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Abstract In this paper we describe how we can refine both objects and operations 
in an Object-Z specification. In particular, we will be concerned with 
changes of granularity of both objects and operations. Objects in that 
we wish to change the structure of objects in a specification. Operations 
in that we wish to provide explicit support for action refinement in this 
language. There are clear advantages in being able to change such 
levels of granularity when performing a refinement. In this paper we 
discuss the issues surrounding such refinements and derive general rules 
to support their use. We illustrate our ideas by looking at a specification 
of a cash point machine at a bank. 
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1. INTRODUCTION 
In this paper we illustrate, through a worked example, how we can 

refine the granularity of both objects and operations in Object-Z. 
It could be argued that one of the principal problems of designing a 

system formally is the need to fix an appropriate level of abstract ion 
when initially describing the system. In particular, designers need to 
choose the granularity of the operations or events in the initial model 
and there is a balance to be found between too few events arising from 
a very abstract view or too many events which can clutter the under­
standing (and indeed verification) of the system. Furthermore, in an 
00 notation the granularity of objects must also be fixed in the initial 
specification, and again there is a tension between a suitably abstract 
view vs the actual division of objects appropriate in an implementation. 
For example, an implement at ion may require objects to be distributed 
across several nodes, whereas in the initial specification such detail is 
neither relevant nor helpful. 
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The problem arises because there is little support for changing the 
granularity of specifications when they are developed. Development in 
the context of formal specification means the use of refinement, imple­
mentation or testing relations which define the acceptable implementa­
tions of a specification, usually on the basis that the implementation 
exhibits behaviour that was feasible in the original specification. Exam­
pIes of development relations indude data refinement in Z [8, 15], the 
failures-divergences preorder in CSP [9], and reduction in LOTOS [4]. 

However, the majority of these relations leave the granularity of com­
ponents (e.g. operations and objects) unchanged. For example, refine­
ment of events is usually atomic, an event cannot be broken down into its 
constituent parts under a refinement. It is this that forces the developer 
to retrofit the level of granularity in the initial specification. Clearly 
there would be many benefits in being able to change the granularity of 
both objects and operations in a refinement, and the purpose of this pa­
per is to describe a solution to this problem in the specification language 
Object-Z. 

Object-Z [7] is an object-oriented extension of the Z [12] notation, 
and there has been a certain amount of interest in using Object-Z to 
specify distributed systems, particularly within the ODP initiative. An 
Object-Z specification consists of a number of interacting dasses and 
objects. Each dass consists of astate space, an initialisation together 
with a collection of operations which change the state and thus define 
the behaviour of the dass. 

In Object-Z and Z the implementation relation is called data refine­
ment [14]. The principle of data refinement is that the more concrete 
specification can reduce any non-determinism present in the abstract 
specification. To verify a refinement a retrieve relation is used which re­
lates the concrete to abstract states and allows the comparison between 
the data types to be made on a step by step basis by comparing an 
abstract operation with its concrete counterpart. 

The main work on refinement in state-based specification languages 
has been in a non-object-oriented setting, however there has been some 
related work on refinement for object-oriented formal methods. For ex­
ample, adefinition of refinement for Object-Z has been given in [11], 
however, a restricted subset of Object-Z was used where dasses could 
not contain objects as state variables. In this paper we relax that re­
striction and show how we can use the definition of refinement to change 
the structure of objects in a specification. 

In addition to objects the other aspect we consider is that of opera­
tions. The step by step comparison of operations that refinements make 
is possible because the specifications are assumed to be conformal [8], 
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i.e. there is a one-one correspondence between abstract and concrete op­
erations, so each abstract operation has a concrete counterpart. In this 
paper we re lax that assumption to discuss refinements where an abstract 
operation is refined by, not one, but a sequence of concrete operations. 
Providing such an action refinement will help solve the problem men­
tioned above, namely it will allow a natural change of granularity to 
be expressed as part of the development process. This could also en­
able interleavings of concrete operations w hich might be necessary for 
efficiency reasons. 

