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Abstract In this paper we introduce a formal approach for the specification of 
mobile code systems. This approach is based on graph grammars, that 
is a formal description technique that is suitable for the description of 
highly parallel systems, and is intuitive even for non-theoreticians. We 
define a special dass of graph grammars using the concepts of object­
based systems and indude location information explicitly. Aspects of 
modularity and execution in an open environment are discussed. 
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1. INTRODUCTION 
The fast and continuous evolution of computing and communication 

capabilities have resulted in massively distributed computational envi­
ronments (e.g. Internet). These environments are often called open 
environments and are characterized by: massive geographical distribu­
tion; highly dynamic environments; no global control; partial failures; 
lack of security and high heterogeneity due to the diversity of commu­
nication links (delay, throughput), cooperating organizations, services 
offered, etc. Due to these factors, developing applications for such en­
vironments is rather complex and therefore research efforts have been 
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directed to improve support for development of distributed applications. 
One such efforts is the research area around code mobility[9]. 

In traditional distributed systems, interacting components are pri­
marily static, i.e., a component remains on the same location during its 
whole life-cycle and interactions with other components take place by ex­
changing messages through the communications network. Code mobility 
can be defined as the capability of dynamicaHy changing the location of 
an executing component. A mobile component is able to stop its exe­
cution on a location, migrate through the network carrying its internal 
state, and res urne its execution on another loeation. Migration is not 
transparent to the distributed software developer, it is instead explicitly 
handled by hirn/her as part of the application's functionality. 

A wide field of applications is foreseen to be scenario for mobile code 
applications. Network management [9], electronic commerce [18], dis­
tributed information retrieval [10], advanced telecommunication services 
and active networks [28], active documents and workflow management 
systems are among them. Code mobility is also weH suited for the ever 
growing field of physical node mobility because it is possible to launch 
remote computations, switch off the local node (e.g., a laptop), switch 
on the node latter, and receive the results of the remote computations. 

The ideas around mobile code and its implementations emerged from 
a practical approach. Most of the standards, platforms and languages 
currently available and widely used for the development of this kind of 
systems[22] reflect this fact: they were constructed in an ad hoc way 
rat her than based on corresponding theoretical investigations. Start­
ing with the 7r-calculus [19][21], there had been some efforts towards 
computational models for mobile systems, e.g. based on abstract state 
machines [17], on mobile ambients [3], and on actors [2]. However, to 
be used in practical applications, high-level specification languages as 
weH as programming languages whose semanties can be described using 
such models must be provided. There are some proposals of correspond­
ing programming languages (e.g. KLAIM [6J, Mobile UNITY [25], Pict 
[23], Nomadic Pict[29]), but on the level of specification there is still no 
formal method that is largely used for mobile systems. When consid­
ering mobile code systems, complex distribution aspects, like location 
and mobility, communication, and, in some cases, failures, are not only 
implementation issues but also part of the functionality of the system. 
Therefore, it is necessary to provide the user with abstract constructions 
to specify and reason ab out those aspects. Process calculi models and 
corresponding languages offer a level of abstract ion based on processes: a 
system is viewed as a composition of (interacting) processes. Although 
this point of view may be adequate for some aspects of a system, it 
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lacks a comprehensive representation of data structure and its distribu­
tion within a system. Object-based models, instead, join descriptions of 
data and processes within one object. In such systems, distribution and 
concurrency appear naturally with the concept of objects as autonomous 
entities. In the practice, object-based approaches to specification and 
programming are widely accepted, although most of the specification 
methods used are informal of semi-formal. In this paper we advocate 
the use of a formal description technique, namely graph grammars, to 
specify mobile code systems. 

