
A FORMAL SPECIFICATION OF THE CORBA 
EVENT SERVICE 

Remi Bastide, Ousmane Sy, David Navarre and Philippe Palanque 
LIHS, Universite Toulouse 1, Place Anatole France, F-31042 Toulouse CEDEX France 
{bastide, sy, navarre, palanque}@univ-tlse1 fr 

Abstract: CORBA is a standard proposed by the Object Management Group (OMG) that 
promotes interoperability between distributed object systems. Following the 
standardization of this object-oriented middleware, the OMG has specified a 
set of Common Object Services (COS) that are meant to serve as the building 
blocks of distributed CORBA applications. The COSes are specified using 
CORBA Interface Definition Language (IDL), that describes the syntactic 
aspects of services supported by remote objects. However, CORBA-IDL does 
not support specification of the behaviour of objects in an abstract and formal 
way, and behavioural specification is mostly provided in plain English. To 
overcome this problem, we have proposed a formal description technique 
(Cooperative Objects) based on high-level Petri nets, and developed a software 
support environment. The goal of this paper is to demonstrate that our 
approach is suited to the formal specification of typical CORBA COS, and 
presents a Cooperative Object model of the CORBA event service, a COS that 
provides asynchronous, one-to-many communication between objects. The 
advantages of dealing with a tool-supported, executable formal notation are 
detailed, as weil as the results that can be obtained through Petri net analysis 
techniques. 

Key words: Distributed systems, behavioural specification, CORBA, high-level Petri nets. 

1. INTRODUCTION 

CORBA [15] (Common Object Request Broker Architecture) is a 
standard proposed by the Object Management Group (OMG) in order to 
promote interoperability between distributed object systems. CORBA 
mainly defines a common architecture for an Object Request Broker (ORB) 



372 

and an Interface Definition Language (IDL). An ORB provides the 
middleware necessary to locate server objects on the network, and to route 
invocations between clients and servers regardless of the programming 
language they are written in. To achieve this goal, the CORBA standard 
requires the use of IDL for describing the interface of remote objects. The 
IDL defines basic types (short, float, ... ), structured types (struct, sequence, 
array ... ) and provides signatures of operations for interface types. 

1.1 Tbe CORBA Services 

The OMG has specified a set of common object services (COS) in a huge 
document: the CORBA COSS (Common Object Services Specifications) 
[16]. The CORBA services are designed to be the building blocks of large­
scale CORBA applications and have the stated goal of promoting 
interoperability, as they give standardised solutions to commonly 
encountered problems. Among typical COS are the CORBA Naming Service 
(that allows to retrieve a remote object reference by providing a symbolic 
name) and the CORBA Event Service (which allows event-based 
asynchronous communication using events). 

The specification of the CORBA services is mainly provided by the 
OMG in the form of a mixture of IDL (for the definition of the interfaces) 
and English text (for the specification of the behaviour). The COSes do not 
contain an integrated behavioural description and, as a result, are sometimes 
inaccurate and ambiguous. 

Moreover, the COSS are sometimes left deliberately underspecified. This 
has been a choice of the OMG to leave "quality of service" issues out of the 
specifications, in order to leave flexibility to the implementers of services. 
However, in our opinion, this form flexibility has in several occasions gone 
so far as to hinder interoperability between distinct implementations. 

Furthermore, the OMG does not provide test suites that would allow 
checking the conformity of implementations. Therefore, developers working 
in companies producing implementations of the COS have to overcome 
those inaccuracies and underspecifications using their own experience. As a 
summary, despite the clear objectives of CORBA, the specification leads to 
potential interoperability problems. 

1.2 Formal specification of CORBA systems 

In the framework of the SERPICO project, we have developed a formal 
notation suited to the behavioural specification of CORBA systems: 
Cooperative Objects (CO) [7], [8]. CO are an object-oriented dialect ofhigh­
level Petri nets that allow describing the behaviour of a collection of 



A Formal Specijication olthe CORBA Event Service 373 

distributed objects. The usefulness of combining Petri nets and objects has 
been recognised by several authors [1;2;10]. The CO notation is supported 
by a software tool called PetShop [9] that allows for the interactive editing, 
execution and analysis of specifications. 

The present paper aims at showing that the Cooperative Objects 
formalism can provide a suitable solution to the problem of behavioural 
specification of distributed objects, in the context of CORBA. Moreover, we 
want to show that this formal specification technique is scalable enough to 
cope with large specifications such as the CORBA Event Service. The paper 
is organised as follows: we present in section 2 the Cooperative Objects 
formalism and how it fully supports the CORBA model. Seetion 3 gives an 
overview of the CORBA Event Service, that is formally specified in 
section 4. Section 4 also shortly describes the kind of model analysis and the 
PetShop environment that supports CORBA system modelling. Section 5 
describes the ongoing work and conc1udes the paper. 

2. THE CO FORMALISM 

The Cooperative Objects (CO) [5] formalism is a dialect of object­
structured, high-level Petri nets. The object-oriented approach provides the 
concepts necessary to define the structure of objects and their relationships 
in order to specify the system according to the principles of strong cohesion 
and weak coupling; the theory of Petri nets provides the specification of the 
behaviour of objects and of their inter communications, so that we can 
express both the concurrency between different objects and the internal 
concurrency of an object. 

cla •• BufferSpec .pecifie. Buffer { 
plac. Messages <string> ; 

nterface Buffer ( 

}; 

put( in .tring m) ; 
string get ( ) ; 

T2 

Co <r> :::'\ 

Syntaccic viewpoint: Behavioural !peCi fi cation: 
IDL Interfl" High lenl Petrl nel 

'-----------------------V-

Figure 1. Tbe Cooperative Object dass BufferSpec 



374 

A CO class is the combination of a CORBA-IDL interface and of a high­
level Petri net (the Object Control Structure, ObCS) that specifies the 
behaviour of the interface (Figure J). In the ObCS, tokens are allowed to 
contain references to other objects of the system. As the behaviour of the 
objects is defined in terms of Petri nets, we obtain a set of Petri nets that are 
mutually referenced. 

