
A NETWORK BASED REPLAY PORTAL

Service Scenarios, Architecture and Implementation

J.E. van der Merwel, C.J. Sreenan2 , A.N. Donnelly3 ,

A. Basso1 , C.R. Kalmanek1

1 AT&T Labs - Research

Florham Park, NJ, USA

{kobus,basso,crk}@research.att.com

2 University College Cork

Cork, Ireland

cjs@cs.ucc.ie

3 Cambridge University

Cambridge, UK

andlOOO@cl.cam .ac.uk

Abstract
Technologies based on cable modems currently use the capacity of a

single TV channel to offer 25- 30 Mb/s downstream for Internet access.
With the advent of Digital TV and the significant bandwidth savings it
gleans from video compression, it is expected that providers will increase
the access capacity available for IP traffic, while retaining the bulk of the
bandwidth for the primary service of broadcast TV. Motivated by the
increasing popularity of on-demand streaming media, our work ques-
tions this IP-versus-broadcast distinction, and proposes a hybrid model
which combines the familiar broadcast model with the conveniences of
on-demand TV viewing over IP. In this paper we discuss the potential
benefits of this approach, and some of the difficult technical challenges it
raises. We propose an architecture of network-based portals and sketch
the types of services we envisage it will enable. Further, we describe the
design and implementation of a replay service that operates within this
architecture to offer a new on-demand TV -viewing experience.

Keywords: streaming media, network services, on-demand TV

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2000
H. R. van As (ed.), Telecommunication Network Intelligence

10.1007/978-0-387-35522-1_37

http://dx.doi.org/10.1007/978-0-387-35522-1_37

522

Introduction

Recent years have seen the rising popularity of streaming media ap-
plications on the Internet. While the amount of this traffic is still small
relative to web traffic [van der Merwe et al., 1999], there is general
agreement that it will grow significantly, driven by bandwidth-efficient
compression techniques, a wider array of globally accessible content, and
increased capacity of backbone and access networks. Our research is mo-
tivated by this expected growth in Internet streaming content and by
developments in the Cable-TV industry, where there is a concerted ef-
fort to provide high-speed, full-duplex Internet access to residential cus-
tomers. Current standards in the US allow up to 30 Mb/s for Internet
access by allocating a single 6 MHz wide TV band. In just a few years
it is expected that the broadcast TV industry will fully embrace and de-
ploy digital TV based on MPEG-2. The benefits of digital compression
will allow several TV channels to be carried in a single 6 MHz band,
freeing up a significant amount of system capacity. It is expected that
this will be mainly used to offer new premium TV channels, and new
services such as movies on demand, while allocating a relatively much
smaller amount of bandwidth for IP traffic, including streaming media.
Our work questions this TV versus IP distinction and proposes instead
an all-IP model. This approach has several potential benefits, includ-
ing the ability to use multicast delivery to efficiently scale from large
broadcast-style distribution to smaller, more select audiences. Also, the
Internet provides access to content which is globally accessible, unlike
the broadcast TV model, where access to content depends on the chan-
nels offered by your local TV operator. Integration with the web also
becomes much more convenient and promotes interactive services.

We believe this approach has the potential to revolutionize the TV
viewing experience by moving away from a broadcast model to a hybrid
on-demand model. In that context, several difficult technical challenges
arise, including the design of on-demand services, storage management,
efficient use of multicast, caching models, and protocol interactions for
live and on-demand viewing. In Section 1 we propose an architecture
of network-based portals and sketch the types of services we envisage
it will enable. In Section 2 we describe the design and implementation
of a replay portal that operates within this architecture to offer a new
on-demand TV-viewing experience. Section 3 provides a summary of
related work, and Section 4 concludes the paper.

Sigh Capacity

BCkbone

Replay Portal

Replay Consumer

Non-Replay Consumer

A Network Based Replay Portal 523

Access

- Unicast

......• Multicast

+-.- Inter Portal Communicati

Figure 1 Network Based Replay Service

1. NETWORK BASED REPLAY SERVICES

Our basic assumption is that we are dealing with an environment
where high quality live video is being distributed across an IP network.
This live content might enter the IP network "locally" (e.g. from a
satellite feed at the head-end of a local access plant) or might indeed
be carried on IP from the remote live source. This world essentially
duplicates or emulates the "pure broadcasting" (or more correctly for
IP, multicasting) model of current TV networks. In our architecture
we add the notion of a Replay Portal to this basic infrastructure to
change the broadcasting model to a hybrid on-demand modeL This
arrangement is depicted in Figure 1 which shows a high level view of our
architecture, its different components and variations.