Graph Grammar [8] [26] is a formal specification formalism that has 
been already used for the specification of concurrent and distributed sys­
tems [27][24]. The basic idea ofthis formalism is to model the states of a 
system as graphs and describe the possible state changes as rules (where 
the left- and right-hand sides are graphs). The behavior of the system 
is then described via applications of these rules to graphs describing the 
actual states of a system. Rules operate locally on the state-graph, and 
therefore it is possible that many rules are applied at the same time. 
In [20] is was shown that it is possible to encode any 7T'-calculus agent 
into a graph grammar. There, vertices were used to model channels 
(or names) and (hyper)arcs were used to model processes, thus obtain­
ing a graphical representation of a term (agent). The reduction rules 
were then described by graph rules. Using this graph representation, it 
was possible to provide a true concurrency semantics to the 7T'-calculus. 
Note that there the description of the system is given by one graph, 
the rules were just used to implement the reduction of the 7T'-calculus. 
Here we will adopt an approach in which the system will be modeled 
by a graph grammar, the initial state of the system will be modeled 
by a graph (representing the distributed structure of data/objects) and 
possible evolutions of the system will be described by a (user-specified) 
set of rules. Graph grammars are appealing as a specification formalism 
because they are formal, they are based on simple but powerful concepts 
to describe behavior, and at the same time they have a nice graphical 
layout that helps even non-theoreticians understand a graph grammar 
specification. The latter argument was of particular importance for our 
choice of using graph grammars as a specification formalism for mo­
bile code systems because it helps for a good acceptance of a method 
in practice. To make our specification language simpler to use within 
this application domain, we will define a special dass of graph gram­
mars using the concepts of object-based systems and indude location 
information explicitly. 

In Sect. 2 we recall the main concepts of graph grammars according 
to the algebraic approach [7] and introduce the concept of doubly-typed 



48 

graph, that will be used to model object-based and mobile systems. 
In Sect. 3 we show how to describe mobile code systems using graph 
grammars, and in Sect. 4 we discuss (informally) the semantics of such 
systems. Final remarks can be found in Sect. 5. 

2. GRAPH GRAMMARS 
Graphs are a very natural means to explain complex situations on an 

intuitive level. Graph rules may complementary be used to capture the 
dynamical aspects of systems. The resulting notion of graph grammars 
generalizes Chomsky grammars from strings to graphs. A graph gram­
mar is composed by a type graph (representing the types of vertices and 
edges allowed in the system), an initial graph (representing the initial 
state of the system) and a set 01 rules (describing the possible state 
changes that can occur in the system). 

We will use the algebraic Single-PushOut (SPO) approach to graph 
grammars [16][7]. This approach is based on categories of graphs and 
partial graph morphisms. The kind of graph we will use is called doubly­
typed graph. In this Section we will first present the definition of doubly­
typed graphs and (partial) morphisms, and then show how the use of 
this kind of graphs allows for a nice description of object-based systems. 
Then, in Sect. 3 we will expand this model for mobile code systems. We 
assume the reader is familiar with basic notions of category theory. 

2.1. BASIC NOTIONS 
Graphs and homomorphisms: We will consider graphs with vertices la­
beled by attributes, that are values belonging to carriers sets of an alge­
bra [15]. A graphs is a tuple G = (V, E, A, s, t, a) consisting of two sets 
V and E (vertices and edges), one algebra A (attributes) and three total 
functions s, t : E ---+ V and a : V ---+ U(A) (source and target of edges, 
and the attribution function), where U(A) is the disjoint union of carrier 
sets of A. A homomorphism g: G ---+ H is a tripie 9 = (gV,gE,gA) con­
sisting of two partial functions gv and gE mapping vertices and edges 
from G to Hand one total algebra homomorphism gA mapping the 
attribute algebra of G into the attribute algebra of H such that the dia­
grams below commute (the diagram on the left represents two diagrams, 
one for the compatibility with the source and other with the target 
functions). Let GraphP be the category of graphs and morphisms as 
described above (for the formal definition see [15], [14]). Colimits in 
GraphP can be constructed componentwise in the categories of sets 
and of algebras followed by a construction to remove edges whose source 
or target vertices have been deleted. For details see [14]. 
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Va ----9V----;..> VB Aa 1-1 AB 

Notation 2.1 The I---T-arrows denote total morphisms, whereas -t-arrows 
denote arbitrary morphisms (possibly partial).For a partial Junction J, 
dom(f) represents its domain 01 definition, J? and J! denote the cor­
responding domain inclusion and domain restrietion. Each morphism 9 
in the category GraphP can also be lactorized into corresponding com­
ponents g? and g!. 

