
An OMG standards-based toolbox for agent mobility and interoperability

MobiliTools: An OMG Standards-Based Toolbox for
Agent Mobility and Interoperability.

Bruno Dillenseger
France Telecom R&D (formerly known as Cnet), BP98, F-38243 Meylan Cedex, France

Abstract: One of the keys to success for applications of mobile and/or intelligent agents in
large-scale open systems such as Internet is the ability of heterogeneous agents
to cooperate and negotiate, and meet if they are mobile. This heterogeneity
support requires the adoption of standards at the underlying distributed system
level to support interoperability in agent management, mobile agent transport,
and agent communication transport. This paper shows how both OMG standards
and a modular architecture based on three kinds of component - agent mobility
kernel, agent communication tools, and agent activity kernel- makes it possible
to build a variety of heterogeneous mobile agent platforms with ad hoc features
while preserving interoperability.

1 YET ANOTHER JAVA MOBILE AGENT
PLATFORM?

1.1 A new paradigm for distributed systems

Classical techniques for distributed systems are based on client/server, code
on demand, and remote evaluation paradigms, which finally result in moving
code, and/or data, and/or control, as described in [14]. Now, mobile agents
bring everything together into a new paradigm.

This paradigm has been introduced by Telescript [15] throw the remote
programming concept, to reduce network load and latency, and to suit
temporary network connectivity. As underlined in [9], there is little chance to
find a "killer application" of mobile agents, but the paradigm is nice for any
distributed application spread in a large-scale dynamic open system, where
adaptation capability, through dynamic re-distribution of a set of cooperating
agents, is a key to coping with changing hosts and network conditions, or to
optimize the execution of distributed services.

But this nice anthropomorphic paradigm may not be so easy to handle
practically. Besides security issues, which are critical to real large-scale
applications, transparency, reliability, scalability and interoperability are other
key challenges.

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2000
H. R. van As (ed.), Telecommunication Network Intelligence

10.1007/978-0-387-35522-1_37

http://dx.doi.org/10.1007/978-0-387-35522-1_37

354 (Bruno Dillenseger)

1.2 Limitations of today's mobile agent platforms

1.2.1 Transparency

Today's typical mobile agent platforms are built on a centralized
programming language, enhanced with remote communication capabilities,
and finally completed with mobility features (e.g. Java-based platforms). This
final add-on of mobility deeply changes the behaviour of the original
programming framework. For instance, many useful JDK packages are not
designed for mobility, and transparency to mobility issues arise for any access
to resources such as threads, files, sockets ...

This is the reason why Java-based frameworks include specific models and
tools for agent activity, communication and mobility, and specify
programming restrictions. For instance, creating threads is discouraged (or
forbidden) by Voyager [20] and Grasshopper [17], because the platform needs
to tightly manage the agent activity. In some platforms, insufficient or
disregarded restrictions can result in unspecified and indeterminist behaviour
if an agent moves while it is involved in communication. As a matter of fact,
communication has an impact on agent activity, and mobility has consequences
on both communication and activity.

Full transparency would consist in having strong mobility as defined in [6],
maintaining not only the agent state, but also the state of its activity and of its
bindings to resources, including on-going communications.

1.2.2 Scalability

Both activity and communication models are of great importance for
scalability. Java-based platforms that create (at least) one thread of activity per
agent are examples of non-scalability if one imagines hundreds or thousands of
agents needing to meet in one place.

Communication tools are also determining in scalability. Agents need to
communicate locally, to take advantage of the remote programming paradigm,
but also remotely, as explained in [13]. Remote communication may be
implemented in a number of ways, with more or less state-of-the-art properties
in terms of persistence, reliability, guaranty of delivery and causality ([2],
[13]). Unfortunately, these outstanding properties typically rely on distributed
algorithms introducing scalability limitations.

1.2.3 Interoperability

Last, but not least, it must also be considered that mobile agents' specific
properties are dedicated to large-scale, dynamic, open distributed systems (e.g.

An OMG standards-based toolboxfor agent mobility and interoperability 355

Internet). In such a context, heterogeneous mobile agents need a common high-
level communication language to understand each other, as well as a
standardised distributed execution and communication infrastructure to
interoperate.