A Replay Portal becomes the local video access point for customers
and provides the following functions:
- Access to live content (subscribed to by portal on behalf of users or
based on the content offering of the replay service).
- Moving window recording of recent (e.g. the last 24 hours worth of)
live content, enabling on-demand viewing of such content.
- "Pause" and "Replay" functionality of live content.

524

- Personal recording facilities.
- Subscription to non-local live content, (obtained on subscription or
on-demand basis from other Replay portals).
- Indexing and search functionality providing access to the video content
of multiple cooperating portals.

As shown in Figure 1, content is delivered to the portal either by
unicast or multicast, or indeed by a special content distribution mecha-
nism. Similarly, from the portal downstream, content can be delivered
by means of multicast, as would be the case when live content is watched
through the portal, or unicast when previously stored content is watched
on-demand. Customers that do not make use of this service, but are lo-
cated on the same access network can connect directly to the original
live sources (assuming that this is allowed by the live content provider)
as they would do in the absence of the replay server. (Such customers
will of course not be able to make use of the replay portal functionality.)

The high quality service we envisage will only be realizable on broad-
band access networks. While these access networks will increase the
access capacity with an order of magnitude or more [Eldering et aI.,
1999], access capacity is expected to lag behind backbone capacity for a
considerable time to come. We position the replay portal at this capac-
ity discontinuity. We view our architecture as enabling the replacement
of current TV offerings and as such schedule based streaming of con-
tent from the headend is still the basic service offering. However, in our
architecture, video is only streamed downstream of the portal if there
are actually consumers of a particular stream downstream of the portal.
This can easily be achieved in an IP environment, where streams are
delivered via multicast rather than broadcast, and is expected to result
in bandwidth savings across the access network.

For example, in a cable based access network the portal is expected
to be located in the cable headend. As access capacities increase, the
capacity discontinuity, and the portal location, will move downstream
towards the home. Eventually, in a fiber to the home scenario, the
discontinuity will disappear or move into the home. When this happens,
the bandwidth savings envisaged by our architecture will become less
important but the service interaction and integration aspects discussed
in Section 1.1 will be as important only at a much larger scale.

1.1. SERVICE SCENARIOS

In this section we motivate our approach by considering a variety of
services or service features enabled by our IP-based architecture. We
require the basic functionality to be equivalent to current TV and as

A Network Based Replay Portal 525

such the basic service offering is still schedule driven access to a variety
of live channels. These live channels axe transmitted downstream by
means of multicast delivery. The services and features considered below
provide some enhancement to this basic service.
Moving window replay of subscribed channels: For a predeter-
mined set of channels the portal stores a moving window of the most
recent N hours worth of content for each channel. This stored content
is made available to subscribers for on-demand viewing. Different ways
of indexing can be provided to this stored content ranging from simple
time based schemes to indexing that is content awaxe.
Library archive of popular programs: A complementary way of
providing access to previously recorded content is to maintain a libraxy of
certain popular programs in the replay portal. For example, all programs
in a certain series such as the X-Files or Stax Trek can be axchived for
subscribers to the portal service.
Replay and pause of non-portal-subscribed channels: Customers
of the portal service can also watch other live content, i.e. content
not subscribed to by the portal, through the portal. In this case the
portal will contact the actual live upstream server. Content is streamed
to the downstream customer via the portal which stores a small moving
window (say M minutes) of the stream. This small stored window allows
customers to request a replay of a recent paxt of the stream, or pause
the live stream (causing the window size to increase) and to then join
the live stream again.
Network-based personal recording: A small extension of the above
services allows customers to make their own personal recordings which
axe stored in a personal account on the portal. Reliable recordings can
be initiated in a vaxiety of ways and the content can be from either
subscribed or non-subscribed channels. Note that combining this func-
tionality with the moving window store allows a user to record content
after it has been "aired". In this manner a user can "retro-actively
record" something from the replay store thereby adding it to the user's
personal collection.
Friends access to personal library: Since the portal is located in the
network and on a high capacity backbone it is possible for users to allow
access to their personal library of recordings to friends. A user might
for example see something that he/she knows is of interest to a friend
and start recording it. Having finished the recording the user can simply
mail a pointer to his/her friend who can then stream (or transfer) the
content from the portal where it was recorded.