Action refinements arise naturally in a number of settings. The par­
ticular example we will look at is a cash point machine with an operation 
that requires as input a sequence of digits representing the p.i.n. of the 
user. At the abstract level this is described as a single atomic operation, 
but at the concrete level we may wish to dispense with this assumption 
and specify the process of entering the input digits one by one. 

Such action refinements have been extensively discussed in the con­
text of process algebras, usually under the name of action refinement 
[2, 10]. The difficulty in a process algebra is due to the interleaving 
semantics and in particular the law that allb = a; bOb; a. Incorpora­
tion of action refinement and the requirement that semantic equivalences 
should be congruences with respect to refinement means that the natural 
interleaving semantics has to be abandoned. 

However, in Object-Z and Z there are no such constraints because 
there are no global behavioural constructors such as 11 in a process al­
gebra. The 11 primitive in Object-Z is a schema calculus operator which 
builds a single new operation rat her than defining a temporal constraint 
over existing behaviours. So the situation which causes the problem in a 
process algebra never occurs in a state-based language (i.e. the standard 
semantics can be used and equivalences all still hold). There are so me 
simple examples of action refinements in state-based languages, e.g. pro­
tocol refinements in B [1], in Z [14] and buffers in B [5]. These approaches 
introduce a skip operation (i.e. stuttering step) in the abstract specifi­
cation. Such an operation produces no change in the abstract state, and 
the concrete system is constructed so that one of the concrete operations 
refines the abstract operation whilst the other refines skip. 

However, although some action refinements can be verified in such a 
manner we wish to go furt her and consider refinements where we split 
a collection of inputs or outputs across several concrete operations as in 
our cash point example. Because we are transforming the inputs/outputs 
in this fashion the concrete operations don't refine skip, and such a 
refinement cannot in general be verified using abstract stuttering steps. 
In this paper we develop machinery to verify action refinements where 
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the inputs/outputs can be split and combined across the operations in 
a concrete decomposition. 

The structure of this paper is as follows. In Section 2 we discuss the 
standard notion of refinement in Object-Z. In Section 3 we illustrate how 
we can refine the dass structure of a specification and thus change the 
granularity of objects during development. Section 4 goes on to discuss 
the problem of decomposing operations in a refinement, and Section 5 
looks at the solution. 

2. REFINEMENT IN OBJECT-Z 
In this section we discuss how to refine an Object-Z specification. The 

definition of refinement in Object-Z is a simple adaption of refinement in 
Z. That is, refinement of a dass A by a dass C requires that we relate the 
two dass es by a retrieve relation linking the state spaces in the abstract 
and concrete dasses. Then the initial states of the dasses must be related 
in the standard fashion and each abstract operation in dass A must be 
matched by a concrete counterpart in C such that the preconditions are 
identical modulo the retrieve relation (but not weakened because of the 
meaning of preconditions in Object-Z), and the effect of the concrete is 
consistent with the behaviour of the abstract. 

This assumes the specifications are conformal, i.e. for each abstract 
operation AOp there is exactly one concrete operation COp. It also 
assumes that the inputs and outputs of the concrete operation are iden­
tical to those of the abstract operation. For the moment we will assume 
this, but in Section 4 we will re lax this condition when we decompose 
individual operations. 

We can summarise the requirements of refinement in Object-Z in the 
following definition, where A.STATE denotes the state schema in the dass 
A etc, and A.INIT denotes the initialisation. 

Definition 1 Object-Z refinement 
An Object-Z class C is a refinement of the class A if there is a retrieve 
relation R such that every visible abstract operation A Op is recast into 
a visible concrete operation COp and the following hold. 

1 V C.STATE • C.INIT ::::} (:3 A.STATE • A.INIT 1\ R) 

2 V A.STATE; C.STATE. pre AOp 1\ R {:::::::} pre COp 

3 V A.STATE; C.STATE; C.STATE'. RI\COp ===}:3 A.STATE' • R' I\AOp 

One difference between refinement in Z and refinement in Object-Z is 
in the treatment of preconditions of operations. Refinement in Object-Z 
requires that preconditions are preserved (condition 2 above), whereas 
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in Z preconditions can be weakened under refinement. This arises due 
to different interpretations of a partial operation in Z and Object-Z. In 
Z the meaning of an operation specified as a partial relation is that it 
behaves as specified when used within its precondition, and outside its 
precondition, anything may happen. However, in Object-Z the operation 
is not enabled outside its precondition. Therefore guards cannot be 
modelled in Z since all operations are always enabled, whereas in Object­
Z outside the precondition an operation will be refused. 