Typed Graphs and morphisms: A typed graph GT is a tuple GT = 
(G, typeG, T) where G and T are graphs and typeG : G -t T is a total 
graph morphism. A typed graph morphism gT : GT -t H T between 
typed graphs GT and H T is a pair of graph morphisms gT = (g, idT) 
with 9 : G -t Hand idT is the identity on T such that typeG 0 g? = 
typeH 0 g!. A typed graph morphism gT is called an injective/total 
if 9 is injective/total. The category of typed graphs and typed graph 
morphisms over a type graph T is denoted by TGraphP(T). Colimits 
in TGraphP(T) can be constructed componentwise in GraphP[14].1 
Doubly- Typed Graphs and morphisms: As the definitions and results for 
doubly-typed graphs are analogous to the ones for typed graphs, we will 
just sketch them here. To get the category of doubly-typed graphs, one 
has just to take the corresponding definition of typed graphs and sub­
stitute the category GraphP by TGraphP(T). A doubly-typed graph 
(aT, typeGT ,TGT ) will be denoted by a TG /,T. The graph TG is called 
(application) type-graph and the graph T is called model type­
graph (these names will be motivated in Sect. 2.2). Again, colimits 
are constructed componentwise in the basis category, Le., TGraphP(T) 
(see [24] for the proofs). 

2.2. OBJECT-BASED GRAPH GRAMM ARS 

In this paper we consider an object-based system as being a system 
consisting of autonomous entities called objects that communicate and 
cooperate with each other through messages. Objects may have an in­
ternal state and relate to other objects within the system. The behavior 

lIf we had used total graph morphisms, the category defined above could have been defined 
as a comma category (as it was done in [4]). We use an analogous construction for categories 
with partial morphisms called generalized graph structures [14). 
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of an object is described through its reactions to the receipt of messages 
(triggers). This reaction may be to change the object's internal state 
and/or send messages to other objects. An object may perform many 
(re)actions in parallel. 

A way to model object-based systems using graph grammars have 
been presented [13] inspired in the actor model [1] . The basic idea was 
to use graph grammars as a (graphical) language to specify actor sys­
tems. We will follow the same ideas, although using definitions based 
on doubly-typed graphs. 

To describe an object-based system using graph grammars, the first 
step is to identify the entities of this specification model and represent 
them as a graph, called model graph. This is shown in Figure 1. Objects, 
messages and attributes will be modeled as vertices. A message must 
have as destiny an object (modeled by the dashed edge) and may have 
as arguments other objects and/or attributes of data types. An object 
may know other objects and may have attributes. Each attribute vertex 
is attributed with a value belonging to an attribute algebra. At this level 
of abstraction, we will use a variable as attribute to describe that the 
Q-vertex mayassume any value from the carrier sets of the attribute 
algebra in so me instance graph of this type.2 Note that a type graph 
models kinds of objects and links that may be present in an actual state 
of the system, but say not hing about the number of elements of each 
kind that must be present at a particular state. 

<p.I ; rg 
ar : 

; Atr 

bl Ir 

biOWJ 

Figure 1 Object Model Graph oe 

The existence of the model type-graph makes it easier to relate spec­
ifications based on different models: once we have related the models 
at the abstract level (for example, via a morphism between two model 
type-graphs) we can relate specifications of concrete applications based 
on that models. 

2This can be formally described , for example, by using as attribute algebra a term algebra 
over an order-sorted specification. As this topic is not central for this paper, we will not 
discuss it in detail. 
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For each specific object-based system we may have various types of 
objects and messages that are relevant for that application. Thus, to 
build a specification for an object-based system using graph grammars 
one must define the application type-graph. In the next section, Figure 
2 shows the model type graph for mobile code systems, and Figure 5(a) 
shows the application type graph corresponding to one specific mobile 
code application. 

A rule r : L -t R specifies astate change of a system in the following 
way: all items that are in L must be present at the current state to 
allow this state change, all items that are mapped from L to R (via the 
morphism r) will be preserved, all items that are not mapped from L 
to R will be deleted from the current state and all items that are in R 
and are not in L (not in the range of r) will be added to obtain the 
following state. For an object-based graph grammar we will only allow 
rules that consume elements of type message, Le., each rule represents 
areaction to the kind of message that was consumed. Moreover, only 
one message may be consumed at a time by each rule. Note that the 
system may have many rules that specify reactions to the same kind 
of message (non-determinism), and that many rules may be applied in 
parallel iftheir triggers (messages) are present at an actual state (graph). 
Many messages may be generated in reaction to one message. To make 
sure that a rule may be applied whenever its trigger is found in the 
actual state graph we will require that whenever a message appears in a 
graph, it has exactly all specified arguments and exactly one destination. 
Analogously, each object must have all its attributes. 