A very powerful extension of the above service offerings, enabled by
the fact that the portal is network based, is to allow interportal exchange

526

of content. The novelty, over current video-on-demand offerings, is that
the user has control over the source of the material.
Subscription based exchanges: The simplest form of interportal ex-
change will be interportal-subscription based. In this case content stored
by a remote portal is transferred to the local portal for on-demand view-
ing by local customers. Certain non-local channels (stored by a remote
portal) might be of sufficient interest to the local community to warrant
it forming part of the local portals regular offerings rather than having
customers access it from the remote portal directly. An example might
be regular (or seasonal) European sporting events made available in the
U.S.
Personalized content aware exchanges: A much more sophisticated
means of content exchange between portals might involve users specify-
ing a profile of interest, with portals exchanging content based on the
profiles of its local users. In this way users are ensured of receiving up
to date streaming content on the topics they find interesting.

In the above examples the assumption was that content produced by
some live sources was stored, indexed and made available for retrans-
mission by the portals. Such actions will clearly require some agree-
ments between the portal operator and the producers of live content,
and a number of business arrangements are possible between content
providers, portal service providers, customers and advertisers. However,
in that scenario the mode of operation of content providers remains un-
changed from the current cable TV scenario. A logical extension of this
involves negotiation between the portal operator (or a third party that
use its infrastructure) to directly negotiate with the content provider for
specific content:
Local target audience: In this case the portal becomes the access
point for a particular mix of programs targeted at a specific audience.
At one end of the spectrum this might resemble the service currently
offered by a local TV station. The key point however is that basing
this architecture on a packet network allows this type of service to scale
to arbitrary small target audiences. For example the the target audi-
ence might be the local bird-watchers club that obtains (and adds to its
library) programming information of interest provided by a variety of
content providers.

A Network Based Replay Portal 527

RTSP proxy __ _

Network/ live contQnt Gide

User Side

Data Sink

--... User HTrP - -.... Vpstream RTSP control

User RTSP data flow Inter component communication

Figure 2 Replay Portal Architecture

2. REPLAY PORTAL DESIGN AND
IMPLEMENTATION

2.1. PORTAL ARCHITECTURE

The main architectural components of a Replay Portal are shown in
Figure 2. Our architecture is built around standard IETF protocols
namely the Real Time Streaming Protocol - RTSP [Schulzrinne et al.,
1998], the Real Time Transport Protocol- RTP [Schulzrinne et al., 1996]
and the Hypertext Transfer Protocol - HTTP [Fielding et al., 1999]. A
user typically starts interaction with the portal by means of accessing a
portal Web-server IUser-guide. This interface provides the user with
personalized access to and control of the portal content. Personalized
portal content includes the portal-subscribed content (either live or on-
demand) as well as any content stored in the user's personal store. The
Web interface offers a number of ways of indexing the content that is of
interest to the user and allows the user to initiate streaming of any such
content. In the case of a personal store the user can also perform man-
agement functions such as removing previously stored content or setting
up the recording of a future streaming event. When a user initiates
streaming through the portal Web interface, a helper file is downloaded

528

to the user's browser. The Mime type of this file instructs the browser
to start up a streaming client application on the user's PC or set-top
box passing to the application the RTSP URL contained in the helper
file.

A user might also make use of the portal for content that is not sub-
scribed to by the portal. In this case the user would not typically make
use of the portal web interface. Rather the user will go to a web interface
associated with the content source and obtain an RTSP URL in similar
fashion as described above. This also means that in this case the user's
first interaction with the portal will be through the RTSP interface as
described next.

The RTSP URL obtained by the streaming client through either of the
above approaches is presented to the RTSP proxy on the replay portal.
The proxy establishes whether the URL represents content currently
stored in the proxy or whether it is necessary to establish a connection
to an upstream server. If the requested content is available on the server,
either live or stored, the proxy initiates delivery of the content to the
client. (In these cases the proxy would have contacted the relevant
upstream servers beforehand.) If the content is not locally available, the
proxy will contact the upstream server and on success will initiate local
handling of the content as well as delivery to the client.

The actual manipulation of content on the portal is performed by
a set of storage managers. Each storage manager is in control of a
specific physical data store and controls the way content is added to and
removed from the store. The storage manager provides the Web interface
with information about the contents of a particular store, for example
to create an RTSP URL to pass back to the client. Similarly the storage
manager can tell the RTSP proxy whether a particular URL is currently
to be found in the local store. The storage manager(s) manipulate the
store(s) under control ofthe RTSP proxy. For example, in the case oflive
content being viewed through the portal, the RTSP proxy will instruct
the storage manager to create a data sink and a data source for the
data path handling of the stream. The data sink receives the content
from upstream and writes it to the store, while also making the content
available to the data source for immediate delivery to the client.