An example of refinement in Object-Z using this definition appears 
in [11] where a restriction is made that dasses do not contain object 
instantiations. In fact the above definition can serve as adefinition 
of refinement between arbitrary Object-Z specifications (not just two 
dasses) because each Object-Z specification has a main dass through 
which the behaviour of the whole specification is viewed. One Object-Z 
specification is then a valid refinement of another if the main dass of 
the first is a refinement of the main dass of the second. 

We look at two aspects of refinement in this paper. The first will be 
to see how we can refine the dass structure of the specification by intro­
ducing a number of communicating objects in a refinement. Secondly 
we will relax the assumption of operation conformity made above. The 
starting point for this will be to consider the consequences of refining an 
abstract operation into more than one concrete operation. In doing so 
we will need the generality of JO refinement [3] which allows inputs and 
outputs to change under a refinement in a controlled manner. 

Notation. The schema calculus composition and piping (») oper­
ators are used frequently. The composition operator acts as composition 
on the state spaces of two operations, so COPl COP2 is a new operation 
formed by considering the operations as relations on the state space. In 
such a composition the dedarations of COPl and COP2 are merged. The 
piping operator acts as composition on the inputs and outputs of two 
operations, and thus can be seen as a one way communication of the out­
puts of the first into the inputs of the second operation. We also use the 
parallel composition operator, 11, which defines two way communication 
between two operations. 

3. DECOMPOSING OBJECTS IN A 
REFINEMENT 

We now show how we can use the definition of refinement given above 
to verify refinements where a dass is split into a collection of interact­
ing dasses. By developing refinements such as these we can support a 
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change of granularity of the objects in the system. Initial designs can 
then contain few objects, representing an abstract view of the system's 
functionality, and refinements can change this granularity by introducing 
perhaps many objects which reflect the structure of a final implementa­
tion. 

In our example the initial specification consists of a single class ATMo 
which describes a cash point machine. The behaviour of the class is 
defined by operations InserLcard, Passwd, Withdraw etc. A user of 
the machine inserts a card which is modelled by reading the account 
number account? A four-digit p.i.n. is then given, and if this matches 
the account then the user is able to proceed and Withdraw money. 

The bank accounts are modelled as a partial function accts from ac­
count numbers to amounts. The p.i.n. for a given account m is given by 
pins ( m ). The card currently inside the machine is represented by card, 
and we use a boolean to determine whether a transaction is allowed to 
proceed. 

_ATMo __________________ _ 

accts : N -++ N 
pins : N -++ N x N x N x N 
card : N 
proceed : lB 

dom accts = dom pins 

INIT __________________ ___ 

[ card = 0/\ -,proceed 

_ InserLcard ________________ _ 

proceed) 
account? : N 

card = 0 /\ account? E dom pins 
-,proceed' 
card' = account? 
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___ Passwd __________________________________ __ 

,6. (proceed) 
pin? : N x N x N x N 

card i= 0 
pins (card) = pin? ::::} proceed' 
pins (card) i= pin? ::::} -,proceed' 

r- Withdraw --------------------------------­
,6.( accts) 
money! : N 

proceed 
accts' = accts EB {card accts( card) - money!} 

In an implementation the branch of a user is not necessarily co-located 
with the cash point being used, and we therefore want to split this 
description into two separate classes: Bank and CashPoint. These are 
given as follows. 

Bank ________________________________________ ___ 

accts : N -+t N 

Withdraw _______________________ _ 

,6.( accts) 
money!: N 
acct? : N 

accts' = accts EB {acct? accts( acct?) - money!} 
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--
CashPoint __________________________________ __ 

pins : N -++ N x N x N x N 
card: N 
proceed : lR 

INIT I card = 0 1\ -,proceed 

...-- InserLcard 

account? : N 

card = 0 1\ account? E dom pins 
-,proceed' 
card' = account? 