2.1 Overview of definitions of COs 

The complete formal definition of CO has been provided in previous 
publications [8], [17], and we will only recall informally their main features. 
The aim of this presentation is to allow the reader to understand the models 
in the following sections. CO can be considered as a mapping from CORBA­
IDL to high-level Petri nets. More specifically: 
- The type system (TypeSet) of the ObCS is defined in terms of CORBA­

IDL. Variables having an IDL interface type are called references; 
- Tokens are tuples of typed values. The arity of a token is the number of 

values it holds, and tokens of zero-arity are thus the "basic" tokens used in 
conventional Petri nets. We will call Token-type a tuple of types, 
describing the individual types of the values held by a token. Token-types 
are noted <Typel, ... Typen> or just <> to denote the Token-type of 
zero-arity tokens; 

- Places are defined to hold tokens of a certain Token-type; thus all tokens 
stored in one place have the same Token-type and arity. A place holds a 
multiset of tokens; thus a given token may be present several times in the 
samepiace; 

- Each arc is labelled by a tuple of variables, with a given multiplicity. The 
arity of an arc is the number of variables associated to it. The arity of an 
arc is necessarily the same as the arity of the Token-type of the place it is 
connected to, and the type of each variable is deduced from this Token­
type. The multiplicity of an arc is the number of identical tokens that will 
be processed by the firing of a transition associated to this arc. The general 
form ofan arc inscription is multiplicity*<vl, ... vn>; 

- Transitions have a precondition (a Boolean expression of their input 
variables) and an action, which may use any operation allowed for the 
types of their input or output variables. The scope and type of each 
variable of an arc is local to the transition the arc connects to. 

Enabling ruJe. A transition is enabled when: 
- A substitution of its input variables to values stored in the tokens of its 

input places can be found; 
- The multiplicity of each substituted token in the input places is superior or 

equal to the multiplicity of the input arc; 



A Formal Specijication ofthe CORBA Event Service 375 

- The precondition ofthe transition evaluates to true for the substitution. 

Firing rule. The firing of a transition executes the transition' s action, 
computes new tokens and stores them in the output places of the transition. 
The formalism also supports two arc extensions [13]: test arcs and 
generalised inhibitor arcs. 

2.2 Mapping CORBA-IDL to high-level Petri nets 

We now illustrate the CO-CORBA integration by showing the CO class 
BufferSpec that specifies the behaviour of the interface Buffer, described in 
Figure 1. 

Mapping for services. Each service op defined in an IDL interface is 
mapped to two places in the ObCS net: a Service Input Port (SIP, labeBed 
op), and a Service Output Port (SOP, labelled 212). These two places are 
derived from the IDL, as follows: 
- The Token-type of the SIP is the concatenation of the IDL types of aB in 

and inout parameters of the service; 
- The Token-type ofthe SOP is the concatenation of: 

a) the IDL type ofthe result returned by the service (if any); 
b) the list of the IDL types of aB out and inout parameters of the service. 

The invocation of one service results in one token holding aB in and inout 
parameters being deposited in its SIP. The role of the ObCS net is to process 
this parameter token in some way, and eventuaBy deposit a result token 
(holding the result of the service, plus aB out or inout parameters) in the 
SOP, thus completing the processing ofthe invocation. An invocation can be 
interrupted by the occurrence of an exception, which is modeBed by a 
special exception transition. 

Figure 1 shows the CO class BufferSpec that displays an ObCS and some 
textual annotations. These textual annotations are: 
- The list ofthe interfaces that the CO class specifies (keyword specifies). In 

this case, the BufferSpec class specifies the Buffer interface; 
- The description of the places' token type: for example, the token type of 

Messages is <string> and corresponds to the data inserted in the buffer; 
- The description of the transitions' preconditions and actions, if any. Only 

the transitions with non-default precondition or action need to be stated in 
the textual part. 

The ObCS in Figure 1 complements the CORBA IDL part by providing a 
sensible behavioural specification. The Petri net provided specifies an 
unbounded buffer, where the order of message extraction is done in a non­
deterministic way. In this specification, operations put and get may occur 
concurrently (in terms of Petri nets, transition Tl and T2 are not conflicting). 



376 

The net also describes a blocking semantics for the get operation: the c1ient 
of the get operation is blocked until a message is available (i.e. until the 
transition T2 is enabled to fIre). Alternative behaviours (such as bounded 
buffer, FIFO extraction or non-blocking operations) could be specified just 
as easily. 

The CO formalism distinguishes three kinds oftransitions. All are used in 
the specification ofthe CORBA Event Service in §4: 
- Invocation transitions that are used to invoke CO instances. The action of 

an invocation transition is the invocation of a service offered by another 
object; 

- Instantiation transitions that are used to create instances of a CO c1ass; 
- Exception transitions that interrupt the normal processing of a service. 

The semantics of these three kinds of transitions is defined in terms of 
Petri nets [5], which allows to have a Petri net based semantics for a system 
of communicating objects, and not only for a single isolated object. A 
denotational semantics for the Cooperative Objects formalism is defmed in 
[5]. This shows that object-oriented concepts such as instantiation, 
inheritance and dynamic binding can be formally represented within the 
framework of Petri nets theory. The basic principle of this denotational 
semantics is to construct a single, static high-level Petri net from the ObCS 
of all the c1asses involved in a specification. 

3. OVERVIEW OF THE CORBA EVENT SERVICE 

Formal specification techniques are sometimes criticized on the grounds 
that they deal properly only with small-scale examples (such as the Buffer 
illustrated in Figure 1). The goal of this paper is to demonstrate that our 
approach scales well and allows one to tackle real-life specifications such as 
the COSS. 

Among the fourteen services of the CORBA COSS [16], we have 
selected the CORBA Event Service for the following reasons: 
- It is "self contained": it does not use any other service defined in the 

COSS, unlike many COSes that rely on other COSes for their definition or 
operation. For example, the Life Cyc1e Service uses the Naming Service. 
Besides, the CORBA Event Service does not rely on functionalities 
defined by CORBA like the Interface Repository. It is therefore possible 
to specify completely the CORBA Event Service without making any 
hypothesis on underlying services; 

- It is complex due to its versatility. In particular, the connection to the 
event channel uses a non trivial protocol between event consumers and 
event suppliers; 



A Formal Specijication ofthe CORBA Event Service 377 

- Most ORB vendors implement it. This is not the case for the majority of 
COSes: in fact the OMG has standardised some services for which there is 
not enough demand yet. Therefore the developers are not inc1ined to 
implementing all COSes. 

