
USING RELATIONAL AND
BEHAVIOURAL SEMANTICS IN THE
VERIFICATION OF OBJECT MODELS

Christie Bolton
Oxford University Computing Laboratory

Parks Road, Oxford OXl 3QD, UK

Christie.Bolton<1komlab.ox.ac.uk

Jim Davies
Oxford University Computing Laboratory

Parks Road, Oxford OXl 3QD, UK

Jim.Davies@comlab.ox.ac.uk

Abstract This paper shows how a combination of relational and behavioural se­
mantics might be used in the creation and verification of object models.
Specifications written in UML may be expressed in terms of abstract
data types and processesj different not ions of refinemep.t may then be
used to establish consistency between diagrams, or to verify that a de­
sign is faithful to the specification.

Keywords: specificationj verificationj refinementj consistencYj analysisj UML

1. INTRODUCTION
The Unified Modeling Language (UML) [19] is a visuallanguage for

the speeifieation of object-oriented systems. It ean be used to deseribe
both strueture and behaviour at different levels of rigour and abstraetion,
using a variety of graphical notations. As [15] observe, it has a precisely­
defined syntax and statie semantics, but only an informally-specified
dynamic semantics.

A eonsiderable amount of work has been done on the formal semanties
of UML, notably: a type semantics of dass models [11]; a dynamic
semantics for state diagrams [15]; and the eombined work of the precise
UML group [17]. Also important is the work of [2, 1], using LOTOS [14]
to reason about Use Case Maps [6].

http://dx.doi.org/10.1007/978-0-387-35520-7_21

164

In this paper, we build upon this work using formal description tech­
niques to reason about UML specifications; we show how individual
UML diagrams may be used to construct formal descriptions of system
behaviour in terms of abstract data types and processes. The relational
and behavioural semantics of these formal descriptions can then be used
to support the further development and analysis of an object model.

Our immediate objective is not the definition of an adequate or com­
plete formal semantics for UML. We are concerned instead with the
practical issue of how projections of these semantics might be used for
analysis and verification. We restrict our attention to diagrams and
dass descriptions formulated at a particular level of abstraction: one at
which the names of methods and navigability of associations have been
identified.

We show how a formal representation of a dass description can be
used to verify a proposed implementation against specification diagrams.
The dass description itself can be used to construct a single composite
abstract data type, whose semantics can be compared with those of the
individual specification diagrams.

Once we have constructed our formal descriptions, we are able to
compare them using not ions of refinement for abstract data types and
processes. Since both static and dynamic information is present, our
method of comparison requires the definition of a behavioural semantics
for data types.

The particular semantics we employ is a blocking semantics, in the
sense of [5]; operations or methods cannot occur outside their domain
of definition. This might seem, at first, a surprising choice for object
modelling, given that the public methods of an individual dass are al­
ways available. However, in examining the behaviour of combinations
of dasses, we observe that in context, methods are not always available,
either because of synchronisation constraints or because no active ob­
ject is ready to call them. With a blocking semantics, we can encode
information about availability within our data types.

We present two semantic models: one relational, the other behavioural.
Each model admits a notion of refinement, and a corresponding proof
technique. In the relational model, refinement can be established induc­
tively, using simulation rules [22]. In the behavioural model, refinement
can be established by model-checking [18].

The behavioural semantics, one of those identified in [10], is consistent
with the relational semantics, in that the two refinement orderings co­
incide: a data type is refined in the behavioural model precisely when it
is refined in the relational model [4]. This equivalence allows us to move
freely between state-based and behavioural views, using whichever mode

Relational and Behavioural Semantics for Object Models 165

of description, and whichever proof technique, is the most directly ap­
plicable. For example, abstract data types are a natural target for class
descriptions, but sequence diagrams and activity diagrams are more eas­
ily formalised in terms of processes.