The following definition is given in a semi-formal way because the 
corresponding formal definitions require a number of concepts that are 
not needed elsewhere in this paper and have been omitted. 

Definition 2.2 Rule. Let AGOG be a finite typed-graph, where OG is 
the object-based model type-graph. A morphism r : LAG/ OG -t R AG/ OG 

is a rule scheme iff Land R are finite and r is injeetive. A rule is a 
rule seheme which satisfies the following eonditions: 
i) There is exactly one message vertex on the lejt-hand side of a rule. In 
this case, m is called trigger of r, denoted by Trig(r). 
ii) The message on the lejt-hand side of a rule is eonsumed by the appli­
eation of the rule (Trig(r) rJ dom(r)). 
iii) Messages have exaetly one destination and all neeessary arguments. 
This is ealled message-completeness. Moreover, all items in L must 
be eonneeted. This latter eondition is to avoid non-loeal side effects. 
iv) Only the attributes corresponding to the internal state of the desti­
nation of a message may appear in Land R. 
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Given a rule scheme r sand a rule r, a specialization is a pair of 
total homomorphisms (Zeft, right) mapping the left- and right-hand sides 
of the rule scheme r s to corresponding left- and right-hand sides of one 
of the rule r such that r 0 left = right 0 rs. 

N ow we can define a graph grammar. 

Definition 2.3 (Object-based) Graph Grammar. A graph gram­
mar is a tuple GG = (AGOG,I,Rules) where OG is the object-based 
model graph, AGOG is a finite typed-graph, called the type of the gram­
mar, I is a finite, message-complete, object-complete (each object has 
exactly all attributes specified in AGOG) doubly typed-graph according to 
AGOG, called the initial graph of the grammar, and Rules is a finite 
set of rules according to AGOG. 

Notation 2.4 When the model graph OG is clear from the context, we 
will write GAG instead of GAG /,OG. 

3. MOBILE CODE SYSTEMS AS GRAPH 
GRAMMARS 

With Mobile Code, the distributed software developer can build appli­
cations taking location into consideration. Migration is not transparent, 
but rather specified explicitly. In order to discuss mobility, some notions 
have to be first established. The distributed environment is assumed to 
be a set of places and a set of mobile components. 

Places work as possible locations where mobile components can run. 
They offer basic facilities and the possibility of accessing other compo­
nents having weH defined interfaces (e.g. naming service, event service, 
etc.). Basic facilities are communications, storage, and processing power. 
The basic functionality of a place is to accept an incoming mobile com­
ponent, launch it and support it during run time until it leaves. 

Mobile components are software components that may migrate during 
their execution from place to place to use other local components and 
basic facilities. A mobile component has internal data or state, code, 
and a set of meta-data or attributes (e.g. identifier, credentials, origina­
tor, operational status, etc.). These components are designed without 
location transparency and may create other mobile components to run 
concurrently in the same or different places. Mobile applications can be 
build from various mobile components. 

Example 3.1 As an example of a mobile code application, consider shops 
that support places to which mobile components can move to and from. The 
place of each shop can be configured following its objectives, with services 
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relative to the shopping activity, e.g., to answer queries about offers and 
prices, to reserve and seil products or services, etc. 

Consider that various shops exist in the distributed environment and that 
a user wants to know which shop has the cheapest price for a product. 
Various approaches can be followed to achieve that. Here we adopt a simple 
one based on mobile code. 

The user launches a mobile component informing a list of shops (ad­
dresses of the places of the different shops) and the product to search for 
(details of how to obtain those place addresses will not be considered here). 
The component sequentially visits the various places informed by the user, 
and in each place interacts with a query service of that shop to disco ver the 
price of the product informed by the user. After visiting all places defined 
by the user, the component returns to the origin place and informs the user 
where the cheapest price for the desired product was found. 