...--Passwd 

pin? : N x N x N x N 

card f: 0 
pins(card) = pin? => proceed' 
pins (card) f: pin? => -,proceed' 

,-Proceed 
proceed! : lR 
acct! : N 

proceed! = proceed 
acct! = card 

The complete behaviour, including communication between the two 
components, is given by the main class ATM1• This includes a bank and 
a cash point, and it promotes operations from these objects to the overall 
dass. A customer can then Withdraw from the bank when the cash 
point gives permission to proceed and has communicated which acct! 
permission is being granted for. The communication 11 then identifies 
acct! with acct? in Withdraw and the correct account is debited. 
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ATkfl __________________________________ _ 

c: CashPoint 
b: Bank 

dom b.accts = dom c.pins 

INIT ____________________________________ _ 

[c.INIT 

InserLcard c.InserLcard 

Passwd c.Passwd 

Withdraw (b. Withdrawllc.Proceed • [proceed! = true]) 
\ {proceed!} 

Then we claim that ATkfl is a refinement oft he class ATkfo. To show 
this formally we need to define a retrieve relation between the two main 
classes, and we use the following, where we have prefixed eaeh variable 
name by the name of the class to keep the variable names distinet. 

R ______________________________________ __ 

ATkfo.STATE 
ATkf1.STATE 

ATkfo.accts = ATkf1.b.accts 
ATkfo.pins = ATkf1.c.pins 
ATkfo.proceed = ATkf1.c.proceed 
ATkfo.card = ATkf1.c.card 

We then have to show that the eonditions in Definition 1 hold. We 
eoneentrate on the eonditions for the operations here, and for every 
operation we have to verify eorreetness and applicability. For example, 
for the InserLcard operation we need to verify that 

pre ATkfo.InserLcard 1\ R <===} pre ATkf1.InserLcard 
R 1\ ATkf1.InserLcard 

===} 3(ATkfo.STATE)' • R' 1\ ATkfo.InserLcard 

In order to do this we note that the use of objeet instantiation (e.g. 
banks and cash points) means that we need a way of interpreting the 
preeonditions, the state spaees and the retrieve relation in their presenee. 
Onee we have done that the verifieation should be straight forward. 

For the state spaee we define (ATkfo.STATE)' to be ATkfo.(STATE)', 
with the proeess being applied reeursively if there are further objeet 
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instantiations. This allows the refinement conditions to access the state 
variables of an object used in a refinement, and this is necessary since it 
is the state variables that alter when an operation is invoked upon that 
object. 

Thus ATMo.STATE' and ATM1.STATE' will be 

ATMo·STATE' ____ _ 
accts' : N --++ N 
pins' : N --++ N x N x N x N 
card' : N 
proceed' : B 

dom accts' = dom pins' 

The latter being: 

b. accts' : N --++ N 
c.pins' : N --++ N x N x N x N 
c.card' : N 
c.proceed' : B 

dom b.accts' = dom c.pins' 

ATM1.STATE' ____ _ 
C.STATE' 
b.STATE' 

dom b.accts' = dom c.pins' 

This interpretation is what we require. Without it (ATMl.STATE)' 
would be 

c' : CashPoint 
b' : Bank 

dom b'. accts = dom c' . pins 

However, this is incorrect because when the object b evolves its internal 
state changes but the references to it is still denoted by band not by b'. 
So (ATMl.STATE)' must contain primed references to the components 
actually altered by the operations, Le. b.accts' and not b' itself. 

This definition then allows us to interpret the state spaces in the 
schema R' so that it can be used in the refinement conditions as desired. 
We also need to calculate preconditions such as ATM1.lnserLcard, that 
is to be able to calculate preATM1.c.lnserLcard. In order to do this 
we need to define pre a. Op for an object a with operation Op. pre a. Op 
should be a schema representing those states where it is possible to apply 
Op on a. Since this depends on the current state of a, we define pre a. Op 
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to be a. pre Op, as the latter defines a schema representing states in a 
when Op is applicable. 

Definition 2 Let A be an Object-Z class containing an operation Op. 
Suppose that the state declaration a : A appears in another class, then 
in that class pre a. Op is defined to be a. pre Op. 