The portal architecture lends itself to a number of implementation
options depending on the required scalability. In the simplest case a
small replay portal can have all the components executing on a single
physical machine. This is the nature of the prototype implementation
which is discussed in more detail in the remainder of this section. A more
scalable realization could involve frontend web and RTSP servers
which hand off processing of streaming content to a farm of backend

A Network Based Replay Portal 529

RTSP servers and storage managers. This arrangement is depicted
in Figure 3. In this case access to the portal through the web interface
will result in one of the backend servers being chosen based on server
load, the content to be accessed or some other policy. Similarly direct
accesses to the portal RTSP interface, handled by the RTSP frontend,
will be handed off to one of the backend servers.

H"M'P

Front liiil:nd RTSP

- Back end RTSP

Data flow

Front-end
Web Server

Figure 3 Replay portal with RTSP proxy/storage manager farm

The data path handling of streaming content can similarly be real-
ized in a variety of implementations. Again in the simplest case an
RTSP server, storage manager combination can simply execute on a sin-
gle server machine potentially with two network interfaces. In such an
implementation the server could however easily become a bottleneck, as

530

Live stream

Copy of live stream

Physical connection

." .. ' " ..

Storaoe
Manager

Data Source

Figure 4 Scalable portal realization

it has to handle re-delivery of any live streams as well as anyon-demand
delivery of streams. An alternative realization is depicted in Figure 4.
In this case an RTSP proxy and its associated storage manager is sepa-
rated by means of a forwarding device such as a switch or a router. As
before the storage manager is effectively controlled by the RTSP proxy
based on user requests. The RTSP proxy also has some control over
the forwarding device. In particular the RTSP proxy can instruct the
switch to have a copy of a particular stream delivered on the switch
interface connected to the storage manager. As before the RTSP proxy
instructs the storage manager to expect and store this stream. In this
case the storage manager does not handle the live stream at all and is
only responsible for handling anyon-demand requests.

While we do not expect any major obstacles in realizing the portal
architecture in a scalable manor, many details need to be worked out
and this is the subject of current and future work. In the remainder of
this section we will concentrate the discussion on our current prototype
implementation.

A Network Based Replay Portal 531

2.2. PROTOTYPE IMPLEMENTATION
In order to demonstrate the feasibility of our architecture we have

developed a prototype system consisting of all the elements in our ar-
chitecture:

• A live server

• A replay portal (consisting of web server, RTSP proxy and storage
managers)

• A streaming client

Since we expect to provide a high quality service we use MPEG2
encoding for the video streams making use of hardware encoders and
decoders we have used in earlier work [Basso et al., 1999]. We use hard-
ware encoders from VisionTech [Vision Tech, 2000], while the decoders
are from SigmaDesign using a Microsoft Windows environment [Sigma
Designs,2000]. RTSP is the control protocol that binds all our compo-
nents together and we have developed an RTSP library (librtsp) which
has been derived from an early public domain implementation from
Real Networks [ReaINetworks, 1999]. The portal was implemented on
a Linux infrastructure and the web server is an unmodified Apache
server [Apache Software Foundation, 2000]. Since we knew from the
outset that we would be dealing with a diversity of platforms and op-
erating systems, code portability was a major concern. We addressed
this by developing a basic portability library (lib common) that dealt
with operating system specific issues and provided a common interface
to other libraries and applications.

Each of these libraries and the applications built on them are discussed
in more detail in the sections below.

2.2.1 Support libraries: lihcommon and lihrtsp. The
main functions provided by libcommon are an event scheduling mecha-
nism and 10 handling of both network and file systems across all sup-
ported platforms. The event scheduling mechanism allows specific func-
tions to be called based on time, network or file events. This include the
running of "background" tasks when the system is idle. Libcommon also
contains a number of general mechanisms such as safe string handling
and ring buffer and table manipulation.

Librtsp builds on lib common and provides a simple way for either
client or server applications to use RTSP. For example a client appli-
cation simply calls "rtsp_connect" to initiate communication with an
RTSP server. On success the client obtains a handle with which all fur-
ther interaction with the server (i.e. describe, play etc) is conducted

532

through a remote procedure call (RPC) like interface. The library deals
with message formatting and parsing and presents the content of mes-
sages to the application in the form of well defined structures, or form
RTSP messages out of structures provided by the application.

2.2.2 RTSP client and server. The structure of the client
software is depicted in Figure 5. A graphical user interface (GUJ) allows
the user to specify the RTSP URL of interest and initiate streaming.
(As explained earlier an alternative is for the URL to be supplied to the
client software by means of a helper file downloaded by a web browser
on the client device.) On successful RTSP interaction with the server,
the client sets up a datasink and a ring buffer and initiate the MPEG
hardware decoder. The datasink receives an RTP encapsulated MPEG
stream from the network, strips off the RTP encapsulation and puts
the MPEG packets in a ring buffer for asynchronous collection by the
MPEG decoder hardware. The decoder driver performs an upcall into
the application whenever its buffers are below a certain threshold at
which point data is transferred from the ring buffer to the decoder.