FIPA's [16] and KQML-based Agent Communication Languages are
emerging standards for making agents understand each other, negotiate and
cooperate. But high-level communication also requires a lower level of
interoperability, on the communication transport level. Unfortunately, no
standard communication infrastructure actually emerges to transport messages
between heterogeneous agents. Mobile agents also need to move around in a
standardised infrastructure, dealing with a common conceptual framework.

Today's mobile agent platforms typically come with specific integrated
frameworks making it difficult to introduce interoperability support.
Nevertheless, Voyager's CORBA support and Grasshopper's MASIF
compliance are encouraging effort examples towards interoperability.

1.3 MobiliTools' specific approach

MobiliTools is a set of CORBA-based Java tools for mobility that can be
used separately. The specific architecture relies on two main principles:
1. a clear separation between object mobility support, communication tools,

and activity management;
2. use of standard middleware for agent and communication transport.

Principle (1) is motivated by the idea that there is no universal mobile agent
framework. It is preferable, instead, to create a number of interoperable agent
frameworks by choosing and combining different communication tools and
agent activity schemes, on top of a mobility kernel. For instance, if at least one
of the communication tools is independent from the mobility kernel, it can be
used by any other agent platform or software to interoperate.

Principle (2) enforces interoperability by choosing a standard
communication layer, not only between agents, and between agent platforms,
but also between agents and legacy applications. Moreover, communication
middleware comes with useful generic services and tools meeting typical
distributed systems' needs.

Mixing these two principles results
in the architecture shown by Figure 1.
Any component may be replaced or
reused to build a variety of agent
frameworks with a common support for
agent and/or communication transport.

communication

CORBA --------11 services

Figure 1: MobiliTools architecture

356 (Bruno Dillenseger)

2 OMG STANDARDS AND AGENT TECHNOLOGY

2.1 Corba

OMG's Common Object Request Broker Architecture makes it possible for
distributed programmes to perform remote calls on each other, regardless of
their programming languages, in an object-oriented manner, while hiding
network layers and operating systems heterogeneity. This standard is the result
of a consortium grouping the major companies in information technology, and
has several commercial and free implementations. CORBA support in some
web browsers and in Java 2 is a sign of maturity.

CORBA comes with common services for distributed systems such as
localisation (naming service, trader), and event-oriented communication
(event service). Persistence, transactions, and security are also addressed. All
these topics are of great interest for mobile agents, and everything can be re-
used (as is, or as implementation "templates"), without enforcing any
programming language (provided that the mapping exists from the Interface
Definition Language to the target language), while relying on a well known,
specified and widely available standard.

CORBA is an opportunity for interoperable basic management of agents,
transport of mobile agents, and transport of agent communication. [3]
describes several agent platforms developed on top of middleware such as
CORBA. These platforms show in particular how several programming
languages may co-exist to allow several programming levels, and how the
middleware can be fully hidden to the agent programmer.

CORBA implementations do not actually support object mobility, but they
can be used for every stationary component in a system of agents: execution
environments hosting agents, infrastructure for agent communication,
directory service ...

2.2 Mobile Agent System Interoperability Facilities

OMG's first contribution to agent technology is the MAS IF specification
[10], dedicated to the interoperable management of agents and agent platforms.
MASIF's framework is based on the following concepts: Agents autonomously
act on behalf of a person or an organization called an authority. Agents are
executed in places, hosted by agent systems (see Figure 2). Mobile agents have
the ability to move from place to place, between agent systems, provided that
their agent system type is recognized by the destination agent system. Agent
systems are also bound to an authority, and may be grouped into a region if
they are bound to the same authority. Agents are given a globally unique name
resulting from the triplet {authority, agent identity, agent system type}.

An OMG standards-based toolboxfor agent mobility and interoperability 357

Common
Object
Services

place

Object Request Broker

MAFFinder

directory service
for agents, agent
systems, places

Agent system

Figure 2: MASIF conceptual framework, with MAFFinder and
MAF AgentSystem interfaces.

This framework is managed via two CORBA interfaces. Interface
MAFAgentSystem must be implemented by agent systems to manage agents
(create, suspend, resume, terminate), to receive migrating mobile agents, and
to transfer agent classes. Interface MAFFinder is dedicated to registration and
lookup of agents, places and agent systems.

2.3 CORBA 2.3, OMG Agent Working Group

OMG's interest in mobility and agent technology is growing. CORBA 2.3
specifications are contributing to object mobility support by including an
object-by-value feature that makes it possible to pass programming language
objects as invocation parameters.

As far as agent technology itself is concerned, MASIF is only a preliminary
step in OMG's work. The Agent Working Group (AWG) [19] was created at
the end of 1998, in order to open a forum for educating OMG in agent
technology, and develop an architectural framework supporting agent
technology in a compatible and complementary way with OMG's
specifications. The A WG is also interested in coordinating standardisation
work with other consortia in the agent field, such as FIP A.

The AWG started to write an "Agent technology green paper" [11], issued
a Request For Information on "Agent technology and Object Management
Architecture" in 1999, and is currently working on an "Agent Technology
White Paper and RFP Roadmap" [12]. RFPs will focus on interoperability,
agent communication language, security, mobility, as well as distribution,
robustness and scalability.

358 (Bruno Dillenseger)

3 THE AGENT COMMUNICATION TRANSPORT
SERVICE

3.1 Overview

The Agent Communication Transport Service (ACTS) is a CORBA service
for transporting messages between heterogeneous agents, whatever mobile or
not, CORBA objects or not. Accordingly to the decomposition suggested in
Section 1.3, the ACTS is a communication tool, independent from both the
mobility kernel and the activity model. Although it is independent from
MAS IF, the ACTS may be considered as a complement enabling
interoperability between agents for remote communication, through the
definition of extra interfaces. A detailed description of the ACTS can be found
in [4]; we present the basics below, and then compare the ACTS with other
related work.

3.1.1 How it works

The ACTS is based on one or several servers, playing the role of message
port factory. Basically, message ports are stationary FIFO buffers where
agents can add and retrieve messages of CORBA "Any" type. Note that agents
need not be CORBA objects. A message port can be switched from this default
store mode to forward mode, by declaring a message port listener. A listener is
a CORBA object that receives pending and incoming messages. This listener
may be invalidated, either explicitly, or as soon as a CORBA communication
failure occurs with this object. Such a communication failure may spring from
a loss of network connectivity with the listener, or may be caused by an
obsolete CORBA object reference due to the listener mobility. No message is
lost, and the FIFO order is maintained anyway.

3.1.2 Typical ACTS usage

The ACTS may be distributed on a number of servers running on well
connected nodes (ACTS servers can be considered as e-mail servers). An agent
may have one or several message ports in different network areas in order to
improve communication performance and/or reliability. According to its
specific constraints, an agent may choose either a pure asynchronous
communication model, where it polls its message port (store mode), or a more
"reactive" model where it gets incoming messages on the fly (forward mode).
In the latter case, the new reference of the listener has to be registered after each
move in order to keep the "reactive" behaviour. Note that the forward mode

An OMG standards-based toolboxfor agent mobility and interoperability 359

should be handled very carefully, since each forwarded message creates a
thread of activity in the listener.

3.1.3 Customization: ACTS personalities

The ACTS personalities hide the CORBA infrastructure and the ACTS
interfaces, while providing easy-to-use communication utilities for Java.
ACTS personalities also come with enhanced transparency support, advanced
communication features, and higher level addressing.

The ACTS Mailbox personality wraps message ports into Mailbox Java
objects. Mailboxes are designated with high-level addresses, consistent with
MASIF's region concept (agent_name@region_name). Multicast and unicast
features are supported by addresses transparently targeting a group of
mailboxes in a given region (group_name@region_name). The CORBA
naming service is used to register and find the ACTS servers and the
mailboxes' message ports:
- name "IMAFlregion_namelacts/factory" for ACTS servers;
- name "IMAFlregion_namelacts/mailboxlmailbox_name" for message

ports bound to ordinary mailboxes, or arbitrary unique names in naming
context "IMAFlregion_namelacts/mailboxlmailbox_namef' for message
ports bound to group mailboxes.
Section 4.3 details the specific naming service usage for scalability.
The ACTS Logged Mailbox personality is a Mailbox extension providing

the programmer with communication tracing tools and event ordering based on
a Lamport Clock mechanism [8]. The ACTS FIPA personality is a FIPA-
oriented use of the ACTS, compliant with FIPA'98 specifications for Agent
Management and agent-agent interactions [5].