3.1 Presentation of tbe CORBA Event Service 

The CORBA Event Service ([16], Chap. 4 ppl-33) provides 
asynchronous, "one-to-many", event-based communication, using an event 
channel that allows decoupling event suppliers from event consumers. This 
goes beyond the synchronous and "one to one" client-server invocations 
supported by CORBA, where the c1ient object must always hold a reference 
to the object to be invoked. 

The Event Service defines two communication models according to who 
takes the initiative of the communication of events: 
- The push model in which the consumer is passive and the supplier is 

active. The latter holds a reference to the consumer and invokes the 
consumer's methods for event transmission; 

- The puD model in which the consumer is active. It holds a reference to the 
supplier and requests events from the supplier. 

Orthogonal to the two models of communication, two types of event 
channels are distinguished: 
- The generic event channel that transports events of IDL type any. This 

type is a self descriptive type and allows the transportation of all kind of 
events by encapsulating them in a value oftype IDL any; 

- The typed event channel that transports events of a specific IDL type. 
That mode of transportation allows efficient processing for consumers that 
no more have to analyse a value oftype any. 

3.2 Interfaces and roles 

CORBA Event Service is "typically decomposed into several distinct 
interfaces that provide different views for different kinds of c1ients of the 
service"([16], p. 2-2). However, the term c1ient is misleading in a c1ient­
server context because it infers that only the server is invoked. Therefore we 
use the term customer to refer to the c1ients of the CORBA Event Service 
because the event channel is a c1ient or a server according to the interface it 
shows. 

In this paper, we detail only the generic event channel in push model. As 
such, . the service is defined in two modules and seven interfaces. These 
interfaces are described in Figure 2 and Figure 3 using UML notation. 



378 

CORBA Event Service defines three main roles: 
1. The channel administrators; 
2. The event supplier; 
3. The event consumer. 

EvenlChunel 
management 
ofchannel 
availab i1ity 

con9umerAdmin tor_coftoum.rl () 
SupplierAdmin 
void dtoltroy I) 

management 
ofchannel 

connections 

SupplierAdmin 

PushConsumer 
PullConsumer 

COlL'lumerAdmin 

PushSupplier obtain-pu"h_"uppli.r l) 
PullSupplier obtain-pull_ "uppli.r l) 

Administrators 

Figure 2. Interfaces of the channel administrators in the push model 

Channel administration occurs at two levels: 
- Management of event channel availability. The EventChannel interface 

designates an event channel and is the lead administrator that decides on 
the availability of the event channel (operation destroy) and provides 
connection administrators for the customers of the event channel 
(operations obtain _ supplier _ admin and obtain _ consumer _ admin). ; 

- Management of connections to the event channel. Administrators are 
subdivided in two groups according to the event channel customers they 
care about: the Supplier Admin interface allows the supplying customers of 
the channel to obtain a view of the channel that receives the events 
produced by the customers (operation obtainyushJonsumer). The 
Consumer Admin interface allows the consuming customers to obtain a 
view of the event channel that supplies events to the customers (operation 
obtain yush _supplier). 

customers 
ofthe 

event channel 

Pu.1bSupplier 

I ProxyP"'bSuppUtr 

ofthe vo1a 
event channel ral51l!l (Alre'i"dyConnected, TypeE::rror) 

Event suppliers 

Pus hColtolamll: r ...... _ ..... _. __ ... _ -----

P roxyrusbCODJ ume r 

VQid oonnaat.JMlah _ _ uppli .• r (in PU 3hSuppl iorl 
rais8o!1 (AlreadyConn.ct.d) 

Event conswners 

Figure 3. Interfaces of the event suppliers and consumers in the push model 



A Formal Specijication olthe CORBA Event Service 379 

The PushSupplier interface designates a supplier of events. The operation 
disconnectyush_supplier allows the disconnection of the communication 
between a consumer and a supplier. The ProxyPushSupplier specialises the 
PushSupplier and is the view presented to a customers of the event channel 
that is a consumer of event. 

The PushConsumer interface designates a consumer of events. The 
operation disconnect yush _ consumer allows terminating the communication 
between a consumer and a supplier. The ProxyPushConsumer specialises the 
PushConsumer interface and is the view of the channel presented to a 
customers of the channel that is a supplier of events. 

3.3 A scenario of use of the event channel 

Figure 4 shows a typical scenario of use of the event channel in push 
model. An object (Receptor) wishes to subscribe to an event channel and 
play the role of a consumer of events. Another object (Emitter) wishes to 
subscribe and play the role of a supplier of events for the same event 
channel. The objects Emitter and Receptor connect to the event channel 
independentIy and without informing each other. The event channel plays 
the role of buffer between the consumer and the supplier, and connects each 
of its customers (Emitter and Receptor) to a proxy, by following a weIl 
defined, four steps, connection protocoI: 

oupRd: 
Push9Jpplier 

- xx .... Opft"lloon invOCI'lion/ + YY - OpCI"'IItion ftlpil / Even. dlrfu.io. 

Figure 4. Scenario ofuse ofthe event charmel 

Recep'lor 

conlRer; 
PushConsumer 

1. Emitter and Receptor obtain a reference to the event channel (for 
exampIe, by using a name server to obtain a reference to an EventChannel 
object named "Channei"). The reference found is denoted EC; 

2. Emitter and Receptor ask EC the references to an appropriate 
administrator and obtain respectively a reference to an administrator of 



380 

suppliers (SAd, by invoking for _suppliers) and an administrator of 
consumers (CAd, by invokingfor _consumers); 

3. SAd returns a ProxyPushConsumer (PPushCons) to Emitter upon 
invocation of obtain yush _ consumer and CAd returns a proxy supplier 
(PPushSup) to Receptor upon invocation of obtainyush_supplier; 

4. The connection is established between the event channel and its customers 
after the invocation of the operations connect yush _supplier on 
PPushCons by Emitter and connectyush_consummer on PPushSup by 
Receptor. The latter invocation requires one parameter that is the 
reference to a consumer (consRej), delegated by Receptor, so that the 
proxy supplier PPushSup can invoke the operation push when events are 
available. 

