
PACKET ROUTING WITH GENETICALLY
PROGRAMMED MOBILE AGENTS

Jon Schuringa
Gunter Remsak
Institute of Communication Networks

Technical University Vienna, Austria

{jon.schuringa,guenter.remsak}@tuwien.ac.at

Abstract This paper presents novel mobile agent routing techniques. We use
genetic programming to build mobile agents that monitor the network
status and set the routing tables in the network nodes in such a way
that it maximizes network throughput and minimizes the overall packet
delay. Performance is measured by simulation using a realistic network
and traffic model that is capable of generating fractal traffic. The result
is a high performance, self-configuring routing method, irrespective of
the network topology and traffic.

Keywords: Routing, Mobile Agents, Genetic Programming

1. INTRODUCTION

The increasing complexity and diversity of communication networks
make them hard to manage, managing them efficiently when traffic is
strongly fluctuating is even harder. It is widely known that the mobile
agents concept can be used to provide the basis for a self-configuring
network (e.g. [2, 3]).

We describe in this paper a self-configuring routing system, which is
based on "AntNet" [1]. The idea used has its origins in the behavior
of real ants. Real ants are capable of finding shortest paths by using
information (pheromones) deposited by other ants [4, 5].

Apart from significant improvements in the AntNet algorithm, we use
genetic programming techniques to build mobile agents that monitor the
network status and set the routing tables in the network nodes in such
a way that it maximizes network throughput and minimizes the overall
packet delay.

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2000
H. R. van As (ed.), Telecommunication Network Intelligence

10.1007/978-0-387-35522-1_37

http://dx.doi.org/10.1007/978-0-387-35522-1_37

390

2

k P(I)(k,1) PO)(k,2) ...

Figure 1 Routing table p(') at node i

The routing table (Fig. 1) indicates how the packets arriving at that
node must be routed on the outgoing links, depending on the final des-
tination of the packets. The routing table for node i is a matrix p(i)

with dimension N x Ai , where N is the number of nodes in the network
and Ai is the number of neighbors of node i. P(i)(k,j) is the fraction of
traffic with destination k, that is routed through neighbor j at node i.
It is the task of the routing agents, described in the following section, to
set the routing table.

2. AGENT ROUTING

This section will first give a summary of the agent routing algorithm
and then discusses the differences with the AntNet system.

Agents are generated concurrently with normal packets, but far less
frequently. The main task of the agent on the path to its destination
is to monitor and collect the network condition on the route between
source and destination. The agent takes the same route as normal pack-
ets, according to the probability in the routing table inside the visited
node, however for agents the probability is adjusted: we increase the
probability for outputs with small queue sizes. This mechanism helps
the agent in finding new, better routes. When the agent arrives at its
destination, it takes the same route backwards and updates, according to
the collected information and locally available information in the node,
the routing tables at every visited node. The agent dies when it returns
back to its source node.

Below are the main differences between our system and the AntNet
system:

• High priority agents

In AntNet the backward agents have higher priority than normal
data packets, to quickly propagate the information the forward

Packet routing with genetically programmed mobile agents 391

agent collected. Forward agents have the same priority as data
packets, so they also experience the same network conditions. The
fact that agents experience these delays is used by the algorithm
(it is one of the main principles).

The disadvantage is however that it could a long time before an
agent can react to specific situations like congestion. Forward rout-
ing systems [7, 8J do not inhabit the slow round trip delay.

In our system we use backward routing, however our agents always
have a higher priority than normal data packets. They no longer
experience the normal packet delay; they calculate it by using the
current queue size and the link capacity. On the return path the
calculated delays are used as if they were the real experienced
delays. The advantage is that the same information is propagated
much faster in the network. The effect on the network performance
will be discussed later.

• Collecting neighboring data

Directly related to the previous point, we also know the transmis-
sion queue sizes of all neighboring nodes along the visited path.
This information is collected by our agent also, but only if the
delay is small enough. To be precise, we only use the information
if the calculated delay to the neighbor is smaller than the mean
delay to that neighbor. Calculating the extra delays to neighbor-
ing nodes complicates the algorithm, because it may happen that
more than one possible path between two nodes occur. Section 2.1
gives a detailed explanation of the problem and its solution.

• Inforcement rule

For each node that the backward agent visits, we update the prob-
ability routing table. The amount should be proportional to the
goodness of the trip. We use genetic programming to find a way to
measure the goodness of the trip, it should find the best trade-off
between adaptivity and stability.

Different than in the AntNetJys-tem;-we allow negative inforce-
ments also. Very bad scoting trip times could be negatively awarded.
The rule gives a measure of how good the agent's trip
was. This measure, which is a number between -1 (bad) and 1
(good), is used to update the routing table. An inforcement of 0
will leave the probability unchanged. Let r denote the inforcement,
then the following formula defines how to update the probability:
let P be the short form of p(i) (k, 0) (i.e., the current probability

392

Figure 2 Example of the delay graph; The nodes on the main path mi are connected
by bold arrows, the other nodes are neighboring nodes nj of which we have the delay
info as well.

to use output a for packets with destination k at node i). The new
probability pI is defined by

Rplus = r + - p) Sign(r)]

p' = P+Rplus

(1)

(2)

By normalization, the other probabilities Pj (all outputs not used
by the agent) should be adjusted:

p' = p. (1 _ RpIUS)
J J 1- P (3)

The main difference in the algorithm between our system and AntNet
is that our agents inspect the transmission queues, allowing lower agent
delays and more network information per agent. We call it the "Queue
Inspecting Agents" (QIA) system.

2.1. EFFICIENT ALL PAIRS SHORTEST
PATH ALGORITHM

The method we applied for collecting delay information along the vis-
ited path, together with information about neighboring nodes could lead
to the existence of multiple paths between two node pairs. We are only
interested in the shortest path, so we have to apply some sort of shortest
path algorithm. We could use Floyd's or Dijkstra's algorithm, however,
due to their computational complexity (O(N3) and O(NElogN) re-
spectively), not well suited for our purposes. If we make a graph of the
delay information (Fig. 2), we can see that we have a graph with spe-
cial properties for which we developed a simple and efficient algorithm
based on theorem (4). To compute the shortest path between all pairs

Packet routing with genetically programmed mobile agents 393

has computational complexity O(N2). Note however that the algorithm
is processed in different nodes and each node on the return path only
needs to know the delay from itself to the other nodes, which can be
computed in O(N) time and therefore the algorithm is scalable.

The main idea is based on two properties:

• The vertices in the graph that represent neighboring nodes, have
no outgoing edges.

• Let ml, m2, ... , mk represent the nodes the agent visited on the
forward path. There exists one and only one path from mi to mj

for 1 ::;; i < j ::;; k, while in the other direction (from mj to mil no
paths exists.

Let 9 = (V, [, w) a weighted, directed graph. V consists of the sum of
the visited vertices Vm (the main agent track) and Vn (the neighboring
vertices), respectively. Note that the outgoing degree of the vertices in
Vn equals O. Now let Vm = {ml,m2, ... ,md, i.e., the agent started in
vertex (node) ml and visited all mi until mk. The edges between two
vertices in Vm are directed only from mi -* mi+l. We claim that the
shortest path D between vertices from Vm and all other vertices in V
equals

Proof by induction on Vt:
Basis: Let i = k, from the vertex mk only edges to Vn exists, therefore

the minimum distance to all other vertices equals w(mk, y) which is
satisfied in (4): D(mk, y) = min[oo, w(mk' y)].

Induction step: Assume D(mi+l, y) is the minimum distance between
mi+l and y. Note that there are two possible ways to go from mi to
y. From all the outgoing edges in mi, there is one going to mi+1, all
others go to a vertex in Vn . Since the outgoing degree of the edges of
the vertices in Vn equals 0, there are only two edges from mi that may
lead to y. That is either directly with cost w(mi' y), or via mi+l with
cost D(mi+l' y) + w(mi' mi+il, from these two possibilities we have to
take the minimum, which is exactly equation 4. 0

We must take care that the properties of the graph 9 remain valid
during the forward trip of the agent. There are cases that need special
attention:

• Do not go to an already visited node. This is fulfilled by how
the agent moves in the network. If the agent has no other choice,

394

Figure 3 Forward agent arrives at
node 3.

Figure 4 Forward agent arrives at
destination node 5.

i.e., all other nodes already have been visited, the agent does not
continue on its forward path. It will start with its backward trip
to update the routing tables.

• Do not include delay info to an already visited node. This is a
small restriction that could loose some information. Let ma de-
note the node that we visited in the past and is a neighbor of our
current node mb. Including the delay info mb -+ ma would bring
no information to nodes we visited: (1) before ma and, (2) nodes
we will visit after mb, but it could for nodes between ma and mb.

• If the agent enters a node that was previously a neighbor node, we
have to distinguish between two cases:

1 Imagine the case depicted in Figure 3; the agent arrives at
node 3, of which we have delay information from node 1. In
this case, the total delay of going from 1 to 3 via 2 is less than

. going directly from 1 to 3, and therefore we delete the direct
delay info from 1 to 3.

2 When the direct link is shorter, we change the visited path
by including the shorter link in the visited path, and deleting
the delays that are no longer part of the visited path.

Let's assume that after the agent arrived in node 3 in Fig. 3,
the agent continues to node 4. Node 4 is an again a neighbor
of node 2, but this time the direct link is shorter. Node 3
is deleted from the visited list. If the agent's next hop is to
node 5, then we will have the graph as shown in Fig. 4.

As an example, the minimum distance from node 4 to 3 in Fig. 4 is
the direct link w(4,3) = 6 or via node 5. The cost of going via node 5
equals 2 + V(5, 4) = 2 + 1 = 3. So, the minimum distance from node 4
to 3 equals 3.

Packet routing with genetically programmed mobile agents 395

The algorithm to compute the shortest path in a node consist of a
single loop over all destination nodes (thus, complexity O(N)) and se-
lecting the minimum distance according to equation 4. Note that the
shortest path information calculated in one node is used by other nodes
on the return path.

3. THE SIMULATION MODEL

In this section we will discuss the simulation model of the nodes in
our network (Section 3.1) and the model of the traffic generator (Section
3.2). We implemented these models in a (C++) simulation tool we wrote
ourselves.

3.1. NODE MODEL
All incoming packets are directed to the router (Fig. 5), which has

a deterministic service time per packet. We choose this to be sufficient
small compared to the speed of the incoming packets. The function of
the router is to inspect the destination address in the packet header and
perform a routing table lookup. Whenever an agent arrives and it has
to perform certain functions in the node, the router forwards the agent
to the processor. It may send the agent to another node by setting the
destination and forward the agent to the node's router. We found out
that the processor queue-server system has a very small influence on
the total network performance, because: a) the number of concurrent
agents in one node is very small and, b) the algorithm is fast (Section
2.1). Compared to the propagation delays on the links, the processor
time is negligible. Nevertheless, we used a deterministic service time of
1 msec. per agent.

If the router has to forward the packet (or agent), packet transmission
is started immediately on the output, or is queued if the output is not
idle. All output queue space is dynamically shared among all outputs.

3.2. TRAFFIC MODEL

It is important that the generated traffic in our simulation represents
real traffic closely, because the agents that will be produced are best
suited to deal with the traffic that was used in the simulations. What
we use are N (N - 1) independent traffic sources (one for each source
- destination pair) that can generate Poisson as well as fractal traffic.
Ignoring the long-range dependence typically results in overly optimistic
performance predictions and inadequately network resource allocation
[9, lOJ. The method used is called "Random Midpoint Displacement"

396

, .. ··· .. ··· .. ······1

:=rrul
;=rrul
! : I
! : j
I I 1

:=rrul
I. ..

Shared Output
Queue.

Figure 5 Network node model

(RMD), which is fast, simple, efficient and adequate for qualitative stud-
Ies.

4. THE EVALUATION METHOD

The main problem of our system is how to update the routing table
with the information the agents collect. We want to find a formula for
this non-trivial problem by using genetic programming techniques.

The process starts with completely random expressions, for each we
run a simulation and we evaluate it using a fitness formula:

Bsuccess () maX(dlim - d, 0)
score = c * B + 1 - c * d

offered lim
(5)

Which yields a number between 0 (bad) and 1 (good). Bsuccess denotes
the total number of bytes that were successfully delivered, BOf fered is the
total number of bytes that were offered to the system. With parameter
c we can control the importance of throughput versus packet delay, we
used c = 0.9. A delay d greater than dlim is set to dlim, we used 10
seconds for this limit. We now use Darwinian principles [6] like natural
selection, mutation and crossover to build new expressions which we
also evaluate, whenever this gives us a better expression, the better one
replaces a less good one.

The process continues until we reach a converged state (i.e., no progress
during the last x tries). The result is a set of expressions, which are best
suited in solving the problem from all expressions we tried. However, we
only looked at one specific topology and traffic characteristic so far. To
see if the expression we found is more general, we evaluate the expression
in about 200 different network configurations. For this purpose we use a

Packet routing with genetically programmed mobile agents 397

set of powerful computers, including a supercomputer. The results are
stored in a database.

The expressions may contain constants, variables and operators. The
simulation tool represents expressions by a tree structure, which allows
easy manipulation (e.g. mutation and crossover) of the expressions while
preserving a correct syntax. The variables that may be used by the
genetic programming process are listed below. Assume the agent is on
its backward path and enters a node, then the following information is
now available:

• d no - The new delay info delivered by the agent to go from the
current node to node n using output o.

• d n - The mean delay to go from the current node to node n.

• an - The standard deviation of the collected delays from the current
node to node n.

• P(n, 0) - The current routing table probability to use output 0 for
packets with destination node n.

• h no - The number of hops the last agent visited on the way to node
n using output o.

• tq - A number between 0 and 1 indicating the ratio between the
total used queue space and the total available queue space in the
current node.

• aqo - A number between 0 and 1 indicating the ratio between the
used queue space by output 0 and the total used queue space in
the current node.

• Bn - The best delay seen by the last w agents to go from the
current node to node n.

4.1. OTHER ROUTING PROTOCOLS

Similar like in the evaluation of the AntNet system, we compare the
agent based routing system with other routing methods. We imple-
mented in our simulation tool the following routing protocols: l

• OSPF: At the simulation start the routing tables in the node are
filled according to a shortest path algorithm with a cost function
based on the link capacity.

1 Note that we only implemented the functionality of the routing protocols that is relevant
to this study.

398

• OSPF with load balancing: If multiple paths with equal costs to
a destination exist, OSPF may use load balancing to spread the
load over multiple paths.

• Daemon: This is the same routing protocol as used in AntNet. It
is a routing protocol that knows at any time and without a delay
the complete state of the network. Based on this information, a
shortest path for each packet is calculated at each hop. The main
purpose of this routing protocol is to obtain an empirical upper
bound of the achievable performance.

• Daemon Source Routing: Under certain circumstances, OSPF and
the agent routing achieve a better performance than the daemon
discussed above. Packet delays can be higher, which was caused by
oscillating packets. To resolve this we implemented another dae-
mon, which uses source routing. At the generation of the packet
a shortest path is calculated to the destination, and this path re-
mains fixed for this packet.

5. RESULTS

This section presents the best agent we found with the genetic pro-
gramming method (Section 5.1), and discusses the performance of that
agent for two scenarios (Section 5.2).

5.1. THE BEST AGENT
Recall that all agents we evaluated are the same, except for their

inforcement rule. In this section we present the agent that has the
best overall characteristics. We evaluated the agent with all kinds of
topologies, network sizes (up to 500 nodes), link capacities, traffic load,
etc.

for tq 0.9
(6)

for tq > 0.9

The agent consists of two parts; the one that is taken depends on the
node's buffer fill ratio. Let us first consider the first part, i.e., buffer fill
ratio is less than 90%. The term is a relative measure of how good
the trip was. The fact that it is relative is important because otherwise
the agent would not perform well in different scenarios, i.e., it will most
likely not work equally well in small and large networks.

Packet muting with genetically programmed mobile agents 399

Furthermore, the formula uses the current routing table probability.
For probabilities close to 1, r will be close to 1, so the new probability
will remain close to L even if the new trip delay time ddo is relatively
bad. If the probability is close to 0, r will strongly depend on the term

Assume that P(k, j) = 1 for a certain output j and destination

k, so P(k,x) = ° for x -J. j. Without the "max" function in (6) the
probabilities p(k, .) would never change again, the small constant 0.0068
is used to prevent this. This is a way to prevent oscillations in the
network, because it takes at least one other agent (who takes the same
low probability route) to make a significant routing table probability
change.

The first part of (6) balances the network load, so if the traffic in-
creases until congestion arises, it is likely that the queues of multiple
nodes will quickly be more than 90% filled, and for these nodes, the
second part of (6) will be used by the agents. The inforcement r will be
higher for routes that have a low hop count. This has a positive impact
on the throughput, because the result is that the agent now tries to use
routes with a minimal number of hops and therefore also a minimum
chance of being discarded by a full buffer. The second variable is oqk

(which has a smaller influence on r than the hop count) it encourages
to use a small local output queue. Recall that the output buffer space
is dynamically shared by all outputs.

5.2. SIMULATION RESULTS

Figure 6 Random topology network Figure 7 Bucky ball topology

We show the performance of the agent for two different networks:
a randomly generated network (Fig. 6) and a network with a regular
structure, the so-called Bucky ball (Fig. 7). We chose the Bucky ball
because we expected this topology to be relative hard for our agent

400

system. There might be a high number of more or less equal cost paths,
which has a negative influence on the convergence time.

Table 1 Network properties

Bucky Ball Random

Topology Regular (Carbon 60 molecule) Irregular (random)

Nodes 60 20
Bidirectional Links 90 44

Link capacity 5 and 10 Mbit/sec uniform 0.25, 0.5, 0.75 and

distributed 1 Mbit/sec uniform distributed

Propagation delay 25 msec. U(5,10) msec.

Source rate U(O,Max) packets/sec U(O.lMax,Max) packets/sec

Source type Fractal (H=0.7) Poisson

Packet Size U(100,1500) bytes U(100,1500) bytes

The properties of the two simulated networks are shown in table 1.23

Both simulations use an output queue space of 1 Mbyte per node
and the size of the observation window w (used for Bn) equals 200. All
simulation runs simulated 1000 seconds, with the routing tables initially
set according to the shortest paths.

OSPF using load balancing did not show a significant improvement
on OSPF without load balancing in our networks, the same holds for
both daemons, the daemon with source routing performed equally well,
or slightly better than the other daemon. That is why OSPF with load
balancing and the normal daemon are not shown in the graphs in this
section.

Bucky ball: Figure 8 shows the bucky ball network throughput for dif-
ferent network loads. All routing methods achieve the same throughput
for low and moderate load. OSPF is the first routing method that starts
dropping packets, followed by AntNet. Our agent system (QIA) that
uses: high priority agents, information from neighboring nodes and an
inforcement rule obtained with genetic programming shows a significant
improvement on AntNet.

2The parameter Max in the table is varied in the simulation to get the different traffic load
scenarios.
3With the notation U(a, b) we mean a number uniformly distributed on the interval [a, b].

j
f'
I,

00

Packet routing with genetically programmed mobile agents 401

3 4 ,
Offered load (bytltlaecl

:f'
I,

0.'

00 3 4 ,

Figure 8 Bucky ball throughput Figure 9 Bucky ball packet delay

From Figure 9 we see, as expected, that the daemon has the lowest
delay until congestion arises. For higher loads, OSPF has the lowest
delay, but we saw in Figure 8 that OSPF has at the same time the
lowest throughput for high loads. The QIA system has a lower mean
delay than AntNet until the network becomes congested.

Random network: The throughput graph for the random network
(Fig. 10) is similar to the throughput graph of the bucky ball. Except for
very high loads, QIA lies between AntNet and the daemon. The delay
graph (Fig. 11) shows the excellent performance of QIA: for network
loads below 2Mbyte/sec the curve is very close to the daemon, at a
load of 1.62 Mbyte/sec AntNet has a mean delay three times higher
than QIA. For loads above 2Mbyte/sec there is no significant difference
between AntNet and QIA. OSPF is not shown for better readability, but
performed bad due to the fact that the network is not well balanced and
as a result some links were extremely overloaded.

To give an example of the differences in convergence time between
Ant Net and QIA, we ran the following experiment. We used the same
random network as before, but initialized the routing tables in such a
way that each link had the same probability of being used (Le., random
routing). We started the simulation for each of the following routing
methods, with a relative low offered load (1.37 Mbyte/sec):

1 AntNet

2 AntNet Modified: We modified AntNet at two points: the agents
now also use high priority on their forward path, and inspect the

402

1

o -:----:-,':-, -2:----:2':-.' ---',:----:,':-, -:----:-,':-, -----.J,

Offered load (byte/sec))(

Figure 10 Random network through-
put

Offend load (byte/lee))(10'

Figure 11 Random network packet
delay

neighboring queues as well. Except for the inforcement rule, the
modified AntNet system equals QIA.