We can model mobile code systems as object-based systems having two 
kinds of objects: places and components. The specification of places sug­
gested here will encompass only the functionalities that must be provided 
by a place (and can not be implemented as components). Everything 
else will be seen as a component. Obviously, some of these components 
may implement the services provided by the place, and some may be user 
defined applications executing on that place. This way we will get a flex­
ible model that can be seen as a first step towards a formal specification 
of active networks: services of a place may be upgraded dynamically 
without having to recompile or make changes to the kernel of the place. 

A component may send messages to other components it knows and 
also to its own place (for example, requesting to move somewhere else). 
Places may send messages to the components lying on it and to other 
places. But if we analyze carefully, we recognize that places have the 
power to act over components: messages among components can only be 
sent if the corresponding places agree, the same holds for move requestsj 
if a place crashes, all components running on it are not accessible any­
more and stop execution (if the place has recovery schemes, components 
may res urne when the place re-initiate, otherwise, the components dis­
appear). Moreover, the attribute describing in which place a component 
is in can not be changed by the component itself (like its object iden­
tity). As we wish to have a high-level specification language for mobile 
code systems, we will abstract from this kind of details. For example, a 
move will be modeled as an atomic operation in which a place is able to 
modify the argument of a component that corresponds to its placement 
information. Figure 2 shows the graph that will be used as model type 
graph to mobile code applications. The arc labeled with is_in carries 
the information ab out the place a component resides. This argument 
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will be mandatory for each component of a mobile code system spec­
ification. The arcs labeled with to indicate the receiver of a message. 
In an instance of type Msg the only outgoing arc shall be of kind to 
because each message in the system must have exactly one receiver, and 
the ingoing arcs represent the parameters of this message (that, accord­
ing to the model type graph MG may be places, components and/or 
attributes). The outgoing ares of components and places represent their 
internal state. The arcs/vertices are labeled/have different shapes such 
that we can distinguish the instances of them without having to show 
explicitly the typing morphism. 

Arr 

Figure 2 Mobile Code Model Graph MG 

As we may see components and places as objects, we can define rules 
and graph grammars for mobile code systems analogously to the corre­
sponding definitions for object-based systems (Defs. 2.2 and 2.3), obtain­
ing the concept of mobile code graph grammars. In this case, we would 
have to relax condition v of Def. 2.2 to allow the deletion/insertion of 
is_in attributes of components by the places they are in. 

When designing a mobile code system, a user specifies components. 
This specification is based on his/her expectations about the behavior 
of the places involved (because places are responsible for handling com­
munication and move requests). Thus, it is imperative that he has an 
abstract and precise description of this behavior. In the following we 
will provide such a description, and then show how (mobile) compo­
nents may be specified using graph grammars and illustrate this by an 
example. 

3.1. SPECIFICATION OF PLACES 
A place basically provides physical resources (like memory, CPU) and 

communication services to the components running on it. Internally, a 
place manages the resources and communication, that is, it implements 
a network operating system. There are two kinds of communication that 
involve places: communication between components and places (place -+ 



Specijication of Mobile Code Systems using Graph Grammars 55 

component: messages to start and finish execution, etc.; component -t 
place: messages to move, find place name server, etc.), and communi­
cation between places (messages that form the communication protocol 
between places). 

The resources and their administration can be modeled very abstractly 
using an algebraic specification. One of the operations, accept : State, 
ReqList -t Bool, may evaluate whether the place may or may not accept 
a new component trying to move to it (based probablyon the number 
of applications actually on this place, the properties of the place and the 
requirements of the component). 

Communication can be modeled using graph rules. Figure 3 presents 
rule schemes to model this, actual communication will be represented 
by a rule that is a specialization of one of these rule schemes. Rule 
scheme Send specifies that components lying on the same or different 
places may communicate (note that this rule scheme specifies local and 
remote message passing, since the specialization homomorphism is not 
required to be injective). Rule scheme ServiceRequest describes that 
components may send messages to the place in which they are executing. 

uJrt 

lau lau i 1 • .,10 

lau 

S erviceRequ •• 

Figure 3 Message Passing Rule Schemes 

Besides computational resources and communication, a place may be 
able to provide move services. The rules describing such service are 
shown in Figure 4. Message M ove can be sent by a component to a place 
(Orig) asking to do a move to place Dest. The attribute req represents 
the requirements of the component. This is a list of services/attributes 
needed for the execution of this component. When a place (Orig) re­
ceives a M ove message from a component, it sends a M oveReq message 
to the place that shall receive the component having as attributes the 
component that wants to move, its requirements and the origin place 
(rule RequestMove). Rule Move specifies what happens when a place 
receives a M oveReq message and decides to accept the component3 : 

