critical for the
performance. The data structure chosen for this task is a binary tree, implemented as a
heap. A heap can realize a binary tree efficiently without the use of pointers. All
information kept in the heap has to be small to assure that most of the heap fits into the
cache of a processor (e.g. 512k L2 cache for a PentiumPro). The connection state has to
be fetched into the cache only when a connection is scheduled. This structure allows for
a large number of connections handled simultaneously. Assuming 32 bit values for the

428 Part B Traffic Control, Modelling and Analysis

cell slot time and a pointer to the state the heap needs only 512kbyte for 64k active
connections.

new
deadline

pointer to
context
information

Figure 2 Interaction of shaper, scheduler, and data transfer engine.

4.3 Shaper

data transfer

When called with a connection identifier, the shaper updates the shaping state and
calculates the earliest time the next cell of the connection can be scheduled without
violating the traffic contract.

The implementation of the traffic shaper uses a combination of the VSA (Virtual
Scheduling Algorithm) and LBA (Leaky Bucket Algorithm), which we derived from
the LBA and VSA specifications for the GCRA (Generic Cell Rate Algorithm) in the
ATM UNI (ATM Forum, 1996). Instead of using these algorithms for controlling
conforming cells at the UNI, we actively shape the traffic using them. This guarantees
that all cells shaped with our implementation will be accepted by the UPC. The
calculation is based on the current state of the connection (PCR, SCR, inactive) and the
mode (single/dual leaky bucket, SLB/DLB). If the connection is in PCR or SCR, the
shaper returns the new earliest transmission time for the next cell. Thus, it is guaranteed
for the SCR state that a new token will be available if this connection is scheduled the
next time. If a connection uses the DLB mode and no more tokens are left, the shaper
returns the time when the whole token bucket can be refilled completely with tokens.
Note that the shaping state of a connection will be acc~ssed if and only if a cell can be
scheduled. There is no other updating necessary, e.g., filling new tokens in the bucket.
Many current implementations have to access state permanently to update the schedule
resulting in a poor performance and very limited number of connections handled at the
same time (Fujitsu, 1997), (LSI, 1997), (SIEMENS, 1997).

4.4 DMA transfer from server memory
The connection state has information about the amount of currently stored cells on the
adapter and a list of current PDUs stored in the server memory. Given the deterministic
information from the traffic shaping it is possible to keep most of the PDUs in server
memory and to move data just in time for transmission to the adapter. If all PDUs have
been sent the adapter notifies the server and the connection will enter a non-active state.
There are several potential advantages by using this deterministic information: pre­
fetching of the right amount of data will avoid delays caused by demand fetching,
buffer size requirements can be reduced and long blocking times to other interconnnect
transactions can be avoided. By coupling the DMA transfer for a connection with the

Feasibility of a software-based ATM cell-level scheduler 429

actual sending of cells for this connection the design is simplified. The amount of cell
buffer memory needed can then be decided and the shared buffer problem with
asynchronous readers and writers is avoided, since the transfer is synchronized with the
transmission, i.e., the consumption of data.

Two design issues must be addressed. The first one is when a transfer should take
place. The interconnect has some access time variation that must be compensated for.
This variance motivates an earlier transfer than just before the data is needed. The
second issue is the size of the data transfer unit. The smallest unit is a cell and the
largest is the PDU. A small size will cause more overhead while a big unit will
consume cell memory buffers and may block other transfers. In this trade-off, the
optimal transfer size of the interconnect must also be considered for efficiency.

Figure 3 shows a small example schedule generated by our prototype. 10 connections
with different shapes, starting points and number of cells are scheduled together. They­
axis shows the consumption of cells, the x-axis the number of the cell slot the cell is
scheduled in. Connections 2, 3, 4, 7, 8, and 9 are CBR connections, the other VBR.
Connection 5 uses SLB, connections 0, 1, and 6 DLB mode. The exact shape of the
plotting lines depends not only on the connections parameters but also on the current
state of the other connections. This results, e.g., in slight deviations from an ideal
straight line when two or more connections are scheduled for the same cell slot.

4.5 Priorities and Proportional Sharing
As soon as one implements an algorithm for scheduling one very important question is
how the implementation behaves in overload situations. Overload situations can occur
quite frequently, if one does not want to make only conservative reservations, i.e.,
allowing the sum of all PCRs never to be greater than the total capacity of the link. This
would result in a very poor overall utilization if, e.g., VBR traffic sources are used.
Here the PCR can be easily 10-1000 times larger than the SCR. One example is the
transfer of MPEG2 coded video streams. Typical values are 1.0 to 15.0 Mbit/s for PCR,
0.2 to 4.0 Mbit/s for SCR. In addition, quite often a priority scheme is required to
weight different traffic streams. One could for example give voice connections a higher
priority as connections to fetch pictures from Web-pages. This would result in a higher
audio quality and only minimal additional delay for the picture data transfer.