The communication takes place by invoking the operations push on the 
consumers at the entrance of the channel (left side of Figure 4) due to the 
supplier supRej, de1egated by Emitter, and at the exit of the channel due to 
PPushSup (right side of Figure 4). The communication can be stopped by 
invoking the disconnection operations provided by the PushConsumer and 
PushSupplier interfaces of supRej, consRej, PPushCons and PPushSup, or 
by destroying the event channe1 EC. 

The transportation of events from proxy to proxy is not specified by the 
OMG and is left out to implementers. We modelled that transportation with 
an operation handleEvent in the case of the push model. When supRef 
transmits the event myEvent as parameter of the push operation to 
PPushCons, the latter invokes handleEvent on ChannelServer in order to 
route the message to all ProxyPushSupplier objects, like PPushSup. Lastly, 
PPushSup invokes the operation push on consRef with the parameter 
myEvent. We precise the object which supports handleEvent later. 

4. CO-BASED FORMAL SPECIFICATION 

The CORBA Event Service has been designed for maximal versatility, 
but its structure and behaviour are far from being trivial and intuitive. 
Therefore, we first present specification process we went through before 
giving its formal specification. 

4.1 Voluntary or involuntary specification 

The OMG's specification of the CORBA Event Service is voluntarily 
incomplete: In particular it does not state the quality of service a conforming 
implementation should have. For example, the OMG specification does not 
impose a reliable transmission of events through the event channel: events 



A Formal Specijication ofthe CORBA Event Service 381 

may be lost or duplicated. Paradoxically, the OMG's specification says that 
"Clearly, an implementation of an event channel that discards all events is 
not a useful implementation". 

As we wish to provide an accurate behavioural specification of the event 
service, we need to go further than the COSS does: with respect to the OMG 
document, we will provide an overspecification of the event service, in that 
we specify an event service that does not lose nor duplicate the events. 
Obviously, any implementer of the event service chooses to implement a 
given quality of service, and is supposed to document this choice to bis 
customers. In the actual implementations we have experienced, however, 
this information is hardly ever provided. 

4.2 Management of ambiguities in the initial 
specification 

As the starting point of our specification is a document in natural 
language, we were expecting to find underspecifications (involuntary ones 
this time), ambiguities and even contradictions. The objective of the formal 
specification is precisely to detect such flaws in the initial specification and 
to correct them. In the process of our specification, we effectively detected 
ambiguities and underspecifications; but we detected no contradiction. 

When problems were detected, our attitude was: 
- To document precisely the problem: if we detect the problem during the 

formal specification, it is reasonable to believe that implementers of 
CORBA Event Service will also detect it during implementation, and that 
they will solve it. The fact that we identified a problem will guide us 
during the tests of the real implementations; 

- To complete and precise the specification, choosing among alternatives 
the one that seems to us the most logical, the easiest and the most in 
conformity with the philosophy of the CORBA Event Service. Of course, 
it is an arbitrary choice, and other specifiers might not share our views. 
Figure 5, below, displays the type of underspecification we have met in 

the COSS. The figure shows an "informal" state diagram of a proxy as 
defined in [16], p.4-14, along with comments in natural language. This 
specification is largely incomplete: the state diagram is not complete as 
many potential state transitions are ignored (for example, what happens 
when the operation "disconnect" is invoked when the proxy is in the state 
disconnected?). On the other hand, the comments made in naturallanguage 
are ambiguous ("operations are only valid in the connected state": what does 
valid mean for an operation?). 



382 

Proxies in ODe 01 three states: discoMecltd. COMeCled CI' dtslrt1Jtd. Figurc 4-9 
gives. S!ale di"llTam rer a prolty. Tbe nades nf lbe d1"llTWD Ihe ,tales and the cdp 

labellcd with lbe operaIioos thal chan", lbe S!ale nf lbe prolty. Push/pull 
opera!ioos only valid in thc COMUled Stalc. 

FIgure 4-9 Stale diagnm 01 a proxy 

Figure 5. Excerpt of the OMG's specification of the CORBA Event Service ([16], p.4-14) 

module CosEventChannelAdmin { 
// originalOMG specification of thi. module fit. bare 

interface Router{ 

} ; 

void handleEvent(in any data); 
} ; 

interface EventChannelRouter : EventChannel, SupplierAdmin, 
ConsumerAdmin, Router {}; 

interface ProxyPushSupplierExt : ProxyPushSupplier{ 
void deliver(in any data); 

} ; 

interface ProxyConsumerList{ 

} ; 

void add(in ProxyPushConsumer s); 
void remove(in ProxyPushConsumer s); 
void disconnectForAll(); 

interface ProxySupplierList{ 

} ; 

void add(in ProxyPushSupplier s); 
void remove(in ProxyPushSupplier s); 
void disconnectForAll(); 
void pushForAll(in any data); 

Figure 6. Interfaces added to CORBA Event Service 

In order to deal with the underspecifications stated above, we specify the 
behaviour of an extended CORBA Event Service in which new interfaces are 
added to the module CosEventChannelAdmin that defines the event channel 
(c.f. Figure 6). The new interfaces are defined using interface inheritance to 
extend the interfaces previously described in §3.1 in order to specify a useful 
CORBA Event Service. 



A Formal Specijication ofthe CORBA Event Service 383 

We need essentially to specify how the channel routes the events from 
producers to consumers, and to describe how the service manages the proxy 
objects that it creates dynamically during its operation. We therefore 
introduce a Router interface and specialise EventChannel into 
EventChannelRouter. Thus the operation handleEvent, referred to in §3.3 is 
devoted to an EventChannelRouter. The ProxyPushSupplier is also 
specialised in ProxyPushSupplierExt that receives events (operation deliver) 
from the Router and delivers them to its customer. 

4.3 CO-based specification 

The CORBA Event Service has been completely specified using CO, 
faithfully to the OMG specification, in [19]. This paper only presents the 
push model, for space reasons and also because the puB model is very 
symmetric to it, and would not add much to the presentation. We present the 
five CO classes that model the behaviour of: 
- The main interfaces of the event channel: EventChannelRouterSpec, 

ProxyPushConsumerSpec and ProxyPushSupplierExtSpec; and 
- Two helper classes ProxySupplierListSpec and ProxyConsumerListSpec. 