With these definitions in place we can verify the refinement conditions 
above. For example, applicability for InserLcard now requires that 

(card = 0 1\ account? E dom pins ) 
I\{pins = c.pins 1\ card = c.card) 
<==> c.card = 0/\ account? E dom c.pins 

Similarly correctness requires that 

(pins = c.pins 1\ card = c.card 1\ ... ) 1\ 
(c.card = 01\ account? E dom c.pins 1\ 
...,c.proceed' 1\ 
c.card' = account?) 
==> 3 ATMo.STATE' • (pins' = c.pins' 1\ card' = c.card' 1\ ... ) /\ 

(card = 0 /\ account? E dom pins 1\ 
...,proceed' /\ 
card' = account?) 

which are easily seen to be true. The conditions for the other operations 
are similar. 

To summarise, what we have done here is to use the basic refinement 
conditions to verify refinements where we change the granularity of the 
objects in the specification. We have done this by using the standard 
conditions, but interpreting them appropriately in the presence of object 
instantiation. 

4. DECOMPOSING OPERATIONS IN A 
REFINEMENT 

Having decomposed our initial single object into a number of commu­
nicating objects we will now look at the issue of decomposing individual 
operations, Le. look at action refinement in Object-Z. The situation we 
wish to provide support for is an abstract specification containing an op­
eration AOp, and a subsequent refinement where AOp is implemented 
as a sequence of concrete operations: COPl followed by COp2. 

The assumption of conformity in the standard refinement rules means 
that there is one concrete operation for each abstract operation. If we 
are to decompose AOp into COPl COP2, then one choice we could make 
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would be for COPI to refine AOp, and for COP2 to refine a stuttering 
step skip, which makes no change in the abstract state. This preserves 
the conformity of the two specifications and so simple action refinements 
can be verified as two sets of rules, one for refining A Op into COPI and 
the other for refining skip into COp2. 

The requirements on COPl refining AOp are the standard ones and 
the requirements on refining skip to COP2 are: 

V A.STATE; C.STATE. R {::? pre COP2 
V A.STATE; C.STATE; C.STATE'. 

RA COP2 =* 3 A.STATE' • 3A.STATE AR' 

It is in this context that the action refinements given in [14, 5J are 
verified. 

However, we wish to go furt her than this and we want to be able to 
split the input and output across the concrete decomposition. If we do 
so then the operations in the concrete decomposition will not correspond 
to abstract skips. An example will make it clear why this is the case. 

Consider the CashPoint. The Passwd operation accepted the pin in 
one go, but in an implement at ion we wish to accept the 4 digits one at 
a time, with each digit being entered by a separate operation. We are 
therefore going to split this single operation into a sequence consisting of 
4 operations: First, Second, Third and Fourth. Note that, as usual, the 
denial to proceed is only flagged after all the digits have been inserted. 
(The definitions of InserLcard and Proceed are as before and are elided.) 

CashPointl __________________________________ ___ 

pins : N -++ N x N x N x N 
card : N 
proceed : IBl 
temp : se<l4 N 

INIT ______________________________________ _ 

[ card = 0 A temp = ( ) 

InserLcard ... 

Proceed ... 
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,--First 
ß(temp) 
d?: N 

card =J 0 
temp = () /\ temp' = (d?) 

_Second 
ß(temp) 
d?: N 

#temp = 1/\ temp' = temp""" (d?) 

,-- Third 
ß(temp) 
d?: N 

#temp = 2/\ temp' = temp ,..... (d?) 

,--Fourth 
ß(proceed) 
d?: N 

#temp = 3 
pins (card) = temp ,..... (d?) => proceed' 

pins (card) =J temp ,..... (d?) => -,proceed' 

We would like to view this as a refinement of CashPoint. However, the 
refinement cannot be verified by making of one of the concrete operations 
refine Passwd whilst the others refine skip. 