Assuming this, one can refine the question concerning the overload situation into
following questions:
• Sharing: How is the available bandwidth shared within one priority class? What

happens in overload situations caused within a priority class?
• Isolation: How is the interaction between different priority classes? What happens

if a higher priority class already causes an overload?
• Stability: What happens to the system if the overload situation continues for a

longer time? Does the system still provide a schedule "as good as possible"? Is the
system stable?

From a users point of view the first set of questions can be answered as follows. If a
user has started, e.g., several video applications that load the network completely and
now starts an additional one he or she expects the available bandwidth to be shared
fairly between the applications. The communication system can not make any
assumptions of the importance of an application, and therefore a proportional sharing

430 Part B Traffic Control, Modelling and Analysis

scheme is the best one can do. That means, that an application that used twice the
bandwidth compared to another one still gets twice as much as the other one. But now
this is less than before due to the overload. To privilege one application, one can shift
the application to a higher priority. Our implementation guarantees this proportional
share within one priority class independently for every connection.

60 ··--····-···-······-·-··· ... -··-········-··- ... _ _ -

0 100 200 300 500 600

cell slot

Figure 3 Example cell level schedule.

Prioritizing an application leads to the second set of questions concerning the
interference between priority classes. Depending on the scheduling policy one can
decide for a hard priority scheme, i.e., the scheduler tries first to satisfy connections
with higher priorities and ignores lower priorities in case of an overload. This results in
starvation of connections in lower priority classes. An alternative solution could
provide a minimum share of the total bandwidth to avoid starvation. This is in general
the better alternative due to the fact that overload situations are typically transient and
common communication protocols like, e.g., TCP cannot deal properly with a total
starvation but adapt well to lower bandwidth. Our implementation allows both
alternatives by guaranteeing proportions of the total bandwidth in an overload situation.

All proportional sharing and handling of overload is done within the traffic shaper via
adapting traffic parameters as soon as a connection is shaped and the load situation
changes. This guarantees also that the prefetching of data is always harmonized with
the real sending rate, so that no internal buffers can overflow in the communication
system. The adaptation of the application to lower bandwidths is out of the scope of
this work, but generally, this is the scheme many approaches tend to incorporate. No
matter how long an overload situation exists or how strong the overload is, the system
will always try to generate a schedule as close as possible to the traffic contract. The
settings of the proportional sharing between different priority classes is left to the
operator and depends on the policy of a service provider.

Proportional sharing and the overload behavior described above are up to now not
implemented in any of the available traffic shaper chips. Either these implementations
avoid overload situations by not allowing over allocation (LSI, 1997) or they throttle

Feasibility of a software-based ATM cell-level scheduler 431

the total traffic via a leaky bucket (Fujitsu, 1997) (SIEMENS, 1997). Figure 4 shows an
example for the effects of priority classes and proportional sharing within a priority
class. Connection VC 3 has the highest priority 0, the connections I, 4, 5, and 6 are in
the same priority class I, and finally connection 2 has the lowest priority 2. The
connections 4, 5, and 6 are configured to require already 100% of the bandwidth per
connection. This results in an heavy overload situation between cell slot 200 and 400.
Due to the higher priority, connection 3 is not disturbed. The proportional sharing
within one priority class can be seen for the connections I, 4, 5, and 6. The slope of the
graph flattens, as soon as a new connection with the same priority starts (at cell slots
200, 250, and 300). This demonstrates the proportional sharing: having the same
priority and traffic parameters, two graphs must have the same slope. Finally,
connection 2 has the lowest priority and starves during the heavy overload situation. If
required, this could be avoided by reducing the bandwidth available for connections
with higher priorities as described above.

5 PERFORMANCE EVALUATION
The algorithm was implemented using C and tested on a PentiumPro with 200MHz and
512k L2 cache (Windows NT 4.0 and Linux 2.0.28), a Digital Alpha AXP 3000/800
(Digital UNIX 3.2D-2) and a Sun Ultra I with 143 MHz (Solaris 2.5.1). The
implementations on the different machines differ only in the instrumentation, not in the
algorithm. The measurements were done running the complete operating system
concurrently, but no other application programs. This was done on purpose to see the
behavior of the algorithm in a real environment with current operating systems and not
on specialized stand alone systems. The presented results give therefore an upper bound
for execution times and cycles counts. The performance can only increase on dedicated
systems.