4.3.1 Class EventChannelRouterSpec 

Figure 7, below, shows the class EventChannelRouterSpec that specifies 
the behaviour of the interface EventChannelRouter defined in our extension 
of the OMG's specification. Place active is initiaBy marked with one token 
{<psI, pcl>} that holds references to two lists of proxies: psI is a 
ProxySupplierListSpec (Figure 9) and pcl is a ProxyConsumerListSpec 
(Figure 8). The event channel is ready for operation and can distribute the 
reference to its administrators in accordance to the scenario described in 
§3.3. When the operations for _consumers (top left sub-net) and 
for _suppliers (top right sub-net) are invoked, transitions giveCAd and 
giveSAd return the event channel. 

When a customer requests a ProxyPushSupplier through operation 
obtainyush_supplier (middle left), the instantiation transition givePPS 
returns a new ProxyPushSupplierSpec object. When a customer requests a 
ProxyPushConsumer through operation obtainyush_consumer (middle 
right), the instantiation transition givePPC returns a reference of a new 
ProxyPushConsumerSpec object. For the sake of readability, the ObCS of 
Figure 7 does not represent the operations corresponding to the puB model: 
obtainyulCsupplier and obtainyulCsupplier. These operations return a nil 
object reference so that customers of the event channel cannot work in the 
puB model. 



384 

class EventChannelRouterSpee specifies EventChannelRouter{ 
place aetive <ProxySupplierList, ProxyConsumerList> = 

{new ProxySupplierListSpee() ,new ProxyConsumerListSpee()}i 
place destroyed <>i 
transition givePPS{ 

action { 
r = new ProxyPushSupplierSpee(psl) i 

} 
transition givePPC{ 

action { 
r = new ProxyPushConsumerSpee(self, pell i 

} 
transition pushForAl1 { 

action { 
psl.pushForAII() i 

} 
transition diseonneetForAl1 

action { 
pel.diseonnectForAII() i 
psl.diseonneetForAII() i 

} 
transition tl, t2, t3, t4, t5, t6 { 

action { 
raise new OBJECT_NOT_EXIST() i 

pbgjp ;rEh 

L.---__ 

Figure 7. Class EventChannelRouterSpec 



A Formal Specijication ofthe CORBA Event Service 385 

The ObCS of Figure 7 also describes accurately how the operation 
handleEvent (bottom left sub-net) handles the routing of events to all 
customers of the event channeL Firing the invoeation transition pushFor All 
does the following: 
- It removes an event token from the SIP of handleEvent, that is the routed 

event; 
- It removes the token in place active. Therefore, (1) two events cannot be 

routed simultaneously because the transition pushForAll is disabled; (2) 
no new proxies are added while routing because transitions givePPS and 
givePPC are also disabled; (3) the channel cannot be destroyed while 
routing because transition disconnectForAll is disabled; 

- The action part is executed. The operation pushForAIl (bottom left on 
Figure 9) is requested on the ProxySupplierList, psI. 

The firing of the invocation transition pushForAll ends when the request 
on the ProxySupplierList, psI, is completed. A token <psl,pc1> is then 
deposited in the place active and a token <> is deposited in the SOP of 
handleEvent, which completes the invocation of operation handleEvent. 

Finally, the ObCS of Figure 7 precises the underspecified behaviour of 
the EventChannel when the operation destroy is requested. The invocation is 
completed when the administrators have been destroyed and all the proxies 
have been disconnected. This choice is implied by the fact that destroy is 
supposed to destroy the event channel; acting differently would allow to use 
the event channel after its destruction. 

The event channel switches to inactivity by firing the invocation 
transition disconnectForAll, that requests the operation disconnectForAll 
from the two proxy lists, psI and pcL As soon as these requests are 
completed, the proxy switches to the state destroyed. 

The ObCS of Figure 7 also precises the behaviour of all the operations 
once destroy is requested. All operations will raise the CORBA exception 
OBJECT_NOT-EXIST. Thus customers will realize that the event channel 
no more exists. The transitions tl, t2, t3, t4, t5 and t6 are exeeption 
transitions: they are labelled with the type ofthe exception they raise. 

4.3.1.1 ProxyConsumerListSpee 
ProxyConsumerListSpec (Figure 8) objects are responsible for managing 

the set of ProxyPushConsumerSpec objects given to customers of the event 
channeL Operations add and remove allow adding and removing proxies 
from place proxyConsumers. 

Operation disconnectForAll disconnects and removes proxies from the 
set before returning. Firstly, transition disconnectProxyConsumers is linked 
to the SIP of disconnectForAIl by a test are. Test ares are only involved in 



386 

the enabling rule, but, unlike input arcs, not in the firing rule; thus the tokens 
involved in the enabling substitution chosen for firing the transition are not 
removed. There fore , firing disconnectProxyConsumers allows to empty the 
place proxyConsumers, and its action allows to disconnect the proxies. 

class ProxyConsumerList specifies ProxYConsumerList{ 
place proxyConsumers <ProxyPushConsumer>; 
transition disconnect { 

action { 
s.disconnect-push_consumer() ; 

} 

E------' 
<s> 

disconnectForAll 

L..-_________ d iSCOOocclEor0 

Figure 8 Class ProxyConsumerListSpec 

Secondly, transition kill is linked to the place proxyConsumers by an 
inhibitor arc. Inhibitor arcs are also only involved in the enabling rule and 
do not remove token during the firing: the enabling rule states that the 
inhibitor arc enables the transition kill only if the connected place is empty. 
The occurrence of kill removes the token from the SIP of disconnectForAll 
and puts a token in the SOP of disconnectForAll : the operation returns. 