3The condition written under the rule are deseribe eonditions that has to be satisfied for the 
rule to be applied. Formally this behavior is obtained by eonsidering as attribute algebra for 
the left- and right-hand side an algebra that satisfies this eondition. 
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the place sends a message to place Orig to inform that the component 
Comp! has successfully moved, sends a message to Comp! telling it to 
continue its execution, and changes its internal state to inc1ude this new 
component. Messages DenyM ove and N otM ove specify the actions to 
be performed when a move request does not succeed: the destination 
place informs the origin place the move was denied, and the latter for­
wards this information to the corresponding component. 

&.Jo Ori 

o..yM""" I.J. 

Ori 

Figure 4 Move Rules M Rules 

3.2. SPECIFICATION OF MOBILE 
COMPONENTS 

To build a specification of a mobile component, the first step is to 
define the application model graph AG to be used. This graph will 
be typed over the mobile code model type graph MG (Figure 2) and 
contains the types of components that are necessary for this applica­
tion, the messages that are exchanged, and the internal structure the 
component being developed. Then we can define the initial state of the 
component (that is a doubly-typed graph over AGMG), and the set of 
rules that describe how this component may evolve. These components 
typically rely heavily on message passing, and therefore the behavior of 
the application can be suitably described by graph rules [24][11] . To be 
able to model mobile code systems faithfully, this grammar must fulfill 
additional requirements: each component vertex must be connected to 
exact1y one place by an is_in are, and each rule that generates messages 
must be a specialization of one of the rules of Figure 3 (because these 
rules describe the possible message passing strategies of the places). 

Each component in an open system may use other components and 
be used by them. When choosing a component to perform some task, it 
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is important that the behavior of this used component is in accordance 
to the desired by the user component. To model this we will include in 
the specification of a component an abstract description of the desired 
behavior of the components that are used by this component. This will 
be called import interface. 

Definition 3.2 Mobile Component. A mobile component is a tuple 
MG = (T, Ini, Rules, Imp) where (T, Ini, Rules) is a graph gramm ar 
with type graph T MG , Imp is a set of rules over T MG such that the 
following conditions are satisfied: 
i) Each component vertex must be connected to exactly one place by an 
lSJn arc. 
ii) Each rule that generate messages must be a specialization of one of 
the rule schemes of Figure 3. 
iii) Each rule in Imp contains no attributes for places or components. 

Example 3.3 Now example 3.1 will be modeled using graph grammars. 
The application type graph (see Figure 5(a)) shows the types of entities in­
volved. A mobile component (MG) searches for the bestPrice of a product 
with name given by prodName in a number of places numPlaces. MG 
holds also registers to each place to be visited (visit), to the origin place, 
to where it is - in currently, and to the place with the best offer. The sce­
nario described also involves information services (ISs) that the MG may 
use (consult) du ring its journey. Details of IS are not given here. When 
MG completes its task it should also give back an answer to the user U. 
The identifiers real, natural and string stand for variables of the corre­
sponding data types (we use a term algebra as attribute algebra). Actually 
all messages (together with their arguments) involved in this application are 
also part of the application type graph (although not drawn in Figure 5). 

The initial graph shown in Figure 5(b) is one of many possible initial 
graphs for this example. In this case MG will look for the best price of 
product product1 in places PI to P3, departing from P _orig. In each of 
these places there are ISs located, which MG can use. 

Figure 6 shows the rules that describe the dynamic behavior of the sys­
tem. Considering the initial state described above, the first rule that will 
be applied is rule M oveN ext. This rule can be applied in three different 
ways, depending on the place chosen to be visited. In the graph grammar 
semantics (that will be discussed in the next section), this choice is non­
de term in istic. The application of this rule will genera te a M ove message 
having as argument the place chosen to be visited. The reader may verify 
that now rules M oveN ext, QueryPrice and U pdate&Proceed or Proceed 
will be applied until there are no more places to visit. Note that rules that 
belong to the specification of places and other components, for example, 
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Figure 5 (a)Application Type Graph - (b) Initial Graph 

I S, were not described here. The move rules belong to the basic functional­
ity offered by places. The import rules for this component(not shown here) 
would describe, for example, that in response to a cost? message the I S 
component will eventually deliver a price message. 