3.2 Further discussion on the ACTS and communication
issues

3.2.1 Agent communication schemes

[1] identifies two communication schemes in agent-based systems: agent-
to-agent communication where partners are addressed by globally unique
identifiers, and anonymous communications where partners do not know each
other (event model). Through the Mailbox personality and its multicastlunicast
enhancement, we see that the ACTS supports both schemes, both in forward
and store mode. Another way to achieve this is to mix the message ports with
the CORBA event service, but the event service can't be used directly by
agents because of their mobility.

360 (Bruno Dillenseger)

3.2.2 Communication delivery

Three basic techniques can be used (and mixed) to reach a moving
destination:
1. use a directory which binds constant names to changing locations;
2. broadcast;
3. replace the mobile agent by a forwarding "ghost" on each move;

Technique (1) is often criticized for it relies on a centralized service.
Nevertheless, this technique is currently of common use in mobile phone.
Applicability domain of technique (2) is typically the LAN, where
broadcasting does not necessarily generate extra messages (e.g. Ethernet).
Larger-scale broadcast is a problem since it typically consumes too much
network bandwidth and processing time in all the recipients (and/or in any
intermediate communication element). Technique (3) comes with risks of
reference chain breaking and forwarders proliferation. Moreover, it can not be
applied when the reason for mobility is a node or network link shutdown.

All these techniques can be defeated in the case of highly mobile agents
because messages may be routed permanently and never reach their
destination. [13] presents a solution derived from the distributed snapshot
algorithm. It is based on a synchronisation between message propagation and
moving agents on communication links. However, this work needs to be
continued in order to take network and node faults into account, and scalability
is likely to be a problem.

The ACTS approach is different: an agent is always addressed by other
agents through a single reference that never changes (the message port). The
only reference that needs to be updated is the reference to the listener when a
message port is operated in forward mode. Doing this update is of the agent's
responsibility. In the special case of a highly mobile agent, it is recommended
not to use the forward mode, not because messages could be lost, but because
messages might never reach the moving listener. The store mode seems to be
the right communication model in this case.

4 THE SIMPLE MASIF IMPLEMENTATION

4.1 SMI overview

Accordingly to the decomposition of agent platforms given in Section 1.3,
SMI implements a mobility kernel in Java. Starting from MASIF specification,
SMI aims at providing a generic, light-weight and well-specified environment
for mobile Java objects.

An OMG standards-based toolbox for agent mobility and interoperability 361

4.1.1 Agencies

An agency is an execution environment for mobile agents, called agent
system in MASIF's terminology. Basically, they are instances of class Agency

running in a Java Virtual Machine. Each agency belongs to a region, has a
name (unique in the given region), and is bound to an authority. An agency is
also a CORBA server implementing MASIF's MAFAgentSystem interface. Its
CORBA object reference is registered in the naming service (see Section 4.3).

Agents can be managed through the MAFAgentSystem interface and
methods of class Agency. Operations include creating and terminating an
agent, suspending and resuming an agent activity, moving an agent, listing the
names of hosted agents, and getting information on a local agent.

4.1.2 Mobile objects/agents

Agencies have methods for creating and managing any Java object
implementing the MobileObject interface. This interface mainly consists of
call-backs related to the lifecycle of mobile agents (see Section 4.2).
MobileObject implementations also have to implement the
java. io. Serializable interface since Java serialization is used to generate
mobile agents' states. As specified by MASIF, an agent resides in a place, and
has a unique name combining an identity, an authority and an Agent System
Type identifier.

4.2 MobileObject lifecycle

The design of interface MobileObj ect is a straightforward mapping of the
MAS IF framework: agents may be created, moved, suspended, resumed and
terminated. Agents have to be informed when such lifecycle events start,
succeed or fail (see Table 1), not only to properly react, but also to be able to

Table 1: Agent lifecycle management and MobileObject interface.