The paper begins with abrief introduction to the two semantic mod­
els, and to our notation for data types and processes. In Section 3, we
describe the construction of a data type based upon a class model, and
show how the static and dynamic content of various UML diagrams may
be tested against this description. In Section 4, we discuss the prospects
for extending this work to a larger subset of UML, examine how the var­
ious transformations may be automated, and suggest a strategy for the
verification of implement at ion-level diagrams and byte code. We assurne
some knowledge of Z [21J, and in particular, the schema calculus.

2. SEMANTICS
State-based and behavioural specification techniques can be used to­

gether to create and reason about formal descriptions of object-oriented
systems. As [5J details, a considerable amount of work has been done in
linking these two paradigms: notably [13], [9J and [20J.

2.1. ABSTRACT DATA TYPES
An abstract data type combines a not ion of state with a collection

of named operations, modelled as relations, that may involve input and
output. Two of these operations are distinguished, representing initiali­
sation and finalisation of the data type.

In modelling data types, we may choose either to associate each op­
eration with input from, and output to, the context of the data type, or
alternatively, to maintain the not ion of a local environment that stores
inputs and outputs from initialisation to finalisation. These two ap­
proaches are equivalent: see [22J and [3J.

In this paper, we adopt the second approach, defining our data types
in terms of three generic parameters, representing the internal state
space, the set of possible operation names, and the local environment.

ADT[Local, Name, EnvJ ____________ _

state : JPl Local
init : Env t7 Local
op : Name -++ (Local t7 Local)
final : Local t7 Env

To ensure the adequacy of the local environment approach, we ins ist
that both init and final are total relations.

166

The schema notation of Z, used above in its generic form, can also
be used to describe the components of the data type. We may use
schemas to represent the state space as a set of bindings-mappings from
named identifiers to values-satisfying any specified data type invariant.
Using the schema calculus, we can define operations as relations on the
state space without necessarily having to refer to the components of the
state schema. We can work at the level of schema names, using 0, the
characteristic binding operator; this allows us to refer to the collection of
identifiers in a particular schema without introducing a named instance
of the schema type. State and operation schemas can be factorised using
logical and relational operators.

An alternative approach to the description of data types is offered by
Object-Z [8], an object-oriented extension of Z that indudes not ions of
dass, instance, inheritance and polymorphism. Both paradigms share
the same underlying interpretation in terms of data types.

2.2. RELATIONAL SEMANTICS
We may give a relational semantics to a data type by considering the

visible effects of finite sequences of named operations. In our approach,
the possible effects of a given sequence may be seen as a relation between
environment states, obtained from the sequential composition of the
individual operations.

To re cord the fact that a sequence of operations might be blocked­
it might require the performance of an operation outside its domain
of definition-we augment the environment space with a distinguished
element . .1.. To ensure that the possibility of blocking is propagated to
the end of a sequence, we augment the local state space in the same way,
and consider totalised vers ions of the operations.

If X is a set then we write Xl. to denote the augmented set X U {1..},
and if r is a relation with source X we write r T to denote the totalised
relation r U ((Xl. \ domr) x {1..}) which maps every state outside the
domain of r onto 1... For example, if X were the set {a, b, c} and r were
the relation {a M a, b M a}, then the totalised version r T would be the
relation {a M a,b M a,c M1..,1..M1..}.

Other totalisations are possible. For example, [22] defines one in which
every element outside the domain is mapped to every element in the
augmented state. This leads to a non-blocking semantics in which calling
an operation outside its domain can leave you in any state.

U nder our chosen totalisation the relational semantics of a data type
is then given by

Relational and Behavioural Semantics fOT Object Models 167

[Local, Name, Env] ================
n: ADT[Local, Name, Env] -7 (seqName -++ (Env.L ++ Env.L))

n = (>' ADT[Local, Name, Env] •
(>'P : seq(dom op) •

init T run T p op jinalT))

where run T maps any sequenee of names to a relation upon the aug­
mented loeal state. It deseribes the effeet of ealling the named opera­
tions one after the other and is the sequential eomposition of the totalised
relations eorresponding to eaeh of the named operations.