4.3.1.2 ProxySupplierListSpec 
ProxySupplierListSpec objects play two roles (Figure 9): 

- They manage the set of ProxyPushSupplierExt objects delivered by the 
event channel, exactly like ProxyConsumerListSpec objects do; 

- They are responsible for the effective routing of events to customers of the 
eventchannel. 
The ObCS of Figure 9 describes how the routing is handled when 

operation pushForAli is invoked. Firstly, all proxy reference tokens are 
selected: they are removed from place proxySuppliers and deposited in pI ace 



A Formal Specijication ofthe CORBA Event Service 387 

selection (transition selectAll). Secondly, the event token is chosen in the SIP 
of pushForAll (transition begin) and one token is deposited in place routing. 
Thirdly, the operation deliver is invoked once on all the selected proxy 
references (invocation transition deliver). Finally, when all selected proxies 
have delivered the event the operation returns (transition end). 

class ProxySupplierList specifies ProxySupplierList{ 
place proxySuppliers <ProxyPushSupplier>; 
place routing <>i 
place selection <ProxyPushSupplier>; 
transition disconnectProxySupppliers 

action { 
s.disconnect-push supplier(); 

} -
} 
transition deliver { 

action { 
s . deliver(data) ; 

<a> <a> <a> 

L..-__ _--c discoMeCtForAIl 

L..------+diSQDOIX'lQtpprD 

'.:::::=:: .... deli •• 

Figure 9 Class ProxySupplierListSpec 

4.3.2 CI ass ProxyPushCoDsumerSpec 

Figure 10 shows the class ProxyPushConsumerSpec that specifies the 
behaviour of the interface ProxyPushConsumer defined by the OMG's 
specification (Figure 3). Initially the place unconnected is marked with one 
token, which indicates that the proxy is not connected to a customer of the 



388 

class ProxyPushConsumerSpec specifies ProxyPushConsumer{ 
place unconnected <ProxyConsumerList> = {l*<proxy>}; 
place router <Router> = {l*<router>}; 
place connected <ProxyConsumerList>; 
place destroyed <ProxyConsumerList>; 
place events <any>; 
transition connect { 

action { 
l.add(self) ; 

} 
transition disconnect 

action { 

} 

I . remove (seI f) ; 
s.disconnect-push consumer(); 

} -

transition disconnectEarly 
action { 

l.remove(self) ; 

} 
transition handleEvent { 

action { 
r.handleEvent(data) ; 

} 
transition Tl, T2, T3, T4, TS { 

action { 
raise new OBJECT_NOT_EXIST(); 

Figure J O. Cl ass ProxyPushConsumerSpec 



A Formal Specijication olthe CORBA Event Service 389 

event channel; and has a parameterised marking {<proxy>} which holds a 
reference to a ProxyConsumerList given at instantiation. The place rauter 
has a parameterised marking {<rauter> }, where the variable rauter 
designates a EventChannelRouter. 

Following the scenario of §3.3, the proxy evolves from the state 
unconnected to the state connected when the operation 
connect yush _supplier is invoked for the first time with a non nil reference 
and is destroyed when the operation disconnectyush_consumer is invoked. 
The ObCS details the behaviour and clarifies the inaccuracies of the original 
specification. When requested, operation connectyush_supplier terminates 
in one of the three following ways: 
- a successful connection, transition t5; 
- a failure raising the exception AlreadyConnected if the proxy is already 

connected, invocation transition t8; 
- a failure if the proxy has already been destroyed by a call to operation 

disconnect yush _ consumer. 

When the operation push is invoked, and the proxy is connected, the 
event is first stored locally and the operation terminates (transition tl). The 
EventChannelRouter object is then requested to route the event by a call to 
its operation handleEvent (invocation transition tl1). If the proxy is not yet 
connected, the operation raises the exception Disconnected (transition t8). 

Once the proxy is destroyed (transition t3) all operations raise the 
CORBA exception OBJECT_NOT_EXIST. When the operation 
disconnectyush_consumer is invoked and the proxy is not yet connected the 
proxy is however destroyed (transition t9). 

4.3.3 Class ProxyPushSupplierExt 

Figure 11, below, shows the class ProxyPushSupplierExtSpec that 
specifies the behaviour of the interface ProxyPushSupplierExt defined in 
Figure 6. Initially, the proxy is not connected to a customer of the event 
channel. An invocation of the operation connect yush _ consumer results in 
one of the five following ways: 
1. a successful connection if the parameter of the call is a non nil reference 

(transition t3) and the deposit ofthe reference ofthe PushConsumer ofthe 
customer (Receptor) in place consumer; 

2. a failure raising the exception TypeError if the customer's type does not 
suit the proxy (transition t4); 

3. a failure raising exception BAD _PARAM if a nil object reference is given 
(transition t5); 

4. a failure ifthe proxy is already connected to a customer (transition t6); 
5. a failure ifthe proxy has already been destroyed (transition t8). 



390 

Wehave left some indetenninism between point 1 and point 2 that was 
initially contained in the original specification: specific implementations 
must decide on which conditions the exception TypeError will be raised. 

class ProxyPushSupplierExtSpec specifies ProxyPushSupplierExt{ 
place unconnected <ProxySupplierList> = {l*<proxy>}; 
place connected <ProxySupplierList, PushConsumer>; 
place destroyed <>i 
transition connect { 

action { 
l.add(self) ; 

} 
transition disconnect, disconnectEarly { 

action { 
l.remove(self) ; 

} 
transition push { 

action { 
s.push(data) ; 

} 
transition Tl, T2, T3, T4, TS { 

action { 
raise new OBJECT_ NOT_EXIST(); 

TI 

<a> 

T4 1 
.ew OBJECI NOT 

Figure 11. Class ProxyPushSupplierExt 

mnntd pnlb mn,"m« 

The operation deliver (bottom center), called by the EventChannelRouter 
that created the ProxyPushSupplierExt, will call the push operation of the 



A Formal Specijication ofthe CORBA Event Service 391 

customer that is a consumer of events if the proxy is connected (transition 
t9), or will fail silently raising no exception (transitions t10 and tI1). 

4.4 Model analysis and tool support 

The use of Petri nets as the formal behavioural notation enables us to 
perform several kinds of analysis on the specifications. We give a short 
overview of the kind properties that are obtained with our tool and the way 
they can be interpreted. In Figure 11, we illustrate the P-invariant for the 
ProxyPushSupplierExtSpec: 

Marking(unconnected) + Marking(connected) + Marking(destroyed) = 1. 

It is obtained by mathematical analysis of the Petri net. It means that 
whatever the actions performed by a ProxyPushSupplierExtSpec object, 
there will be one token in mutual exclusion in the three places. From the 
point of view of the specifier, the invariant is interpreted as a desirable 
liveness property. The system .has an initial state (unconnected is marked), 
then evolves to an operational state (connected is marked) and finally 
terminates (destroyed is marked): the tool indicates the transitions 
responsible for the flow of tokens from unconnected to connected (transition 
t3) and from connected to destroyed (transition tI). 