120

100

80

}

~ 80

3

•o

20

0
0 200 •oo 800 800 1000 1200

cellalot

Figure 4 Effects of transient overloads, proportional sharing and priorities.

.vc 1, prlo 1

• VC 2. prlo
vc 3. prlo ~

, vc•.prto1
xVC 5, prlo 1

• vc 6. prlo 1

432 Part B Traffic Control, Modelling and Analysis

The main platform for instrumentation was the PentiumPro, Alpha and Ultra SPARC
processors were used for comparison. Our main interest is in the number of CPU cycles
used for scheduling of one cell. This includes the updating of all data structures, issuing
of data transfer commands if necessary, and shaping of the cell stream. For counting of
the CPU cycles the time stamp counter (TSC) of the PentiumPro was used. This allows
for a resolution of single CPU cycles (5ns for the 200MHz CPU used). The TSC is a
free running 64 bit counter not influenced by system events.

To evaluate the performance of the implementation we run worst-case scenarios that
load the data structure heavily and require almost always the worst case of updating
operations needed for the heap. One such scenario is for example the setup of 64k
simultaneously active connections with identical parameters. The algorithm
implemented puts no restriction on the number of connections, amount of data, or link
speed. Only the actual performance of a given CPU/memory system limits this
performance. To give an impression of the performance of the implementation also
typical configurations were evaluated. It has to be remembered that this implementation
treats every connection separately, i.e., no connections are combined or share common
properties as this is the case in all existing hardware solutions due to the limited
number of registers available.

Figure 5 shows cycle counts on a PentiumPro for more than 64k simultaneous active
connections each sending 25000 bytes in 5 PDUs. The bandwidth chosen for the
connections does not influence the performance of the algorithm, 9600 bit/s were
chosen to result in a reasonable aggregated bandwidth of 616 Mbit/s (e.g., for a 622
Mbit/s adapter). Overloading an adapter using this algorithm, i.e., accepting a higher
aggregated bandwidth than the total bandwidth of the adapter, does not result in a
performance degradation but in an overall higher delay for cells. This is the best one
can expect if the overload is done on purpose and no cells should be dropped. Most of
the cells can be shaped and scheduled within 600 CPU cycles. This includes data
transfer commands if necessary. Only at some points in time the cycle count goes up to
about 650 cycles. It can be shown running the same algorithm on an UltraSparc that the
jump in the cycle count at the beginning is a result of the PentiumPro L2 cache and not
the algorithm. These UltraSparc measurements took place running a full installation of
Solaris 2.5.1 but no other application programs resulting in an average time for
shaping, scheduling, and data transfer of 4.51Js. To be able to handle the large size of
instrumentation files values were collected and averages calculated. In addition
maximum values were controlled to make sure that they are not averaged out. The
binsize used for averaging is noted in the figures. 600 CPU cycles represent for the
chosen processor a real-time of 31Js (200 MHz).

To stress the implementation all connections are started at exactly the same time, i.e.,
all data is tried to prefetch for the complete cell buffer at the beginning and then also
consequently for every new PDU of a connection. The main result of these
measurements is not the single number of cycles used but the fact that the number of
cycles has an upper bound even under worst case conditions and has a very stable
behavior for most of the cases.

Where the performance results with 64k connections show that with today's
processors and standard operating systems cells cannot produced fast enough for, e.g.,
155 Mbit/s adapters, this is possible for a lower number of connections. Figure 6 shows
that a software solution of a shaper/scheduler can produce a cell in less than 350 cycles,
i.e., 1.75 IJS. This is definitely fast enough for a 155 Mbit/s adapter. Again this

Feasibility of a software-based A TM cell-level scheduler 433

configuration is a worst case for I 000 connections, the cycle count per cell will drop if
for example some high bandwidth connections together with a substantial number of
low bandwidth connections have to be scheduled. With this lower number of
connections no jump in the cycle count due to the cache behavior can be seen.

Loading the implementation with I 00 connections results in a cycle count per cell of
typically less than 300. If only one active connection is configured the cycle count
drops to 160. The shaping takes less than 85 cycles on average and is independent of
the size of the data structure.

CPU cycle count 64167 VCs@ 9600 bps CBA, 5 PDUs@ 5000 by1e, binsize = 8464, Linux

700,------------------------------------~---------------------------,

•

500~------~--~
5000000 10000000 15000000 20000000 25000000 30000000

;ell number

Figure 5 Cycle count on a PentiumPro/Linux sending data for 64k connections.