Me ._- p " Me ---
PmUH 

"-'" "--" 

P..J!. P..J!. 

Figure 6 Rules 

4. SEMANTICAL ASPECTS 

The behavior of a graph grammar is given by the applications of rules 
to graphs representing the actual states of the system, starting from the 
initial graph. The applications of rules may occur in parallel if the rules 
do not try to delete the same items. Note that, if a rule preserves an 
item that is deleted by another rule, these two may occur in parallel. 
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This situation corresponds to one write and one read access occurring 
at the same time. 

To be able to apply a rule to a graph representing the actual state of 
a system one must first find out whether the rule can be applied. This 
is done by finding a match of the left-hand side of the rule in this actual 
graph. An application of a rule in a graph, called derivation step, deletes 
from the actual graph everything that is to be deleted by the rule and 
adds the items that shall be created by the rule. 

Definition 4.1 Match, Derivation Step. Let r : LAG -t RAG be a 
rule and GAG be a (doubly-typed) graph. A match of r in G is a total 
doubly-typed graph morphism m : LAG -t GAG . A derivation step of 
a rule r at match m, denoted by G =*r,m H, is the pushout of rand m 
in the category DTGraphP(AGMG ). 

The semantics of a graph grammar can be defined as the dass of all 
computations that can be performed using the rules of the grammar 
starting with the initial state. These computations may be sequential 
or concurrent, giving raise to sequential and concurrent semantic mod­
els. Figure 7(a) Illustrates a sequential derivation for a grammar with 
starting graph I. In this derivation we have a total order «) on deriva­
tion steps (sI < s2 < s3) that denotes the sequence in which they 
have occurred in this computation. If we make a suitable gluing4 of all 
intermediate graphs of this derivation, we obtain a structure called con­
current derivation (Figure 7(b)). Now, the total order that existed in 
the sequential derivation is lost, but we may define a partial order (-<) 
between the steps that describes the causality relation: if sI -< s2 then 
sI must occur to allow the occurrence of s2. A concurrent derivation 
can be seen as an equivalence dass of sequential derivat ions (all possible 
sequential derivat ions corresponding to the totalizations of -< are in this 
dass). A true concurrency semantics for graph grammars can be also 
described by an unfolding construction that gives us a partial order of 
derivation steps [24]. The unfolding construction encompasses informa­
tions about all possible computations that are described by the given 
graph grammar. 

Open systems are highly dynamic, in the sense that places and ser­
vices may be created, deleted, become reachable and unreachable at any 
moment. Thus, a suitable semantics for such systems must take these 
characteristics into account. Note that, to define a semantics for a mobile 
component, it is not enough to consider the behavior of this component 

4This gluing is actually a colimit of a diagram in the category of doubly-typed graphs [14, 24]. 
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Figure 7 (a) Sequential derivation (b) Concurrent Derivation 

in every possible network configuration, but we must also consider its 
behavior in changing network configurations, that is, in a configuration 
that may change while the component is executing. To capture the 
dynamics of the environment we will use a set of rules that describes 
such changes. Some of these rules are depicted in Figure 8. Rules 
createPlace/createComp and destroyPlacejdestroyComp are used to 
create and delete places between placesjcomponents from the network. 
Moreover, a rule that changes (consistently) the internal state of a place 
is needed. The semantics of a mobile component shall consider not just 
the rules that describe the behavior of the component itself, but also and 
the rules that describe (abstractly) the behavior of the used components 
(described in the Import interface of this component), the move rules 
of the place, and the rules that may create j destroy / modify places and 
used components. As a mobile component only uses the kinds of com­
ponents that are described in its specification, the fact that other kinds 
of components may exist in the network are irrelevant for its behavior 
and must therefore not be considered. With these rules we may obtain 
all possible computations of this system taking as initial state a graph 
consisting of the initial graph of the definition of the component itself 
plus an initial state for the places involved. We can consider a trivial 
initial state because other possible initial states may be obtained by the 
dynamic rule that changes the state of places. 