We say that data type A is refined by data type C if, for eaeh sequenee
of named operations, the effeet upon C is more deterministic than the
effeet upon A. For any sequenee p, the relation n C p must be a subset
of the relation nA p. When this is the ease, we write A C. Formally,

[Abs,Con,Name,Env]============================
_ - : ADT[Abs, Name, Env] ++ ADT[Con, Name, Env]

VA: ADT[Abs, Name, Env]j C: ADT[Con, Name, Env] •
A C {:} Vp: seqName. n C p nAp

Note that the two data types must have the same interface, that is, the
same eombination of Name and Env that defines the signatures of the
operations.

Rather than establishing refinement by means of a generalisation ar­
gument within the semantics, we ean establish it induetively, using a set
of simulation rules. Asound and eomplete set of rules for simulation in
the bloeking relational semanties is derived in [4].

2.3. PRO CES SES

A proeess, as defined in [12], is a pattern of eommunication. We may
use proeesses to represent eomponents in terms of their eommunicating
behaviour, building up deseriptions using the standard operators of the
CSP language.

Proeesses themselves are defined in terms of events: synehronous,
atomie eommunieations between a proeess and its environment. Com­
pound events may be eonstrueted using , . ' - the dot operator. A family
of eompound events is ealled a ehannel. Channels may be used to rep­
resent the passing of a value between eomponents.

The atomie proeess Skip denotes suecessful termination: the end of
a pattern of communication. If P is a proeess and a is an event, then

168

a P is a process that is ready to engage in a, and if this event occurs
it subsequently behaves as P. If P and Q are processes then the process
P Q first behaves as P and then, if P successfully terminates, behaves
as Q.

If P and Q are processes, then P n Q represents an internal choice be­
tween P and Q. This choice is resolved by the process without reference
to its environment. An internal choice over a set of indexed processes
{i : I. P(i)} is written ni : I. P(i).

An external choice between two processes, written P 0 Q, may be
influenced by the environment. This choice is resolved by the first event
to occur. An external choice over a set of indexed processes is written
o i : I. P(i)j if each begins with a different event, then this is a menu
of processes for the environment to choose from.

Processes may be defined by sets of mutually-recursive equations,
which may be indexed to allow parametrised definitions. Parameters
may be used to represent aspects of the process state, and may appear
in guards: we write B & P to denote the process that behaves as P if
B is true, and can perform no events otherwise.

If A is a set of events, then the parallel combination P I [A] I Q is
a process in which components P and Q can evolve independently but
must synchronise upon every occurrence of any event from A. Further­
more, the combination cannot terminate until both processes are ready
to do so. We use P 111 Q as a synonym for P I[0]1 Q.

Finally, if P is a process and A is a set of events, then P \ A is a
process which hehaves as P except that both the requirement to syn­
chronise upon, and the ability to observe events from the set A, has been
removed.

2.4. BEHAVIOURAL SEMANTICS
Several standard semantic models exist for the process language of

asp: see, for example, [18]. For the purposes of this paper we will
employ the traces model and the stable failures model.

In the traces model, each process is associated with a set of traces,
or finite sequences of events. The presence of a trace tr in the semantic
set of a process indicates that it is possible for that process to engage in
that sequence of events.

In the stable failures model, each process is associated with a set of
failures where a failure is a pair in which the first element is a possible
trace, and the second is a refusal. The presence of a failure (tr, re!) in
the semantic set of a process indicates that it is possible for the process
to engage in the trace tr and then refuse every event from the set re!.

Relational and Behavioural Semantics for Object Models 169

Letting E denote the set of all event names and CSP denote the
syntactic domain of process terms, we may define a pair of semantic
functions T and F which each take a CSP process and return respectively
the set of all traces and the set of all failures of the given process:

T: CSP -++ JP>(seq E)
F: CSP -++ JP>(seq E x JP> E)

We may use the stable failures model to give a behavioural semantics
to a data type by exhibiting a process equivalent: the behavioural seman­
tics of a data type A is the failures semantics of its process equivalent,
F(process A). The same approach is taken in [10].

The function process, from data types to process terms is given by

[Local, Name, Env] ================
process : ADT[Local, Name, Env] -+ cSP

process =
(>' ADT[Local, Name, Env] •

let
P (a) = 0 n : dom op I a E dom(op n) •

op.n -+
n a' : state I a t-+ a' E (op n) • P(a')

o
n e' : Env I a t-+ e' E final. final.e' -+ Skip

within
Oe: Env.

init.e -+ n a' : state I e t-+ a' E init. P(a'))

We observe that there are three channels of events: init and final which
take an argument of type Env and op which takes the name of an oper­
ation.

Both the traces and the stable failures models admit refinement or­
derings, based upon reverse containment:

- - , - - : cSP f-t CSP

VP, Q: CSP.
P Q {::} T(Q) T(P) 1\

P Q {::} F(Q) F(P)

These two not ions of refinement are consistent, in that In
each case, refinement may be established through a combination of struc­
tural induction [7], data-independence [16], and exhaustive, mechanical
model-checking [18].

170

Crucially, the failures refinement ordering coincides with the refine­
ment ordering in our relational model. For any data types A and B,

A B {:} process A process B.

A proof of this result is presented in [4].

3. OBJECT MODELLING
In object modelling, we may use a variety of tools and techniques,

such as class models, use cases, scenarios, activity diagrams, interac­
tion diagrams, sequence diagrams, and state diagrams, to arrive at a
suggested dass description.

From the dass description, we can produce a mathematical model of
the system in terms of data types. If necessary, we can extend this model
using additional information from activity diagrams and interaction di­
agrams, either by extending the data type or by placing a constraint
process in parallel.

Using the relational and behavioural semantics of these data types,
we can verify that the design exhibits the intended behaviour, and check
that the various parts of the specification are consistent. Using the
refinement orderings, we can compare our data type description to the
information content of the various use cases and diagrams.

3.1. CLASS DESCRIPTIONS
In this paper, we restrict our attention to dass descriptions in which

all dass names, attributes and methods have been identified. In addition,
we consider only those descriptions in which multiplicity and navigability
information is expressed directly: that is, without the use of association
classes.

Information about the availability and effect of methods can be drawn
either from model annotations using the Object Constraint Language
(OCL), or from an accompanying collection of state diagrams.

We can use state diagrams to provide information about the availabil­
ity of methods if we regard the transition information as complete: that
is, a method is available precisely when there is a suitably-Iabelled tran­
sition from the current state. This assertion applies only to the subset of
the dass methods, and the projection of the class state, presented in the
current state diagram. Other diagrams may present information about
other methods, or about the effects of the same subset of methods upon
other components of the state.

To reason about state diagrams in which the transition information
is intentionally partial, we might employ a non-blocking relational se-

Relational and Behavioural Semantics for Object Models 171

Example

a: int

b: int

methodAO

methodBO

methodAO a += b, b = 0

(b > 0]

methodBO

[&<3) b += 1

Figure 1 Fragments of a dass description

mantics, with a matching behavioural semantics, in which the result
of performing an operation outside its domain is left undefined. With
such a semantics, we may refine the information content of a diagram by
adding transitions. However, no availability information can be inferred.

As an example, consider the simple dass description presented in Fig­
ure 1. The dass diagram describes a single dass with two data members,
a and b, of types A and B, respectively. It also introduces two methods,
methodA and methodB, but reveals only that they expect no arguments.

The accompanying state diagram describes the methods in greater
detail, presenting information about their availability and their effect
upon the state. Each of the boxes contains a predicate written in OeL
describing a constraint upon the combination of values taken by the data
members of the state.

Using this information, we may define a simple data type using Z
schemas to describe dass state and methods.

[state
a, b: Z

OpA _____ _

l:1State

/\ b>O
a' = a + b /\ b' = 0

Init ______________ __

[State'

a' = b' = 0

OpB _______ _

l:1State

/\ a<3
a' = a /\ b' = b + 1

172

After initialisation, the state will satisfy a = b = O. For either method
to be called, the state must satisfy a 0; if methodA is to be called,
then an additional constraint b > 0 must also be satisfied; a similar
condition applies to methodB. If methodA is called, then the resulting
state, described by values a' and b', will satisfy a' = a + b /\ b' = 0; if
methodB is called, then the resulting state will satisfy b' = b + l.

In this example, we have no information about the accessibility of data
members. We will assume that either member could be accessed, and
choose an injective finalisation: such a finalisation can be used to export
any state information to the environment. The data type corresponding
to this example is as follows

Example ______________________________________ _

ADT[State, Name, Env]

state = State
init = {Env; Init. BEnv BState'}
op = {methodA {OpA. BState BState'},

methodB {OpB • BState BState'} }
final E State Env

where the local environment Env is any set into which the state can be
embedded. With a schema to match the relation final,

Final ____________ _

State; Env

BEnv = final BState

we may define a process equivalent for our data type, and hence obtain
a behavioural semantics for our dass description:

ClassDesc =
let

Proc(State) =
pre OpA & methodA -+ n OpA. Proc(BState')
D

pre OpB & methodB -+ n OpB • Proc(BState')
D

n Final. finaLBEnv -+ Skip
within

n Init • init -+ Proc(BState')

Relational and Behavioural Semantics for Object Models 173

3.2. ACTIVITY GRAPHS
To verify that a dass description satisfies the requirements captured

by other diagrams, we need to construct formal descriptions for these
diagrams. In this section, we show how this can be done for a particular
language of activity graphs, corresponding to a strict subset of UML.

The terms in the language, which we will refer to as aetivities, corre­
spond to the action states of a UML activity graph. The atomic terms
are expressed purely in terms of methods; by identifying methods with
events, we may express these activities as CSP processes. We consider
three distinct types of activities: Aet, TAet and Graph.

Each element of Aet is a basic activity with neither an external start­
ing point nor an external stopping point. Two of these basic activities
can be combined either sequentially or in parallel to produce another
basic activity; we use then and parallel to describe these graphical oper­
ators. In addition, an activity may be turned into a terminating activity
using stop. These three cases are illustrated in Figure 2.

Figure 2 Combining simple activities and terminating a simple activity:
then(Act1, Act2), parallel(Act3, Act4) and stop(Act5).

Terminating activities can be combined with explicit forks, or with
decision boxes as illustrated in Figure 3. The branches of adecision
are guarded with Boolean expressions. We may obtain the effect of an
unguarded decision box by setting the guard to true. In Figure 3 we also
illustrate how we may attach a starting point to a terminating activity, in
which case the result is an activity of type Graph and how our diagrams
can be nested: a complete graph can itself be used as a basic activity
using include.

We describe loops within activity graphs by using declare and a Label
to mark where the loop begins and using use to mark where we return
back to the beginning of the loop. We show how these operators may
be used in the example illustrated in Figure 4.

Assuming suitable definitions of Label and Baal, our language has the
following abstract syntax:

Aet ::= atom ((CSP)) I then ((Act x Act)) I parallel ((Aet x Aet)) I
declare ((Label x Aet)) I include ((Graph))

174

Ce--€))

Figure:1 Combining terminating activities: decide(booll, bool2, TAct1, TAct2) and
fork(TAct3, TAct4) and include(start (TAct5)).

TAct stop ((Act)) I lork ((TAct x TAct)) I
decide ((Bool x Bool x TAct x TAct)) I use ((Label))

Graph ::= start ((TAct))

We may now give a behavioural semantics to the language, defining a
semantic function S by structural recursion:

S(atom p) = p
S(then (a, b)) =

S(parallel (a, b)) = S(a) 111 S(b)
S(declare (x, a)) = let x = a within a

S(include 9) = S(9)
S(stop a) S(a)

S (lork (a, b)) S(a) 111 S(b)
S(decide (p, q, a, b)) (p & a) 0 (q & b)

S(usex) S(x)
S(start a) = S(a)

To see the effect of this function consider the activity graph presented
in Figure 4.

This graphical representation corresponds to the following syntactical
definition:

start(then(A,
declare(X,

then(B,
then (parallel (C, D),

decide(p, q, use(X), stop(E))))))).

Expressing the processes corresponding to the individual action states in
terms of the inverse mapping atom'" , and applying our semantic function

Relational and Behavioural Semantics for Object Models 175

Figure 4 An activity graph

we see that the following process expression describes the behavioural
semantics of the activity graph.

A
let

X = B C 111 D)
((p & X) 0 (q & E))

within
X

3.3. ANALYSIS

In attempting to analyse a UML specification, we must take account
of the context in which each diagram is presented. For example, it
may be that a particular activity graph was never intended to convey
availability information for the methods that appear. The choice of
the two behavioural models allows us to treat the information obtained
from a diagram in two different ways; having derived a collection of
process descriptions, we may compare them using the failures model if
availability information is present, or the traces model if the availability
information is incomplete.

In this section we give examples of three simple UML diagrams and
suppose that they had been constructed during the development process
of Example, as described in Section 3.1. We explain how these fragments
of the specification might be compared against the data type and process
corresponding to the final dass description.

176

First consider the simple activity graph shown in Figure 5.

Figure 5 Activity graph for Example

The processes corresponding to the given action states may be ex­
pressed in terms of events corresponding to the given methods on the
dass. Suppose, for instance, that action states corresponded to the fol­
lowing processes

atom'" P = methodB -+ methodA -+ Skip

atom'" Q - methodB -+ methodB -+ Skip

atom'" R - methodA -+ Skip

atom'" S = methodB -+ Skip

then Activity, the process corresponding to this graph, determined by
applying the semantic function S to the syntax of the graph, would be
as foIlows.

Activity - methodB -+ methodA -+ Skip
(methodB -+ methodB -+ Skip 111 methodA -+ Skip) g

methodB -+ Skip

This activity graph is intended only to illustrate a particular use case
and so it would be inappropriate to infer availability information; we
use the traces model to compare Activity with ClassDesc, the process
representing the dass description.

ClassDesc G;, (init -+ Activity) g Stop

This refinement check teIls us that every sequence of methods allowed by
the activity graph is a possible behaviour of the dass description. The

Relational and Behavioural Semantics for Object Models 177

use of Stop to end the activity process avoids the unwanted requirement
that ClassDesc should be able to terminate.

As a furt her example, consider the sequence diagram shown in Fig­
ure 6. In terms of possible behaviours, the information content of this

1Ui' I

methodBO
i

methodBO

I :Example I

o methodAO

t .:

Figure 6 Sequence diagram for Example

diagram might be represented by the following process

Sequence = methodB -+ methodA -+ methodB -+ Skip

This is a process that can engage in events methodB, methodA, and
methodB, in that order, before terminating successfully.

The quest ion of whether the sequence diagram is consistent with the
class model and state diagrams of Section 3.1 could be phrased as a
refinement check in the traces model:

ClassDesc (init -+ Sequence) Stop.

For this to be true, (methodB, methodA, methodB) must be a trace of
ClassDesc .

Alternatively, if the sequence diagram is intended to express the re­
quirement that methodA should be possible after a single occurrence
of methodB, then we might perform a refinement check in the failures
model:

(init -+ Sequence) Chaos ClassDesc .

For such acheck, we compose the Sequence process not with Stop, but
with Chaos, a process that can exhibit any behaviour on the current
alphabet: no restriction should be placed upon ClassDesc once the spec­
ified requirement has been met.

As a final example, we consider astate diagram. Such a diagram may
present only apart of the transition information for the methods that

178

it describes. If this is the case, or if the availability of these methods
depends upon state components that are not present, then we cannot
infer availability information.

In the absence of this information, we may reason about the effects of
methods by totalising the operations of a data type be/ore considering
its semantics, mapping any state outside the domain of definition to
every possible after state. An equivalent effect could be obtained using
a non-blocking semantics, provided that each method is guaranteed to
terminate normally.

e-{ a=O) a>=O
methodBO

[a<3)

Figure 7 State diagram for Example

If the transition information is complete, and the state components
considered are enough to characterise the availability of the methods,
then we may reason using the failures model. As an example, consider
the state diagram shown in Figure 7; this gives rise to the following data
type:

[AbsState
a:Z

and a process equivalent, defined by

Abs =
let

Proc AbsState =
pre AbsOpB &

AbsOpB ____ _

.6.AbsState

methodB -t n AbsOpB • Proc(OAbsState')
o
n AbsFinal • final.OEnv -t Skip

within
n Abslnit • init -t Proc(OAbsState')

Relational and Behavioural Semantics for Object Models 179

where the schema AbsFinal describes an embedding of the new state
into the local environment.

As the two data types have different interfaces-different sets of named
operations-we cannot compare them without first hiding the methods
that are not mentioned in Abs: we may perform the refinement check

Abs (ClassDesc \ methodA)

to confirm that this state diagram is consistent with the dass description
of Section 3.1.

In reasoning about state diagrams, it may be advantageous to reason
entirely within the relational semantics. Here also, we hide any com­
ponents that are not mentioned in the more abstract description: any
operation that is not hidden is composed with the reflexive transitive
dos ure of those that are.

To see how the refinement above could be established using the rela­
tional semantics, observe that the effect of hiding operation OpA in data
type Example is described by the following data type

Con ___ __

ADT[Local, Name, Env]

state = State
init = {Envj Init 9 OpA* • OEnv M OState'}
op = { methodB M { OpB 9 OpA * • OState M OState' } }
final = Final

We may demonstrate a simulation based upon the obvious retrieve rela­
tion

Retrieve 2: AbsState 1\ State

using the simulation rules presented in [4]. We have only to show that

V ConState'j AbsState' • Conlnit Abslnit 9 Retrieve'

V l:l.AbsStatej l:l. ConState •
(Retrieve 1\ ConOpB '* AbsOpB 1\ Retrieve')
1\

(Retrieve 1\ pre AbsOpB '* pre ConOpB)

If these two conditions hold, then we may condude that the class de­
scription presented in Section 3.1 is faithful to the state diagram of
Figure 7.

180

4. DISCUSSION
In this paper, we have shown how relational and behavioural semantic

models might be used in the verification of object models. Using abstract
data types and pro ces ses based upon class models and diagrams, we are
able to check that two different parts of a specification are consistent, or
to verify that a particular requirement has been satisfied.

The language of diagrams used is a strict subset of UML, and only
simple forms have been considered here. In partieular, the abstract syn­
tax for activity diagrams excludes the possibility of swimlanes, cross­
synchronisation, and joins; these require the definition of an additional
category of activity-starting activities-and a mapping from synchro­
nisation bars to internal synchronisation events.

We have said nothing about the translation of class models with multi­
ple classes and associations. However, as [11] shows, formal descriptions
of such models can be constructed by promoting the data types that
model the individual classes. The process of reasoning about these de­
scriptions can then be simplified: [22] shows that refinement distributes
through promotion.

A considerable amount of work remains to be done, both in the appli­
cation of relational and behavioural semanties and in the wider context
of the formalisation of languages such as UML. A particularly promising
area for research is the mechanieal translation of diagrams and the au­
tomatie verification of statie and behavioural properties; it is our hope
that the work presented in this paper may be useful in that regard.

Acknowledgements

We would like to thank Geraint Jones, Perdita Stevens, and Jim
Woodcock for their helpful and insightful comments.

References

[1] D. Amyot and L. Logrippo. Use case maps and lotos for the pro­
totyping and validation of a mobile group call system. Computer
Communications, 23(8), 2000.

[2] D. Amyot, 1. Logrippo, R.J.A. Buhr, and T. Gray. Use case maps
for the capture and validation of distributed systems requirements.
In Proceedings 0/ RE '99, 1999.

[3] C. Bolton. ioData types and processes. Technical Report PRG-TR-
01-00, University of Oxford, 2000.

[4] C. Bolton, J. Davies, and J. Woodcock. On the refinement and
simulation of data types and processes. In K. Araki, A. Galloway,

Relational and Behavioural Semantics for Object Models 181

and K. Taguchi, editors, Proceedings of IFM'99. Springer, 1999.
[5] H. Bowman and J. Derrick. A junction between state-based and

behavioural specification. In P. Ciancarini, A. Fantechi, and R. Gor­
rieri, editors, Proceedings of FMOODS '99. Kluwer, 1999.

[6] R. J. A. Buhr and R. S. Casselman. Use case maps for object­
oriented systems. Prentice-Hall International, 1996.

[7] S. J. Creese and A. W. Roscoe. Verifying an independent family
of inductions simultaneously using data independence and fdr. In
Proceedings of FORTE/PSTV '99. Kluwer Academic Press, 1999.

[8] R. Duke and G. Rose. Formal Object-Oriented Specijication Using
Object-Z. Macmillan, 2000. To appear.

[9] C. Fischer. CSP-OZ: A combination of Object-Z and CSP. In
H. Bowman and J. Derrick, editors, Proceedings of FMOODS '97,
volume 2. Chapman and Hall, 1997.

[10] C. Fischer. How to combine Z with a process algebra. In J. Bowen,
A. Fett, and M. Hinchey, editors, Proceedings of ZUM '98, volume
1493 of LNCS. Springer-Verlag, 1998.

[11] R. B. France, J.-M. Bruel, M. M. Larrondo-Petrie, and M. Shroff.
Exploring the semantics of UML type structures with Z. In H. Bow­
man and J. Derrick, editors, Proceedings of FMOODS '97, volume 2.
Chapman and Hall, 1997.

[12] C. A. R. Hoare. Communicating Sequential Processes. Prentice
Hall, 1985.

[13] C. A. R. Hoare, J. He, and J. W. Sanders. Prespecification in data
refinement. Information Processing Letters, 1987.

[14] ISO. LOTOS - A formal description technique based on the tem­
poral ordering of observational behaviour. IS 8807, ISO, Geneva,
Switzerland, 1989.

[15] D. Latella, I. Majzik, and M. Massink. Towards a formal operational
semantics of UML statechart diagrams. In A. Fantechi P. Ciancarini
and R. Gorrieri, editors, Proceedings of FMOODS '99. Kluwer, 1999.

[16] R. Lazic. A semantic study of data independence with applications
to model checking. PhD thesis, University of Oxford, 1999.

[17] precise UML group. http://www.cs.york.ac.uk/puml/. 2000.
[18] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice

Hall Series in Computer Science, 1998.
[19] J. Rumbaugh, I. Jacobson, and G. Booch. The Unijied Modeling

Language reference manual. Addison-Wesley, 1997.
[20] G. Smith and J. Derrick. Refinement and verification of concur­

rent systems specified in Object-Z and CSP. In Proceedings of
ICFEM'97. IEEE Computer Press, 1997.

182

[21] J. M. Spivey. The Z notation: a reference manual. Prentice-Hall
International, 1992.

[22] J. C. P. Woodcock and J. Davies. Using Z: Specification, Proof and
Refinement. Prentice Hall International Series in Computer Science,
1996.

	USING RELATIONAL AND BEHAVIOURAL SEMANTICS IN THE VERIFICATION OF OBJECT MODELS
	1. INTRODUCTION
	2. SEMANTICS
	2.1. ABSTRACT DATA TYPES
	2.2. RELATIONAL SEMANTICS
	2.3. PROCESSES

	2.4. BEHAVIOURAL SEMANTICS

	3. OBJECT MODELLING
	3.1. CLASS DESCRIPTIONS
	3.2. ACTIVITY GRAPHS
	3.3. ANALYSIS

	4. DISCUSSION
	Acknowledgements
	References