The PetShop environment [9] is designed to integrate seamlessly in the 
development life cycle of a CORBA system. It takes into account the 
following steps: 
• Editing of the behavioural specification: the environment includes a 

syntactical editor of Petri nets that supports the editing of the ObCS and 
the declarative part. 

• Generation from IDL: based on the mapping between CO and IDL, a 
skeleton of the behavioural specification is then built. The IDL is 
directly read at runtime from an interface repository. 

• Mathematical analysis of the models: PetShop includes classical 
analysis algorithms that check properties on the ObCS, such as P and 
Tinvariants or liveness properties ofthe ObCS. 

• Interpretation and debugging of models: in PetShop, each instance of 
a CO class is executed by an interpreter described in [6]. The execution 
is tightly coupled with the editing in order to interactively test the 
behaviour of the model under design without any recompilation. Each 
instance of a CO class is a live CORBA object that can invoke or be 
invoked by any other CORBA object. 

• Distributed execution: PetShop is itself a CORBA server. So it is 
possible from one PetShop to request the instantiation of a class on 
another distant PetShop. 



392 

• Generation of executable standalone prototypes: It is possible to 
generate standalone prototypes, that can be executed outside the 
environment. 

Using the PetShop environment, we have been able to produce an 
executable formal specification of the CORBA Event Service. The tool 
support has been particularly useful as it provided assistance to detect 
mi stakes thanks to invariants analysis and to be more rigorous on the 
expressions used on arc expressions as the tool is unforgiving where a 
human user understands the meaning. In turn, the interpretation was very 
important to get a feel of what was happening and allowed us to c1arify 
notions like exception handling and to c1arify the frontier between concepts 
relating to the formalism and those relating to tooling the formalism. 

5. ONGOING WORK 

Generation of test cases. As our experiments show [18], in the current 
state of industrial practice, it is difficult to rely on informal specifications to 
develop reliable and interoperable CORBA servers. A promising research 
direction consists in combining formal specifications techniques and testing 
techniques to derive functional tests of components under development[11]. 
We are working at integrating the works already done at LRIand EPFL 
[3;4;12]. The theoretical problems stern from the inherent non-determinism 
in the models, the concurrency of objects, the definition of a parallel test 
driver that emulates the distributed environment, the oracle problem... We 
have so far outlined the methodology and hope to reach results in the time 
frame ofthe SERPICO project. 

Analysis of object-oriented features. We wish to use Petri net analysis 
techniques not only to prove properties on an isolated object, but also to 
analyse constructs specific to object-oriented systems. For example, when 
two IDL interfaces are related through inheritance, some form ofbehavioural 
inheritance needs to be respected for CO c1asses that specify these interfaces. 
The work presented in [20] is a useful starting point for us, the most relevant 
notion in the context of CORBA appearing to be the one based on the hiding 
of new methods introduced in subclasses. 

6. CONCLUSION 

The approach presented here is motivated by the momentum gained by 
CORBA as a standard for distributed object systems, and by the evidence 
that some form of abstract behavioural modelling supporting the CORBA 



A Formal Specijication ofthe CORBA Event Service 393 

object model can be of great help in the development life-cycle of such 
systems. We have shown that our approach is suitable for the specification of 
services having a high degree of complexity and corresponding to real 
problems. The Cooperative Objects formalism allowed us to specify areal 
service due to its expressiveness in describing complex behaviours, 
including concurrency and synchronisation. Not surprisingly, the resulting 
formal specification is complex: this is quite natural, with regards to the 
complexity of the problem to model. However, due to the object-oriented 
nature ofthe CO notation, individual models (CO classes) remain simple and 
easy to understand (provided the basic notation, high-level Petri nets, is 
known to the specifier). The printed version of the specification is not fair to 
the usability of the CO notation: the Pet Shop tool, with its ability to execute 
the specification and to provide analysis results, is of great help during the 
construction of the models. Moreover, the tool integrates an elaborate 
debugger that allows to inspect and to change the marking of the places, and 
even the net structure at run-time. It is therefore very easy to correct design 
flaws and to investigate different specification scenarios interactively. 

During the process of building the formal specification of the event 
service, we have detected several incompleteness or ambiguities in the 
COSS document. We wanted to know if the actual available 
implementations of the service had suffered the same problem, and if they 
had solved it in a consistent fashion. The experiment and the tests conducted 
on four implementations of the CORBA Event Service justify the need for 
formalisms that describe the behaviour so that implementers can refer to 
complete, precise and non-ambiguous specifications. The tested vendors' 
implementations, based on the OMG's specifications, exhibit many 
behavioural incompatibilities. We summarize the main results of our test 
experiments as reported in [18]: 
- Incompatibility with respect to Liskov's ([14]) substitutability 

principle: if a customers works correctly with one implementation, it may 
weIl work incorrectly with another implementation because servers do not 
react in the same way to invocations or sequences of invocations; 

- Violations of OMG's specifications: some implementations do not 
respect explicit specifications. It may result from the complexity of the 
specification (overlooking a point); but also we can point out that the 
OMG does not give a set ofminimal test cases to test implementations. 

- No explicit indication of the behaviour of the implementations: the 
specification choices that were made to complete and precise the OMG's 
specifications are not documented and result in the customers having to 
test the implementation like we did to determine the behaviour of the 
CORBA Event Service they want to use. We therefore produced some 
reverse specifications based on our test campaign. 



394 

ACKNOWLEDGEMENTS 

The work of David Navarre is funded by ESPRIT Reactive L TR project 
n° 24963, MEFISTO. 

The work of Ousmane Sy is funded by France Telecom R&D (formerly 
CNET) under the SERPICO project, grant number 98 IB 059. 