The problem with the refinement is the following. Clearly the retrieve 
relation has to be the identity on the state spaces, and therefore abstract 
skip operations can be refined by concrete operations which only change 
tempo Therefore First, for example, looks a suitable candidate to refine 
skip. However, First (and all the other operations) consumes input, 
therefore it alters the state (as a result of changing the environment) 
and thus does not correspond to skip. The problem is that the inputs of 
Passwd are distributed throughout the concrete operations. This means 
that the rules as they stand can't be used to verify a refinement in 
generaL The rest of this paper is devoted to developing the necessary 
machinery to solve this problem by adapting action refinement rules 
developed for Z [6]. 
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5. ACTION REFINEMENT 
In this section we will consider refinements where we decompose an 

abstract operation into a sequence of concrete operations without requir­
ing that any of the concrete operations refine an abstract skip operation. 
This will solve the problems identified in the example above. 

To do so we will apply and extend the technique of IO-refinement to 
address the issue of decomposing inputs and outputs across a sequence of 
concrete operations. Our example illustrates what we wish to achieve: 
Passwd takes an input pin? : N x N x N x N and breaks it down 
into single inputs d? : N provided a number of times in the concrete 
operations. 

To solve this problem we drop the condition that when we decompose 
A Op into COPl COP2 one of the concrete operations refines A Op and 
the other refines skip. This means that AOp can be replaced by COPl 
followed by COP2, however, if the concrete object performs a single 
instance of COPl (not followed by COp2) then this won't necessarily 
simulate anything at the abstract level. Indeed this may be viewed as 
exhibiting a deficiency of the abstract cash machine specification: it does 
not represent the (realistic) situation where a user only ever enters one 
of the digits of their p.i.n .. 

This is the situation in our example. Passwd is refined by the sequence 
First Second Third Fourth, however, a single instance of First does 
not correspond on its own to any abstract level operation, but only a bit 
of Passwd's functionality. 

With the single requirement that A Op is refined by COPl COP2 
we can now describe the conditions necessary for a refinement to hold. 
Without considering any input and output transformations at this stage 
the formulation is as follows (we omit consideration of the initialisation 
condition as that is unaltered). 

Definition 3 Action refinement without JO transformations 
The retrieve relation R defines an action refinement between two classes 
(where the abstract operation AOp has been decomposed into a sequence 
of concrete operations COPl 3 COp2) if the following hold. 

'V A.STATEj C.STATEj C.STATE'. 
(COPl COp2) /\ R * 3 A.STATE' • R' /\ AOp 

'V A.STATEj C.STATE. pre AOp /\ R {::} pre COPl 
'V A.STATEj C.STATE. pre AOp /\ R /\ COPl {::} pre COP2 

These conditions generalise to an action refinement with an arbitrary 
number of concrete operations in the obvious manner. 
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The conditions in Definition 3 express the following requirements. The 
first says that the effect of COPl COP2 is consistent with that of A Op 
(but can of course reduce any non-determinism in AOp). The second 
says that COPl can be invoked precisely when A Op can be, and the 
third says that when (and only when) COPl has been completed COP2 
can be invoked. Informally these are clearly the correct conditions for 
a refinement of AOp into COPl COp2. Formally they can be derived 
from the relational basis of refinement in the same way that [6] gives the 
relational basis for action refinement in Z. 

This definition is sufficient to verify the applicability conditions for the 
example above, but for correctness we need some input transformations. 
To see this note that if we calculate (First Second Third Fourth) 
we find that we have lost the differentiation between the inputs in the 
concrete operations, Le. this schema composition results in: 

ß(proceed) 
d?: N 

card i= 0 
temp = () 
pins(card) = (d?, d?, d?, d?) ::::} proceed' 
pins (card) i= (d?, d?, d?, d?) ::::} -,proceed' 

which covers only a very limited range of 4-digit p.i.n. codes, and is 
certainly not the same as Passwd. 

5.1. ALTERING THE INPUT AND OUTPUT 
We now consider the transformations of input and output that are 

needed to support action refinements. To do so we will use 10 refinement 
in our action refinements to produce a set of conditions that allow inputs 
and outputs to be distributed throughout a concrete decomposition. 

10 refinement [3, 13] is a generalisation of the standard Z refinement 
rules, which are normally given in terms of a retrieve relation R together 
with two identities id between the inputs and outputs (see Figure l(a)). 
In order to allow the types of inputs and outputs to change, 10 re­
finement replaces the identities id with arbitrary relations IT and OT 
between the input and output elements respectively. Thus IT and OT 
are essentially retrieve relations between the inputs and outputs, hence 
allowing these to change under a refinement in a similar way to changing 
the state space (see Figure l(b)). 

It is necessary to impose some conditions on IT and OT. The first 
is that we require that IT and OT are total on the abstract input and 
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Input 

1 \ 

Input 

/",-L--...:...., \ 
1 \ 

AOp AOp 
1 

( Id\ lid 
I '..... /1 

R \ Input 'l t OUlput 

..... ·--tIr-'"--C-o-p---!.-:.I_-<·_ 

1 
( IT \ L...-__ /OT 

I '..... // 
R \ Input '1 t oulput 

.. - ...... "'il I-- ...... 

(a) S .. ndard .. 1Ine .... nt 01 AOp by COp (b) 10 r.flne ..... nt 01 AOp by COp 

Figure 1 Standard and 10 refinement of operations 

output types. This ensures that every abstract input can be used in 
the concrete operation. The second is that OT must be injective. This 
means that different abstract ("original") outputs can be distinguished in 
the concrete cases because their concrete representations will be different 
as well. 

JT and OT are written as schemas and called input and output trans­
formers. An input transformer for a schema is an operation whose out­
puts exactly match the schema's inputs, and whose signature is made up 
of input- and output components onlYj similarly for output transformers. 
These are applied to the abstract and concrete operations using piping 
(»). To do so we use an overlining operator, which extends componen­
twise to signatures and schemas: x? = xl, xl = x? Thus JT denotes the 
schema where all inputs become outputs with the same basename, and 
all outputs inputs. 

For an 10 refinement of one abstract operation into one concrete op­
eration the following definition is used. 

Definition 4 JO refinement for a single operation 
Let JT be an input transformer for COp which is total on the abstract 
inputs. Let OT be a total injective output transformer fur AOp. The re­
trieve relation R defines an JO refinement if (initialisation is as before): 

Applicability: V A.STATEj C.STATE. pre(IT » AOp) 1\ R {:} pre COp 

Correctness: 

V A.STATEj C.STATE; C.STATE'. 
R 1\ (IT » COp) =} :3 A.STATE' • R' 1\ (AOp » OT) 
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The correctness criteria requires that COp with the input transformation 
should produce a result related by Rand the output transformation to one 
that A Op could have produced. 

10 refinement allows inputs and outputs to be refined in a controlled 
manner. Controlled because since inputs and outputs are observable we 
must be able to reconstruct the original behaviour from a concrete re­
finement. This reconstruction is achieved by using the input and output 
transformers which act as wrappers to a concrete operation, converting 
abstract inputs to concrete ones and similarly for the output. 

Inpu. 
AOp , I 

I \ 
I 

, 
I \ 
I I 
I I 
\ I 
\ I 
\ » I , COp I 

Input cu""" 

5.2. APPLYING 10 TRANSFORMATIONS TO 
ACTION REFINEMENT 

10 refinement is a mechanism to refine the inputs/outputs of one ab­
stract operation into one concrete operation. To apply it fully to action 
refinements we need to be able to spread the inputs/outputs throughout 
a sequence of concrete operations. Because of this there will not neces­
sarily be a 1-1 mapping between the number of abstract inputs/outputs 
and the number of concrete inputs/outputs. 

The principal hurdle to overcome is how to spread the abstract in­
puts/outputs throughout a sequence of concrete operations. To solve 
this problem we will generalise 10 refinement slightly along the follow­
ing lines. 10 refinement is defined as a condition between one abstract 
and one concrete operation, because of that we used a simple transformer 
IT. In order to decompose one abstract operation into a sequence of con­
crete operations we need to use a mapping between an abstract input 
and a sequence of concrete inputs representing the inputs needed in the 
decomposition. Therefore we will generalise our transformers IT and 
OT to produce a sequence of inputs and outputs instead of just one. 