Agency method involved MobileObject call-back(s)

createAgent afterBirth
resumeAgent resume
suspendAgent suspend

moveAgent beforeMove afterMove afterMoveFailed
terminateAgent beforeDeath

deny permission: an agent can refuse creation, mobility, or reinstallation after
a move, by throwing an exception in the corresponding call-back.

362 (Bruno Dillenseger)

For instance, method moveAgent {} of class Agency involves a number of
steps which can fail for various reasons: the specified agent or the destination
agency doesn't exist, the destination agency can't be reached because of a
communication problem (network, CORBA, naming service), or agent
de/serialization has failed. But the agent may also abort the move by throwing
an exception before (in beforeMove (}) or during serialization, during or after
(in afterMove (}) deserialization. If the move is aborted after the serialisation
step, the afterMoveFailed { } call-back is invoked.

4.3 Naming service distributed exploitation

SMI agencies are bound to unique names in the CORBA naming service,
according to a naming scheme extending MASIF's concept of region:
"IMAF/region_name/agency/agency_name". As a result, agencies (like
mailboxes' message ports and ACTS servers, see Section 3.1) can be found via
high-level deterministic names, helping region interconnection.

A specific naming service administration is required to avoid a bottleneck
effect. The first idea is to distribute the naming service on several servers, with
one name server per region. Each name server contains the name bindings for
its own region, and is federated with the other name servers in the "IMAFI"
naming context. As a result, resolution of name "IMAF/regionAl ... " with
region B's name server is transparently forwarded to region A's name server.
To go further on distribution, region names may contain sub-regions (e.g.
"regionAlsub-regionl/ ... "). In this case, one name server can be responsible for
each sub-region. Note that this distribution also applies for the ACTS servers.

4.4 Back to MASIF and interoperability

MASIF specifications practically supports interoperability for basic agent
management tasks, through the definition of:
-a common framework of places, agent systems, region, etc.;
-a service for agent, place and agent system registration and lookup;
- an external interface for agent lifecycle.

All these points don't require a smart interpretation, and their
implementation is quite straightforward. But interoperability is not fully
specified for agent mobility, and is not addressed at all for agent
communication. Since the latter issue is explicitly not in the scope of MASIF
(the ACTS described in Section 3 suggests one solution), let's focus on the
former issue. MASIF's mobility support is based on two operations:
- receive_agent {} is invoked on the destination agency to transfer an agent

- parameters include the agent profile, the agent state, the agent class

An OMG standards-based toolboxfor agent mobility and interoperability 363

name, and a CORBA object reference to the agent system providing the
agent's classes;

- fetch_class () is invoked by the destination agency on the class provider
to get the incoming agent's locally undefined classes.

4.4.1 Agent profile

Heterogeneity management is based on the provisioning of an agent profile.
A profile contains a set of identifiers specifying the agent programming
language, the agent system type, versioning information, and serialization
format. Identifiers are already defined for Java, Tcl, Scheme, Perl, Aglets,
MOA, AgentTcl and Java object serialization.

SMI naturally gets the Java language and the Java object serialization
identifiers, and is given a free identifier for "SMI agent system type". SMI's
policy is to reject agents of any other agent system type trying to move in. Since
a dedicated exception is missing, the generic MAFExtendedException

exception is thrown. It could be imagined that hosting an agent of a different
agent system type but of the same programming language could be easy,
especially in the case of Java. But several implementation choices remain
about de/serialization, class loading and agent lifecycle hooks. Let's discuss
the interoperability issues in the case of Java as a common programming
language (in the case of heterogeneous programming languages, we imagine a
pseudo-agent system switching agents on to the right agent system).

4.4.2 Agent deserialization and c1assloader

Using standard Java object serialization does not mean that a standard
ObjectlnputStream can be used for deserialization. A specific classloader
must be provided for each agent in order to fetch missing classes from the
specified class provider, using the specified codebase, for the specified agent
profile. This class loader must be supplied by a specific ObjectlnputStream

deserializing the agent state.
There are several other implementation choices about class loading issues,

which may lead to non-interoperability. For instance, the classloader used for
agent deserialization may be quite different if it assumes that classes are
transferred as a whole as a parameter of receive_agent (), or downloaded on
the fly from the class provider if they are locally undefined.