REFERENCES 

1. Agha, Gul, and De Cindio, Fiorella. "Workshop on Object-Oriented Programming and 
Models of Concurrency." 1 (/h International Conference on Application and Theory 01 
Petri Nets, ICATPN'95, Torino, Italy. Gul Agha, and Fiorella De Cindio, organizers. 
(1995) 
2. Agha, Gul, De Cindio, Fiorella and Yonezawa, Akinori. "2nd International Workshop 
on Object-Oriented Programming and Models ofConcurrency." I7'h International 
Conlerence on Application and Theory 01 Petri Nets, ICATPN'96, Osaka, Japan. Gul 
Agha, Fiorella De Cindio, and Akinori Yonezawa, editors. (1996) 
3. Barbey, Stephane, Buchs, Didier and Peraire, Cecile. "Overview and Theory for Unit 
Testing ofObject-Oriented Software." Tagungsband "Qualitätsmanagement Der 
Objektorientierten Software-Entwicklung", Basel, Switzerland. (1996) 73-112. 
4. Barbey, Stephane, Buchs, Didier and Peraire, Cecile. "A Theory of Specification-Based 
Testing for Object-Oriented Software." European Dependable Computing Conlerence 
(EDDC2), Taormina, Italy. Lecture Notes in Computer Science, no. 1150. Springer­
Verlag (1996) 303-20. 
5. Bastide, Remi. "Objets Cooperatifs : Un Formalisme Pour La Modelisation Des 
Systemes Concurrents." Ph.D. thesis, Universite Toulouse III (1992). 
6. Bastide, Remi, and Palanque, Philippe. "A Petri-Net Based Environment for the Design 
of Event-Driven Interfaces." 1 (/h International Conlerence on Applications and Theory 01 
Petri Nets, ICATPN'95, Torino, Italy. Giorgio De Michelis, and Michel Diaz, Volume 
editors. Lecture Notes in Computer Science, no. 935. Springer (1995) 66-83. 
7. Bastide, Remi, Palanque, Philippe, Sy, Ousmane, Le, Duc-Hoa and Navarre, David. 
"Petri-Net Based Behavioural Specification ofCORBA Systems." 2(jh International 
Conlerence on Applications and Theory 01 Petri Nets, ICATPN'99, Williarnsburg, VA, 
USA. Susanna Donatelli, and Jetty Kleijn, Volume editors. Lecture Notes in Computer 
Science, no. 1639. Springer (1999) 66-85. 
8. Bastide, Remi, Sy, Ousmane and Palanque, Philippe. "Formal Specification and 
Prototyping of CORBA Systems." 13th European Conference on Object-Oriented 
Programming, ECOOP'99, Lisbon, Portugal. Rachid Guerraoui, Volume editor. Lecture 
Notes in Computer Science, no. 1628. Springer (1999) 474-94. 
9. Bastide, Remi, Sy, Ousmane and Palanque, Philippe. "Formal Support for the 
Engineering of CORBA-Based Distributed Object Systems." IEEE International 
Symposium on Distributed Objects and Applications (DOA '99), Edinburgh, Scotland. 
IEEE Computer Society (1999) 264-72. 
10. Diagne, Alioune, and Estraillier, Pascal. "Formal Specification and Design of 
Distributed Systems." IFIP TC6/WG6.I First International Conlerence on Formal 
Methods lor Open Object-Based Distributed Systems (FMOODS'96), Paris, France . Elie 
Najm, and Jean-Bemard Stefani. Chapman & Hall, UK (1997) 



A Formal Specijication ofthe CORBA Event Service 395 

11. Gaudei, Marie-Claude. "Testing Can Be Formal, Too." TAPSOFT '95: Theory and 
Practice ofSoftware Development. 6th International Joint Conference CAAPIFASE, 
Aarhus, Denmark. Lecture Notes In Computer Science, eds. G. Goos, J. Hartmanis, and J. 
van Leeuwen, no. 915. Springer Verlag, Heidelberg (1995) 82-126. 
12. James, P. R., and Gaudei, Marie-Claude. "Testing Aigebraic Data Types and 
Processes: a Unifying Theory." Formal Aspects of Computing 10, no. Special issue. Best 
papers ofFMICS98 (1999) 436-51. 
13. Lakos, Charles. "A General Systematic Approach to Arc Extensions for Coloured 
Petri Nets." 15th International Conference on Application and Theory of Petri Nets, 
ICATPN'94. Lecture Notes in Computer Science, no. 815. Springer (1994) 338-57. 
14. Liskov, Barbara, and Wing, Jeannette M. "A Behavioral Notion of Subtyping." 
ACM TOPLAS 16, no. 6 (1994) 1811-41. 
15. Object Management Group. The Common Object Request Broker: Architecture and 
Specijication. CORBA IIOP 2.2 198-02-01, Framingham, MA (1998). 
16. --. Common Object Services Specijication 198-07-05, Framingham, MA 
(\998). 
17. Sibertin-Blanc, Christophe. "Cooperative Nets." 15th International Conference on 
Application and Theory ofPetri Nets, ICATPN'94. Lecture Notes in Computer Science, 
no. 815. Springer (1994) 471-90. 
18. Sy, Ousmane, and Remi Bastide. Compte Rendu De Tests D'Une Selection 
D'Implementations Du COS Event Service. SERPICO/Lot IIFOR3. Laboratoire UHS -
FROGIS, Universite Toulouse I, 1999. 
19. --. Correction De La Specijication Du COS Event Pour Le Modele Push. 
SERPICOlLot IIFOR4. Laboratoire UHS - FROGIS, Universite Toulouse 1,1999. 
20. van der Aalst, W. M. P., and Basten, T. "Life-Cycle Inheritance, a Petri-Net Based 
Approach." 1B'h International Conference on Application and Theory of Petri Nets, 
ICATPN'97, Toulouse, France. Pierre Azema, and Gianfranco Balbo, editors. Lecture 
Notes in Computer Science, no. 1248. Springer (1997) 62-81. 


	A FORMAL SPECIFICATION OF THE CORBA EVENT SERVICE
	1. INTRODUCTION
	1.1 Tbe CORBA Services
	1.2 Formal specification of CORBA systems

	2. THE CO FORMALISM
	2.1 Overview of definitions of COs
	2.2 Mapping CORBA-IDL to high-level Petri nets

	3. OVERVIEW OF THE CORBA EVENT SERVICE
	3.1 Presentation of tbe CORBA Event Service
	3.2 Interfaces and roles
	3.3 A scenario of use of the event channel

	4. CO-BASED FORMAL SPECIFICATION
	4.1 Voluntary or involuntary specification
	4.2 Management of ambiguities in the initial
specification
	4.3 CO-based specification
	4.4 Model analysis and tool support

	5. ONGOING WORK
	6. CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES




