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Abstract This paper presents novel mobile agent routing techniques. We use 
genetic programming to build mobile agents that monitor the network 
status and set the routing tables in the network nodes in such a way 
that it maximizes network throughput and minimizes the overall packet 
delay. Performance is measured by simulation using a realistic network 
and traffic model that is capable of generating fractal traffic. The result 
is a high performance, self-configuring routing method, irrespective of 
the network topology and traffic. 
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1. INTRODUCTION 

The increasing complexity and diversity of communication networks 
make them hard to manage, managing them efficiently when traffic is 
strongly fluctuating is even harder. It is widely known that the mobile 
agents concept can be used to provide the basis for a self-configuring 
network (e.g. [2, 3]). 

We describe in this paper a self-configuring routing system, which is 
based on "AntNet" [1]. The idea used has its origins in the behavior 
of real ants. Real ants are capable of finding shortest paths by using 
information (pheromones) deposited by other ants [4, 5]. 

Apart from significant improvements in the AntNet algorithm, we use 
genetic programming techniques to build mobile agents that monitor the 
network status and set the routing tables in the network nodes in such 
a way that it maximizes network throughput and minimizes the overall 
packet delay. 
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Figure 1 Routing table p(') at node i 

The routing table (Fig. 1) indicates how the packets arriving at that 
node must be routed on the outgoing links, depending on the final des-
tination of the packets. The routing table for node i is a matrix p(i) 

with dimension N x Ai , where N is the number of nodes in the network 
and Ai is the number of neighbors of node i. P(i)(k,j) is the fraction of 
traffic with destination k, that is routed through neighbor j at node i. 
It is the task of the routing agents, described in the following section, to 
set the routing table. 

2. AGENT ROUTING 

This section will first give a summary of the agent routing algorithm 
and then discusses the differences with the AntNet system. 

Agents are generated concurrently with normal packets, but far less 
frequently. The main task of the agent on the path to its destination 
is to monitor and collect the network condition on the route between 
source and destination. The agent takes the same route as normal pack-
ets, according to the probability in the routing table inside the visited 
node, however for agents the probability is adjusted: we increase the 
probability for outputs with small queue sizes. This mechanism helps 
the agent in finding new, better routes. When the agent arrives at its 
destination, it takes the same route backwards and updates, according to 
the collected information and locally available information in the node, 
the routing tables at every visited node. The agent dies when it returns 
back to its source node. 

Below are the main differences between our system and the AntNet 
system: 

• High priority agents 

In AntNet the backward agents have higher priority than normal 
data packets, to quickly propagate the information the forward 
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agent collected. Forward agents have the same priority as data 
packets, so they also experience the same network conditions. The 
fact that agents experience these delays is used by the algorithm 
(it is one of the main principles). 

The disadvantage is however that it could a long time before an 
agent can react to specific situations like congestion. Forward rout-
ing systems [7, 8J do not inhabit the slow round trip delay. 

In our system we use backward routing, however our agents always 
have a higher priority than normal data packets. They no longer 
experience the normal packet delay; they calculate it by using the 
current queue size and the link capacity. On the return path the 
calculated delays are used as if they were the real experienced 
delays. The advantage is that the same information is propagated 
much faster in the network. The effect on the network performance 
will be discussed later. 

• Collecting neighboring data 

Directly related to the previous point, we also know the transmis-
sion queue sizes of all neighboring nodes along the visited path. 
This information is collected by our agent also, but only if the 
delay is small enough. To be precise, we only use the information 
if the calculated delay to the neighbor is smaller than the mean 
delay to that neighbor. Calculating the extra delays to neighbor-
ing nodes complicates the algorithm, because it may happen that 
more than one possible path between two nodes occur. Section 2.1 
gives a detailed explanation of the problem and its solution. 

• Inforcement rule 

For each node that the backward agent visits, we update the prob-
ability routing table. The amount should be proportional to the 
goodness of the trip. We use genetic programming to find a way to 
measure the goodness of the trip, it should find the best trade-off 
between adaptivity and stability. 