Figure 8 Dynamic Rules 
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5. CONCLUSION 
In this paper we have introduced a formal approach for the specifica­

tion of mobile code systems. This approach is based on graph grammars, 
and the main idea is to model places and components as vertices (with 
attributes), and their behavior as rules specifying the desired actions 
that shall be performed when a place/component receives some kind of 
message. Graph grammars seem to be weIl suited for the specification 
of such systems as they match aseries of important characteristics: 

Concurrency: Applications are composed by various mobile compo­
nents which may be active. Therefore a mobile application is inherently 
concurrent. Graph grammar is a formal description technique that is 
suitable for the description of highly parallel systems. Concurrency is 
not specified explicitly, as, for example, in process calculi, but rat her ob­
tained as a consequence of independence of actions (rule applications). 
As discussed in [20], this approach can be useful to guide an efficient 
implementation of the system (since it allows to derive information con­
cerning the maximal parallelism taking into account the use of shared 
data), as weIl as allow for better strategies to debug a system (since it 
permits to trace back all the actions that have influenced the occurrence 
of an undesired state). From the concurrency semantics of a graph gram­
mar we can obtain causal dependency and conflict relationships that can 
be used to reason ab out the parallelism of a system (actually, due to the 
possibility of read-access to items, we need also a third relationship, 
called weak -or asymmetric- conflict [12]). Even without considering 
all computations of the semantical model, an analysis of the potential 
causal and conflict relationships among rules may already lead to useful 
statements about the system. 

No global state: As the environment is very dynamic, mobile code 
components rely less on aglobaI not ion of state and more on a local 
notion of state, tending to have more autonomy to decide the actions to 
perform in a wider range of situations as if compared to fixed systems. 
This is naturally modeled with graph grammars as the distributed state 
is modeled by a graph and each rule application affects only apart of 
this graph (rule applications have only local effects). The description 
of the state as a graph highlights the relationships among the compo­
nents (since these can be explicitly represented as edges connecting the 
involved components). Such a representation considerably eases the un­
derstanding of the specification. 

Openness: In the massively distributed environment considered, places 
can be created and deleted (shut down) following policies from different 
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organizations and offer different sets of services. Components have in­
dependent life-cycles and enter and leave places, becoming reachable or 
unreachable to other components. These dynamic aspects were consid­
ered by the discussion about semantics in Sect. 4. 

Fault tolerance: As the environment considered is a massively dis­
tributed one, partial failures may be present/arise. Many times it is 
important/necessary to consider the possibility of infra-structural fail­
ures in the applications. As the sketched semantical model takes into 
consideration that the environment may fail, we believe that it will be 
possible to reason about the fault tolerance aspects of a component by 
analyzing the computations of the corresponding graph grammar. This 
is a very interesting subject of future work. 

Modularity: While modeling applications for open systems it is very 
important to have a sound definition of the functionality offered by the 
application and used from other applications. In our approach this was 
(partially) considered using the not ion of import interface, which is part 
of the specification of each component. However we still have to con­
sider the impact of this interface in defining semantical models for mobile 
applications (here we have only discussed the semantics of one mobile 
component). Moreover, it is also important to have an export interface 
describing the services offered by a component at an abstract level. This 
would require a notion of satisfaction of a specification (rule) by a graph 
grammar, that is, we would have to guarantee that the rules specify­
ing the behavior of a given component would always lead to a certain 
state/trigger some message. This topic is currently under investigation, 
as it is also needed to assure that an imported component presents the 
required behavior. Some work in this direction have been done in [20], 
where different notions of observational equivalences for graph grammars 
were defined. Another topic would be to consider whether richer place 
hierarchies, as provided by mobile ambients [3], can be integrated to our 
approach to improve the structuring of the system. 

In addition to all those aspects, graph grammars are intuitive even 
for non-theoreticians. Besides being an unambiguous description of the 
system, a graph grammar allows for formal analysis of properties of 
this system, like complexity (for example, in terms of number of rule 
applications necessary to perform some task) , relationships (causality, 
conflict) among rules, etc. In the project PLATUS [5] an environment 
for simulation of graph grammar specifications is currently under devel­
opment. This environment may be used for the specification of mobile 
code systems as described here. 
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