3 QIA: Our system with high priority agents, using the neighbor
queue information and the inforcement rule we found using genetic
programming.

- AntNet
AntNet Modified

-- QIA

00 20 40 60 80 100 120 140 160 180 200
Simulabon Time (sec)

Figure 12 Effect on the convergence time.

Figure 12 shows the results of the experiment; AntNet takes about
100 seconds to reach a stable state, applying the modifications to AntNet
reduces this to only 50 seconds. As a direct result, the maximum mean

Packet routing with genetically programmed mobile agents 403

packet delay is about 50% smaller. The modifications make AntNet
adapt faster, without destabilizing the system. The QIA system displays
an even better performance.

6. CONCLUSIONS

This paper introduced new techniques for agent routing systems, and
made a comparison with other routing methods. We have shown that
genetic programming can be successfully applied to the non-trivial prob-
lem of agent based routing. Furthermore, we conclude that our other
improvements on the AntNet system, which were: a) high agent priority,
and b) using neighbor queue information, make it much more reactive
on changes in the traffic load without destabilizing the system.

References

[1] G. Di Caro and M. Dorigo, "AntNet: Distributed Stigmergetic Con-
trol for Communications Networks", Journal of Artificial Intelli-
gence Research (JAIR), Vol. 9, pp. 317-365, 1998.

[2] T. Magedanz, K. Rothermel and S. Krause, "Intelligent Agents: An
emerging technology for next generation telecommunications?", IN-
FOCOM 1996, Vol. 2, pp. 464-472, 1996.

[3] S. Appleby and S. Steward, "Mobile software agents for control in
telecommunications networks", British Telecom Technol. Journal 12,
pp. 104-113, 1994.

[4] S. Goss, S. Aron, J.1. Deneubourg and J.M. Pasteels, " Self-organized
shortcuts in the Argentine ant", Naturwissenschaften, 76, pp. 579-
581, 1989.

[5] R. Beckers, J.L. Deneubourg and S. Goss, "Trails and U-turns in the
selection of the shortest path by the ant Lasius Niger", Journal of
Theoretical Biology, 159, pp. 397-415, 1992.

[6] J.R. Koza, F.H. Bennett III, D. Andre and M.A. Keane, "Genetic
Programming: Biologically Inspired Computation that Creatively
Solves Non-Trivial Problems", Proceedings of DIMACS Workshop
on Evolution as Computation, 1999.

[7] R. Schoonderwoerd, O. Holland, J.Bruten and L.Rothkrantz, "Ant-
based load balancing in telecommunication networks", Adaptive Be-
haviour, Vol. 5:2, pp. 169-207, 1996.

[8] M. Heusse, D. Snyers, S. Gurin and P. Kuntz, "Adaptive Agent-
Driven Routing and Load Balancing in Communication Networks",
Ants '98, Brussels, Belgium, October 1998.

404

[9] W. Lau, A. Erramilli, J.L. Wang and W. Willinger, "Self-Similar
traffic Generation: The Random Midpoint Displacement Algorithm
and its Properties", ICC 1995, Vol. 1, pp. 466-472, 1995.

[10] V.Paxson and S. Floyd, "Wide-Area 'fraffic: The failure of Poisson
Modeling", Pmc. ACM Sigcomm, London, UK, pp. 257-268, 1994.

	PACKET ROUTING WITH GENETICALLYPROGRAMMED MOBILE AGENTS
	1. INTRODUCTION
	2. AGENT ROUTING
	2.1. EFFICIENT ALL PAIRS SHORTESTPATH ALGORITHM

	3. THE SIMULATION MODEL
	3.1. NODE MODEL
	3.2. TRAFFIC MODEL

	4. THE EVALUATION METHOD
	4.1. OTHER ROUTING PROTOCOLS

	5. RESULTS
	5.1. THE BEST AGENT
	5.2. SIMULATION RESULTS

	6. CONCLUSIONS
	References