Different than in the AntNetJys-tem;-we allow negative inforce-
ments also. Very bad scoting trip times could be negatively awarded. 
The rule gives a measure of how good the agent's trip 
was. This measure, which is a number between -1 (bad) and 1 
(good), is used to update the routing table. An inforcement of 0 
will leave the probability unchanged. Let r denote the inforcement, 
then the following formula defines how to update the probability: 
let P be the short form of p(i) (k, 0) (i.e., the current probability 
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Figure 2 Example of the delay graph; The nodes on the main path mi are connected 
by bold arrows, the other nodes are neighboring nodes nj of which we have the delay 
info as well. 

to use output a for packets with destination k at node i). The new 
probability pI is defined by 

Rplus = r + - p) Sign(r)] 

p' = P+Rplus 

(1) 

(2) 

By normalization, the other probabilities Pj (all outputs not used 
by the agent) should be adjusted: 

p' = p. (1 _ RpIUS) 
J J 1- P (3) 

The main difference in the algorithm between our system and AntNet 
is that our agents inspect the transmission queues, allowing lower agent 
delays and more network information per agent. We call it the "Queue 
Inspecting Agents" (QIA) system. 

2.1. EFFICIENT ALL PAIRS SHORTEST 
PATH ALGORITHM 

The method we applied for collecting delay information along the vis-
ited path, together with information about neighboring nodes could lead 
to the existence of multiple paths between two node pairs. We are only 
interested in the shortest path, so we have to apply some sort of shortest 
path algorithm. We could use Floyd's or Dijkstra's algorithm, however, 
due to their computational complexity (O(N3) and O(NElogN) re-
spectively), not well suited for our purposes. If we make a graph of the 
delay information (Fig. 2), we can see that we have a graph with spe-
cial properties for which we developed a simple and efficient algorithm 
based on theorem (4). To compute the shortest path between all pairs 
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has computational complexity O(N2). Note however that the algorithm 
is processed in different nodes and each node on the return path only 
needs to know the delay from itself to the other nodes, which can be 
computed in O(N) time and therefore the algorithm is scalable. 

The main idea is based on two properties: 

• The vertices in the graph that represent neighboring nodes, have 
no outgoing edges. 

• Let ml, m2, ... , mk represent the nodes the agent visited on the 
forward path. There exists one and only one path from mi to mj 

for 1 ::;; i < j ::;; k, while in the other direction (from mj to mil no 
paths exists. 

Let 9 = (V, [, w) a weighted, directed graph. V consists of the sum of 
the visited vertices Vm (the main agent track) and Vn (the neighboring 
vertices), respectively. Note that the outgoing degree of the vertices in 
Vn equals O. Now let Vm = {ml,m2, ... ,md, i.e., the agent started in 
vertex (node) ml and visited all mi until mk. The edges between two 
vertices in Vm are directed only from mi -* mi+l. We claim that the 
shortest path D between vertices from Vm and all other vertices in V 
equals 

Proof by induction on Vt: 
Basis: Let i = k, from the vertex mk only edges to Vn exists, therefore 

the minimum distance to all other vertices equals w(mk, y) which is 
satisfied in (4): D(mk, y) = min[oo, w(mk' y)]. 

Induction step: Assume D(mi+l, y) is the minimum distance between 
mi+l and y. Note that there are two possible ways to go from mi to 
y. From all the outgoing edges in mi, there is one going to mi+1, all 
others go to a vertex in Vn . Since the outgoing degree of the edges of 
the vertices in Vn equals 0, there are only two edges from mi that may 
lead to y. That is either directly with cost w(mi' y), or via mi+l with 
cost D(mi+l' y) + w(mi' mi+il, from these two possibilities we have to 
take the minimum, which is exactly equation 4. 0 

We must take care that the properties of the graph 9 remain valid 
during the forward trip of the agent. There are cases that need special 
attention: 

• Do not go to an already visited node. This is fulfilled by how 
the agent moves in the network. If the agent has no other choice, 
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Figure 3 Forward agent arrives at 
node 3. 

Figure 4 Forward agent arrives at 
destination node 5. 

i.e., all other nodes already have been visited, the agent does not 
continue on its forward path. It will start with its backward trip 
to update the routing tables. 

• Do not include delay info to an already visited node. This is a 
small restriction that could loose some information. Let ma de-
note the node that we visited in the past and is a neighbor of our 
current node mb. Including the delay info mb -+ ma would bring 
no information to nodes we visited: (1) before ma and, (2) nodes 
we will visit after mb, but it could for nodes between ma and mb. 

• If the agent enters a node that was previously a neighbor node, we 
have to distinguish between two cases: 

1 Imagine the case depicted in Figure 3; the agent arrives at 
node 3, of which we have delay information from node 1. In 
this case, the total delay of going from 1 to 3 via 2 is less than 

. going directly from 1 to 3, and therefore we delete the direct 
delay info from 1 to 3. 

2 When the direct link is shorter, we change the visited path 
by including the shorter link in the visited path, and deleting 
the delays that are no longer part of the visited path. 

Let's assume that after the agent arrived in node 3 in Fig. 3, 
the agent continues to node 4. Node 4 is an again a neighbor 
of node 2, but this time the direct link is shorter. Node 3 
is deleted from the visited list. If the agent's next hop is to 
node 5, then we will have the graph as shown in Fig. 4. 

As an example, the minimum distance from node 4 to 3 in Fig. 4 is 
the direct link w( 4,3) = 6 or via node 5. The cost of going via node 5 
equals 2 + V(5, 4) = 2 + 1 = 3. So, the minimum distance from node 4 
to 3 equals 3. 
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The algorithm to compute the shortest path in a node consist of a 
single loop over all destination nodes (thus, complexity O(N)) and se-
lecting the minimum distance according to equation 4. Note that the 
shortest path information calculated in one node is used by other nodes 
on the return path. 

3. THE SIMULATION MODEL 

In this section we will discuss the simulation model of the nodes in 
our network (Section 3.1) and the model of the traffic generator (Section 
3.2). We implemented these models in a (C++) simulation tool we wrote 
ourselves. 

3.1. NODE MODEL 
All incoming packets are directed to the router (Fig. 5), which has 

a deterministic service time per packet. We choose this to be sufficient 
small compared to the speed of the incoming packets. The function of 
the router is to inspect the destination address in the packet header and 
perform a routing table lookup. Whenever an agent arrives and it has 
to perform certain functions in the node, the router forwards the agent 
to the processor. It may send the agent to another node by setting the 
destination and forward the agent to the node's router. We found out 
that the processor queue-server system has a very small influence on 
the total network performance, because: a) the number of concurrent 
agents in one node is very small and, b) the algorithm is fast (Section 
2.1). Compared to the propagation delays on the links, the processor 
time is negligible. Nevertheless, we used a deterministic service time of 
1 msec. per agent. 

If the router has to forward the packet (or agent), packet transmission 
is started immediately on the output, or is queued if the output is not 
idle. All output queue space is dynamically shared among all outputs. 

3.2. TRAFFIC MODEL 

It is important that the generated traffic in our simulation represents 
real traffic closely, because the agents that will be produced are best 
suited to deal with the traffic that was used in the simulations. What 
we use are N (N - 1) independent traffic sources (one for each source 
- destination pair) that can generate Poisson as well as fractal traffic. 
Ignoring the long-range dependence typically results in overly optimistic 
performance predictions and inadequately network resource allocation 
[9, lOJ. The method used is called "Random Midpoint Displacement" 
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Figure 5 Network node model 

(RMD), which is fast, simple, efficient and adequate for qualitative stud-
Ies. 

4. THE EVALUATION METHOD 

The main problem of our system is how to update the routing table 
with the information the agents collect. We want to find a formula for 
this non-trivial problem by using genetic programming techniques. 

The process starts with completely random expressions, for each we 
run a simulation and we evaluate it using a fitness formula: 

Bsuccess ( ) maX(dlim - d, 0) 
score = c * B + 1 - c * d 

offered lim 
(5) 

Which yields a number between 0 (bad) and 1 (good). Bsuccess denotes 
the total number of bytes that were successfully delivered, BOf fered is the 
total number of bytes that were offered to the system. With parameter 
c we can control the importance of throughput versus packet delay, we 
used c = 0.9. A delay d greater than dlim is set to dlim, we used 10 
seconds for this limit. We now use Darwinian principles [6] like natural 
selection, mutation and crossover to build new expressions which we 
also evaluate, whenever this gives us a better expression, the better one 
replaces a less good one. 

The process continues until we reach a converged state (i.e., no progress 
during the last x tries). The result is a set of expressions, which are best 
suited in solving the problem from all expressions we tried. However, we 
only looked at one specific topology and traffic characteristic so far. To 
see if the expression we found is more general, we evaluate the expression 
in about 200 different network configurations. For this purpose we use a 
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set of powerful computers, including a supercomputer. The results are 
stored in a database. 

The expressions may contain constants, variables and operators. The 
simulation tool represents expressions by a tree structure, which allows 
easy manipulation (e.g. mutation and crossover) of the expressions while 
preserving a correct syntax. The variables that may be used by the 
genetic programming process are listed below. Assume the agent is on 
its backward path and enters a node, then the following information is 
now available: 

• d no - The new delay info delivered by the agent to go from the 
current node to node n using output o. 

• d n - The mean delay to go from the current node to node n. 

• an - The standard deviation of the collected delays from the current 
node to node n. 

• P(n, 0) - The current routing table probability to use output 0 for 
packets with destination node n. 

• h no - The number of hops the last agent visited on the way to node 
n using output o. 

• tq - A number between 0 and 1 indicating the ratio between the 
total used queue space and the total available queue space in the 
current node. 

• aqo - A number between 0 and 1 indicating the ratio between the 
used queue space by output 0 and the total used queue space in 
the current node. 

• Bn - The best delay seen by the last w agents to go from the 
current node to node n. 

4.1. OTHER ROUTING PROTOCOLS 

Similar like in the evaluation of the AntNet system, we compare the 
agent based routing system with other routing methods. We imple-
mented in our simulation tool the following routing protocols: l 

• OSPF: At the simulation start the routing tables in the node are 
filled according to a shortest path algorithm with a cost function 
based on the link capacity. 

1 Note that we only implemented the functionality of the routing protocols that is relevant 
to this study. 
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• OSPF with load balancing: If multiple paths with equal costs to 
a destination exist, OSPF may use load balancing to spread the 
load over multiple paths. 

• Daemon: This is the same routing protocol as used in AntNet. It 
is a routing protocol that knows at any time and without a delay 
the complete state of the network. Based on this information, a 
shortest path for each packet is calculated at each hop. The main 
purpose of this routing protocol is to obtain an empirical upper 
bound of the achievable performance. 

• Daemon Source Routing: Under certain circumstances, OSPF and 
the agent routing achieve a better performance than the daemon 
discussed above. Packet delays can be higher, which was caused by 
oscillating packets. To resolve this we implemented another dae-
mon, which uses source routing. At the generation of the packet 
a shortest path is calculated to the destination, and this path re-
mains fixed for this packet. 

5. RESULTS 

This section presents the best agent we found with the genetic pro-
gramming method (Section 5.1), and discusses the performance of that 
agent for two scenarios (Section 5.2). 

5.1. THE BEST AGENT 
Recall that all agents we evaluated are the same, except for their 

inforcement rule. In this section we present the agent that has the 
best overall characteristics. We evaluated the agent with all kinds of 
topologies, network sizes (up to 500 nodes), link capacities, traffic load, 
etc. 

for tq 0.9 
(6) 

for tq > 0.9 

The agent consists of two parts; the one that is taken depends on the 
node's buffer fill ratio. Let us first consider the first part, i.e., buffer fill 
ratio is less than 90%. The term is a relative measure of how good 
the trip was. The fact that it is relative is important because otherwise 
the agent would not perform well in different scenarios, i.e., it will most 
likely not work equally well in small and large networks. 
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Furthermore, the formula uses the current routing table probability. 
For probabilities close to 1, r will be close to 1, so the new probability 
will remain close to L even if the new trip delay time ddo is relatively 
bad. If the probability is close to 0, r will strongly depend on the term 

Assume that P(k, j) = 1 for a certain output j and destination 

k, so P(k,x) = ° for x -J. j. Without the "max" function in (6) the 
probabilities p( k, .) would never change again, the small constant 0.0068 
is used to prevent this. This is a way to prevent oscillations in the 
network, because it takes at least one other agent (who takes the same 
low probability route) to make a significant routing table probability 
change. 

The first part of (6) balances the network load, so if the traffic in-
creases until congestion arises, it is likely that the queues of multiple 
nodes will quickly be more than 90% filled, and for these nodes, the 
second part of (6) will be used by the agents. The inforcement r will be 
higher for routes that have a low hop count. This has a positive impact 
on the throughput, because the result is that the agent now tries to use 
routes with a minimal number of hops and therefore also a minimum 
chance of being discarded by a full buffer. The second variable is oqk 

(which has a smaller influence on r than the hop count) it encourages 
to use a small local output queue. Recall that the output buffer space 
is dynamically shared by all outputs. 

5.2. SIMULATION RESULTS 

Figure 6 Random topology network Figure 7 Bucky ball topology 

We show the performance of the agent for two different networks: 
a randomly generated network (Fig. 6) and a network with a regular 
structure, the so-called Bucky ball (Fig. 7). We chose the Bucky ball 
because we expected this topology to be relative hard for our agent 
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system. There might be a high number of more or less equal cost paths, 
which has a negative influence on the convergence time. 

Table 1 Network properties 

Bucky Ball Random 

Topology Regular (Carbon 60 molecule) Irregular (random) 

Nodes 60 20 
Bidirectional Links 90 44 

Link capacity 5 and 10 Mbit/sec uniform 0.25, 0.5, 0.75 and 

distributed 1 Mbit/sec uniform distributed 

Propagation delay 25 msec. U(5,10) msec. 

Source rate U(O,Max) packets/sec U(O.lMax,Max) packets/sec 

Source type Fractal (H=0.7) Poisson 

Packet Size U(100,1500) bytes U(100,1500) bytes 

The properties of the two simulated networks are shown in table 1.23 

Both simulations use an output queue space of 1 Mbyte per node 
and the size of the observation window w (used for Bn) equals 200. All 
simulation runs simulated 1000 seconds, with the routing tables initially 
set according to the shortest paths. 

OSPF using load balancing did not show a significant improvement 
on OSPF without load balancing in our networks, the same holds for 
both daemons, the daemon with source routing performed equally well, 
or slightly better than the other daemon. That is why OSPF with load 
balancing and the normal daemon are not shown in the graphs in this 
section. 

Bucky ball: Figure 8 shows the bucky ball network throughput for dif-
ferent network loads. All routing methods achieve the same throughput 
for low and moderate load. OSPF is the first routing method that starts 
dropping packets, followed by AntNet. Our agent system (QIA) that 
uses: high priority agents, information from neighboring nodes and an 
inforcement rule obtained with genetic programming shows a significant 
improvement on AntNet. 

2The parameter Max in the table is varied in the simulation to get the different traffic load 
scenarios. 
3With the notation U(a, b) we mean a number uniformly distributed on the interval [a, b]. 
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Figure 8 Bucky ball throughput Figure 9 Bucky ball packet delay 

From Figure 9 we see, as expected, that the daemon has the lowest 
delay until congestion arises. For higher loads, OSPF has the lowest 
delay, but we saw in Figure 8 that OSPF has at the same time the 
lowest throughput for high loads. The QIA system has a lower mean 
delay than AntNet until the network becomes congested. 

Random network: The throughput graph for the random network 
(Fig. 10) is similar to the throughput graph of the bucky ball. Except for 
very high loads, QIA lies between AntNet and the daemon. The delay 
graph (Fig. 11) shows the excellent performance of QIA: for network 
loads below 2Mbyte/sec the curve is very close to the daemon, at a 
load of 1.62 Mbyte/sec AntNet has a mean delay three times higher 
than QIA. For loads above 2Mbyte/sec there is no significant difference 
between AntNet and QIA. OSPF is not shown for better readability, but 
performed bad due to the fact that the network is not well balanced and 
as a result some links were extremely overloaded. 

To give an example of the differences in convergence time between 
Ant Net and QIA, we ran the following experiment. We used the same 
random network as before, but initialized the routing tables in such a 
way that each link had the same probability of being used (Le., random 
routing). We started the simulation for each of the following routing 
methods, with a relative low offered load (1.37 Mbyte/sec): 

1 AntNet 

2 AntNet Modified: We modified AntNet at two points: the agents 
now also use high priority on their forward path, and inspect the 
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Figure 11 Random network packet 
delay 

neighboring queues as well. Except for the inforcement rule, the 
modified AntNet system equals QIA. 