Missing classes in the destination agent system may be fetched either
always from the same agent system, or from the source agent system. The
former technique introduces a serious bottleneck, and may prevent an agent
from moving from agency B to agency C if the class providing agency A is
unreachable. The latter technique may cause a proliferation of classes, since it

364 (Bruno Dillenseger)

requires that the agencies keep byte code for hosted agents' classes. The main
issue is scalability, since the amount of byte code stored in each agency may
rapidly grow. SM! uses this technique however, because it results in a much
more fault tolerant overall distribution. This has to be tuned and refined, but
detecting and discarding useless classes is complicated by Java's reflective
features.

4.4.3 ''Internal'' interfaces

Finally, the main difficulty for interoperability within a given programming
language, is that standard hooks must be specified to tell the agent it is going
to move or die, or it has just moved, or it has just been born ... A common
lifecycle interface such as SMI's MobileObject (see Section 4.2) should be
defined for each language.

Local interactions with the agency and the other agents also need to be
specified. For instance, an agent willing to move must be given a standard way
to request the move from the agent system it is residing in. Then, supporting
the remote programming paradigm for heterogeneous agents requires a
standard mechanism to initiate and handle a local communication tool through
a standard interface.

4.5 To be added: agent activity models

For the sake of genericity, SMI does not enforce any agent execution
model. Agents are responsible for starting, suspending, resuming and
terminating their activity accordingly to the corresponding lifecycle call-backs.
Agents may launch a thread of activity, or share a pool of threads. The former
approach fully supports autonomous agent activity, but is not scalable, while
the latter approach is essentially dedicated to event-driven agents, like in [2].

Event-driven activity may be implemented using the reactive programming
model. Such a model consists in splitting execution into logical time slices, or
instants. Reactive objects react to events, combinations of events, or absence
of events, and generate events that are consumed in the same instant. An instant
ends when all events are consumed, and a new instant starts when new external
events appear.

The benefit of such an approach is that between two instants, the state of an
agent is stable and very well defined. Then, move requests can be transparently
executed after the end of each instant, without affecting the programming
model. Moreover, work described in [7] has produced a Java prototype able to
run thousands of reactive objects, which is a promising performance regarding
scalability concerns.

An OMG standards-based toolboxfor agent mobility and interoperability 365

5 CONCLUSION

Through the presentation of MobiliTools, this paper practically explores:
- the applicability of OMG standards for making interoperable mobile agent

platforms;
- how a mobile agent platform can be built as a combination of a mobility

kernel, communication tools, and agent activity support.
Although MASIF brings limited interoperability support, mainly because

of the "internal interfaces" issue, it is an interesting starting point for the
architecture of mobile agent platforms. CORBA is convenient to implement
the stationary parts of the global infrastructure, responsible for transporting and
managing agents and messages. The naming service, used in an appropriate
manner, provides a scalable directory for high-level location-independent
references.

At last, the approach based on the assembly of independent components
improves comprehensibility of transparency issues, and leads to a variety of
interoperable combinations suited to various needs. For instance, the ACTS
may be used in any mobile agent platform without any other MobiliTools. In
the same way, SMI may host any agent activity and communication framework
while managing mobility through the MobileObject interface.

Next steps include tuning and completion in order to fully implement
MASIF, enhance the communication support, and offer a couple of agent
activity models. Strong mobility support is on the way, on the basis of the
reactive programming model.

ACKNOWLEDGEMENTS

The Agent Communication Transport Service has been developed for the
MIAMI project [18], with design contribution from Stefan Covaci and
Alexander Yip. The FIPA personality has been made by Huan Tran Viet. The
logged mailbox personality has been made by Anne-Marie Tagant.

REFERENCES

1. 1. Baumann. F. Hohl. N. Radouniklis, K. Rothermel, M. Strasser: Communication concepts
for Mobile Agent Systems. In mobile Agents: 1st International Workshop MA'97, Lecture
Notes in Computer Science, April 1997, Springer, pp. 123-135.