-----,

PPro cycle count, 1000 VCs 0 9600bps, 5 PDUs 0 5000 byte, binsize = 133, WindowsNT

390

• 350 t--------- -----------------=------~ ••• • • • • • s
1330
:>

------!

fs 310

•
·~r-----------------------------•
27or-----------------------------~ •
~oL-----------------~------------------------------------~

100000 200000 300000

cell number

Figure 6 PentiumPro cycle count for I 000 connections.

6 CONCLUSIONS

400000 500000 600000

Today, a discrepancy between the capabilities of shaping solutions, i.e., mostly chips to
generate certain traffic patterns, and the UPC chips, e.g., at the UNI exists. This may
lead to cell loss, although the traffic parameters agreed upon are the same for the shaper
and UPC. One reason for this are the very limited capabilities of hardware solutions for
shaping due to a limited chip area. Our work shows, that it is already today feasible to

434 Part B Traffic Control, Modelling and Analysis

shape traffic for ATM networks for over 1000 connections at a rate of 155 Mbitls using
a today's general purpose CPU. Furthermore, with the proposed software solution cell­
level scheduling and the scheduling of DMA transfers can be harmonized resulting in
an overall higher efficiency and lower buffer requirements.

Further work will concentrate on performance measurements using high-end
workstations with 600MHz CPUs and the integration of the DMA scheduling into the
scheduling mechanisms of the operating system to further harmonize data transfer.

6 REFERENCES
AtecoM (1997) ATM_POL3, http://www.atecom.de/
ATM Forum (1996) Traffic management specification, version 4.0, ATM Forum
Campbell, A., Aurrecoechea, C.: Hauw, L. (1996) A Review of QoS Architectures,

Proceedings of the 4. IntemationaliFIP Workshop on QoS (IWQoS), Paris
Coulson, G., Campbell, A., Robin, P., Papathomas, M., Blair, G., Sheperd, D. (1995)

The design of a QoS-controlled ATM-based communication system in Chorus.
IEEE Journal on Selected Areas in Communications, 13(4), 686-699

Digital Equipment Corporation (1996) Program Analysis Using Atom Tools. Digital
Equipment Corporation, Maynard, Massachusetts

Druschel, P., Banga, G. (1996) Lazy Receiver Processing (LRP): A Network Sub­
system Architecture for Server Systems. Proceedings of the USENIX Association
Second Symposium on Operating Systems Design and Implementation, Seattle

Druschel, P., Peterson, L.L., Davie, B.S. (1994) Experiences with a high-speed network
adapter: a software perspective, ACM SIGCOMM, London

Dalton, C., Watson, G., Banks, D., Calamvokis, C., Edwards, A., Lumley, J. (1993)
Afterburner. IEEE Network, pp. 36-43

Engler, D.R., Kaashoek, M.F., O'Toole, J. (1995) Exokemel: an operating system
architecture for application-level resource management. ACM SIGOPS

Fujitsu (1997) ALC (MB86687A), http://www.fmi.fujitsu.com
Georgiadis, L.; Guerin, R., Peris, V., Sivarajan, K.N. (1996) Efficient network QoS

provisioning based on per node traffic shaping. IEEEIACM Trans. Networking, 4
Gopalakrishnan, R., Parulkar, G. (1995) A Framework for QoS Guarantees for

Multimedia Applications within an Endsystem, 1. Joint Conference of the
Gesellschaft ftir lnformatik and the Schweizer Informatikgesellschaft, ZUrich

Integrated Telecom Technology (1997) WAC-186-B, http://www.igt.com
LSI Logic (1997) ATMizer II (L64363), http://www .lsilogic.com
National Semiconductor (1997) BNP2010 UPC, http://www.national.com
Rexford, J., Bonomi, F, Greenberg, A., Wong, A (1997) A Scalable Architecture for

Fair Leaky-Bucket Shaping, IEEE lnfocom, pp. 1056-1064
SIEMENS (1997) SARE (PBX4110), http://www.siemens.de
Toshiba (1997) Meteor (TC35856F), http://www.toshiba.com
TranSwitch (1997) SARA II (TXC-05551), http://www.txc.com
Traw, C.B.S., Smith, J.M. (1993) Hardware/software organization of a high­

performance ATM host interface, IEEE JSAC, 11(2), 240-253
Wrege, D.E, Liebeherr, J. (1997) A Near-Optimal Packet Scheduler for QoS networks.

IEEE lnfocom, Kobe