3 QIA: Our system with high priority agents, using the neighbor 
queue information and the inforcement rule we found using genetic 
programming. 

- AntNet 
AntNet Modified 

-- QIA 

00 20 40 60 80 100 120 140 160 180 200 
Simulabon Time (sec) 

Figure 12 Effect on the convergence time. 

Figure 12 shows the results of the experiment; AntNet takes about 
100 seconds to reach a stable state, applying the modifications to AntNet 
reduces this to only 50 seconds. As a direct result, the maximum mean 
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packet delay is about 50% smaller. The modifications make AntNet 
adapt faster, without destabilizing the system. The QIA system displays 
an even better performance. 

6. CONCLUSIONS 

This paper introduced new techniques for agent routing systems, and 
made a comparison with other routing methods. We have shown that 
genetic programming can be successfully applied to the non-trivial prob-
lem of agent based routing. Furthermore, we conclude that our other 
improvements on the AntNet system, which were: a) high agent priority, 
and b) using neighbor queue information, make it much more reactive 
on changes in the traffic load without destabilizing the system. 

References 

[1] G. Di Caro and M. Dorigo, "AntNet: Distributed Stigmergetic Con-
trol for Communications Networks", Journal of Artificial Intelli-
gence Research (JAIR), Vol. 9, pp. 317-365, 1998. 

[2] T. Magedanz, K. Rothermel and S. Krause, "Intelligent Agents: An 
emerging technology for next generation telecommunications?", IN-
FOCOM 1996, Vol. 2, pp. 464-472, 1996. 

[3] S. Appleby and S. Steward, "Mobile software agents for control in 
telecommunications networks", British Telecom Technol. Journal 12, 
pp. 104-113, 1994. 

[4] S. Goss, S. Aron, J.1. Deneubourg and J.M. Pasteels, " Self-organized 
shortcuts in the Argentine ant", Naturwissenschaften, 76, pp. 579-
581, 1989. 

[5] R. Beckers, J.L. Deneubourg and S. Goss, "Trails and U-turns in the 
selection of the shortest path by the ant Lasius Niger", Journal of 
Theoretical Biology, 159, pp. 397-415, 1992. 

[6] J.R. Koza, F.H. Bennett III, D. Andre and M.A. Keane, "Genetic 
Programming: Biologically Inspired Computation that Creatively 
Solves Non-Trivial Problems", Proceedings of DIMACS Workshop 
on Evolution as Computation, 1999. 

[7] R. Schoonderwoerd, O. Holland, J.Bruten and L.Rothkrantz, "Ant-
based load balancing in telecommunication networks", Adaptive Be-
haviour, Vol. 5:2, pp. 169-207, 1996. 

[8] M. Heusse, D. Snyers, S. Gurin and P. Kuntz, "Adaptive Agent-
Driven Routing and Load Balancing in Communication Networks", 
Ants '98, Brussels, Belgium, October 1998. 



404 

[9] W. Lau, A. Erramilli, J.L. Wang and W. Willinger, "Self-Similar 
traffic Generation: The Random Midpoint Displacement Algorithm 
and its Properties", ICC 1995, Vol. 1, pp. 466-472, 1995. 

[10] V.Paxson and S. Floyd, "Wide-Area 'fraffic: The failure of Poisson 
Modeling", Pmc. ACM Sigcomm, London, UK, pp. 257-268, 1994. 


	PACKET ROUTING WITH GENETICALLYPROGRAMMED MOBILE AGENTS
	1. INTRODUCTION
	2. AGENT ROUTING
	2.1. EFFICIENT ALL PAIRS SHORTESTPATH ALGORITHM

	3. THE SIMULATION MODEL
	3.1. NODE MODEL
	3.2. TRAFFIC MODEL

	4. THE EVALUATION METHOD
	4.1. OTHER ROUTING PROTOCOLS

	5. RESULTS
	5.1. THE BEST AGENT
	5.2. SIMULATION RESULTS

	6. CONCLUSIONS
	References