2. L. Bellissard, N. De Palma, A. Freyssinet, M. Herrmann, S. Lacourte: An Agent Platform
for Reliable Asynchronous Distributed Programming. Symposium on Reliable Distributed
Systems (SRDS'99), Lausanne (Switzerland), 20-22 October 1999.

366 (Bruno Dillenseger)

3. B. Dillenseger: From Interoperability to Cooperation: Building Intelligent Agents on
Middleware. Lecture Notes in Artificial Intelligence 1437 (Proc. of lATA' 98), Sabin
Albayrak, Francisco 1. Garijo Eds. Springer 1998, pp. 220-232.

4. B. Dillenseger, Huan Tran Viet: Towards full agent interoperability. In Proc. of 2nd
International ACTS Workshop on Advanced Services in Fixed and Mobile
Telecommunications Networks. 9-10 September 1999, Center for Wireless
Communications, Singapore.

5. FIPA 98 Specification. Foundation for Intelligent Physical Agents (Geneva,
Switzerland),1998. see [16]

6. A. Fugetta, G. P. Picco, G Vigna: Understanding code mobility. IEEE Transactions on
Software Engineering, vol. 24, No 5 (1998), pp. 342-361.

7. L. Hazard, J.-F. Susini, F. Boussinot: The Junior Reactive Kernel. Rapport de recherche No
3732, July 1999, INRIA Sophia Antipolis (France).

8. L. Lamport: Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, July 1978, Vol. 21, No 7., pp. 558-565.

9. Danny B. Lange, Mitsuro Oshima: Seven good reasons for mobile agents. Communications
of the ACM, Vol.42, No 3, March 1999, pp. 88-89.

10. Mobile Agent System Interoperability Facilities Specification. Joint submision: GMD Fokus
& mM Corp., supported by Crystaliz Inc., General Magic Inc., The Open Group. OMG TC
document orbos/97 -10-05 (1997).

11.0MG Agent Working Group: Agent Technology Green Paper. Document ec/99-12-02, 24
December 1999. see [19]

12.0MG Agent Working Group: Agent Technology White Paper and RFP Roadmap. Ref.
internetl99-11-01, draft .02, 29 November 1999. see [19]

13.Amy L. Murphy, Gian Pietro Picco: Reliable communication for highly mobile agents. In
proc. 1st International Symposium on Agent Systems and Applications, 3rd International
Symposium on Mobile Agents, Palm Springs (USA), D.S. Milojicic ed., october 1999, IEEE
Computer Society, pp. 141-150.

14.J. Vitek: New paradigms for distributed programming. In proceedings European Research
Seminar in Advanced Distributed Systems, Zinal (Switzerland), march 17-21, 1997.

15.J. White: Telescript technology: the foundation for the electronic market place. General
Magic White Paper, General Magic, 1994.

WEB REFERENCES

16.FIPA - http://www.fipa.org/
17. Grasshopper - http://www.ikv.del
18. MIAMI - http://www.fokus.gmd.delresearch/cc/ecco/miamil
19.0MG Agent Working Group - http://www.objs.com/isig/agents.html
20. Voyager - http://www.objectspace.com/

	MobiliTools: An OMG Standards-Based Toolbox forAgent Mobility and Interoperability.
	1 YET ANOTHER JAVA MOBILE AGENTPLATFORM?
	1.1 A new paradigm for distributed systems
	1.2 Limitations of today's mobile agent platforms

	1.3 MobiliTools' specific approach
	2 OMG STANDARDS AND AGENT TECHNOLOGY
	2.1 Corba
	2.2 Mobile Agent System Interoperability Facilities
	2.3 CORBA 2.3, OMG Agent Working Group

	3 THE AGENT COMMUNICATION TRANSPORTSERVICE
	3.1 Overview
	3.2 Further discussion on the ACTS and communicationissues

	4 THE SIMPLE MASIF IMPLEMENTATION
	4.1 SMI overview
	4.2 MobileObject lifecycle
	4.3 Naming service distributed exploitation
	4.4 Back to MASIF and interoperability
	4.5 To be added: agent activity models

	5 CONCLUSION
	REFERENCES