For example, for the Passwd operation and its decomposition, the 
input transformer we use is the following. 
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IT ____________________________________ __ 

pin? : N x N x N x N 
d!: seq4N 

pin? = (d!.1, d!.2, d!.3, d!.4) 

This takes in a single input pin? for the abstract operation Passwd and 
maps it to a sequence for use by the concrete operations. The concrete 
operations then use this sequence one by one. Therefore the abstract 
input pin? has been decomposed and spread throughout the concrete 
sequence as desired. The input and output transformer machinery is 
necessary in order that we can express the intuitive requirements for­
mally in the schema calculus. There are no outputs in this particular 
example so the output transformer is the identity. We then apply the 
ideas from 10 refinement to the definition of action refinement, this re­
sults in correctness criteria such as 

(IT» (First[d!.1/d?] 
Third[d!.3/ d?] Fourth[d!.4/ d?])) /\ R 

:3 CashPoint.STATE' • R' /\ Passwd 

The substitutions, e.g. [d!.1 / d?], are used in order to restore the 
distinction between the individual inputs. Such substitutions allow us 
to describe the process of consuming the inputs one by one explicitly in 
the operations. This correctness condition thus asks that with the input 
wrapper IT the concrete sequence is a refinement of Passwd. 

We now consider the general case of a decomposition of A Op into 
COPI COp2· The general formalisation combines the three conditions 
needed for a action refinement of A Op into COPI COP2 with the use of 
input and output trans formers from 10 refinement. The refinement will 
be defined by three parts: a retrieve relation between the state spaces to­
gether with transformers IT and OT which map abstract inputs/outputs 
to a sequence of concrete inputs/outputs. We can now combine action 
refinement (definition 3) with 10 refinement (definition 4) to produce 
the general conditions for action refinement with 10 transformations. 

The following definition expresses the refinement of A Op into a fixed 
sequence COPI COp2. In fact explicit substitutions (as in First above) 
are only necessary when the decomposition of AOp involves more than 
one occurrence of the same input or output parameter names in the 
concrete operations. If COPI and COP2 are distinct operations with 
distinct parameter names then the formalisation is simplified by the 
omission of the substitutions. 
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Definition 5 Non-atomic refinement with JO transformations 
Let JT be an input transformer for COPl COP2 which is total on the 
abstract inputs. Let OT be a total injective output transformer for AOp. 
The retrieve relation R defines a action JO refinement if: 

V A.STATE; C.STATE; C.STATE'. 
(IT» COPl COp2) AR::::} :3 A.STATE' • R' A (AOp » OT) 

V A.STATE; C.STATE. pre(IT »AOp) A R {:::} pre COPl 
V A.STATE; C.STATE. 

pre(IT » AOp) ARA (IT » COpt) {:::} pre COP2 

The conditions in fuH for the Passwd operation then become: 

(IT» (First[d!.1/d?] 
Third[ d!.3/ d?] Fourth[ d!.4/ d?])) AR 

:3 CashPoint.STATE' • R' A Passwd 

pre(IT » Passwd) A R pre First 

pre(IT » Passwd) ARA (IT » First [ d!.1/ d?]) {:::} pre Second 

pre(IT» Passwd) AR 
A(IT» First[d!.1/d?] Second[d!.2/d?]) 
pre Third 

pre(IT » Passwd) A R 
A(IT » First [ d!.1/ d?] Second[ d!.2/ d?] Third[ d!.3/ d?]) 
preFourth 

which are easily verified. Therefore we have done what we set out to 
achieve. That is, define a set of action refinement rules which are a 
generalisation of standard refinement but aHow the fuH decomposition 
of operations including inputs and outputs. 

6. CONCLUSIONS 
In this paper we have looked at how we can change the granularity of 

both objects and operations in an Object-Z refinement step. To change 
the granularity of objects we view refinement as refining the main class 
of the specification under consideration. By interpreting the state spaces 
and retrieve relation appropriately in the presence of object instantiation 
we can refine a single class into a number of communicating classes. 

To change the granularity of operations we dispensed with the re­
quirement that every concrete operation corresponds to an abstract one. 
This enabled quite general refinements to be derived. To do so we ap­
plied the theory of 10 refinement which extends standard refinement by 
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allowing the retrieve relation to be extended to input and output types 
in addition to relating the state spaces. 
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