User Input

RTSP to serve-r

...... RTP encapsulated ME"EG

...... HPEG

Inttlrnal Operations.

Figure 5 RTSP client

Figure 6 shows the main components of our RTSP server implemen-
tation. RTSP requests received by the RTSP library are passed to a
Media Manager which determines if there is a media backend that
can handle a request of this type. A number of media specific backends
have been implemented namely backends for MPEG2 audio, MPEG2
transport and WAV streams. These backends deal with media specific
issues such as the frame format of streams, the rate at which streams
should be played out and how to encapsulate media frames in RTP. The
content on which the backends operate can be either stored on disc or

A Network Based Replay Portal 533

be supplied in real time from an encoder. For example, our live server
is implemented as an encoding thread which supplies an MPEG stream
to an MPEG transport stream backend. 1

&ckend. ,.-___ ---.,

RTSP

Conte-nt
Seas ion ! Ses_10n .2 Se!l!l ion)

-.. RTSP

-. Unica.t RTP d lll to,

Kult.icillillt. RTP dote

------. :nternal op@ratlon

Pointer

Figure 6 RTSP server

Once the Media Manager has determined that the requested content
is available (Le. a successful RTSP DESCRlBE interaction), the client
application normally issues RTSP SETUP and PLAY requests. The
SETUP request results in session state being created in the server and a
streamer is initialized to deliver the stream. A PLAY request starts de-
livery of the stream. The session state contains stream information that
is relevant for this stream for this session (e.g. the time a session
joined a stream), whereas the streamer contains only session indepen-
dent information about the stream. This separation is important in
order to deal with multicast streams. The first client to request delivery
of a multicast stream will result in a streamer being created. Subsequent
sessions for the same stream will be served by the same streamer and

1 Currently only the live server makes use of threads as the encoder hardware and SDK
operates as a threaded application on the Solaris platform.

534

a reference count in the streamer ensures that the streamer does not
disappear when the initial session is terminated.

2.2.3 RTSP proxy and Storage Managers. The RTSP
proxy functionality required by our replay portal is realized by having
the proxy as another media backend. As is the case with other backends,
the proxy backend determines whether a request can be satisfied from its
local stored content. However in the case ofthe proxy, the server address
of the RTSP URL is not the proxy address and if the request can not be
satisfied locally the proxy backend can issue an upstream RTSP request
to the server specified in the URL. (In our current implementation the
client has to be configured to establish an RTSP connection to the proxy
server rather than the real content server.)

---. RTSP

---... Unicast RTP data

Multicast RTP data

............... ups tream RTP da ta

----.- Internal operation

Backends ;--___ ____

Media Manager

Downstream
RTSP

Figure 7 RTSP proxy and Storage manager

If the request can be satisfied from the local store, a streamer is set up
as described above and the stream is delivered to the client. If content
is received from upstream, a datasink will receive the packets writing
them to disk and putting a copy in a ring buffer for delivery to live
viewers of the stream (if any). In the case of the proxy backend, content
is stored to disk with the RTP header it was received with intact. Sub-

A Network Based Replay Portal 535

sequent playout of stored content is then based on the RTP timestamp
of the stored packets while the RTP sequence numbers are replaced for
retransmitted downstream delivery. Storing content in the proxy with
RTP headers intact has the desirable property that our proxy is media
independent so long as the stream is delivered using RTP and the clock
frequency used for RTP timestamps is known from RTSP interaction.

The storage manager(s} handles the manipulation of stored content.
This includes the eviction policy associated with a particular stream.
In the case of portal subscribed content which is made available for on-
demand viewing the policy is simply to keep the last N hours worth of
content. This is currently implemented as a logical circular set of files
where the oldest file gets overwritten after N hours with new content.
In order to have the N hour window move forward in time with a small
granularity and to ease time based indexing into the stored content each
of these files holds a relatively small amount of data, in the order of one
or two minutes worth of content.

In the case of a user watching non portal subscribed content through
the portal, the store manager in the proxy still stores some amount of
the content to disk. This is needed to facilitate replay of very recent
content (Le. in the order of the last few minutes). However in this case
the eviction policy of the storage manager is much more aggressive.

A key aspect of the replay service is that it provides access to arbi-
trary time offsets into the past of live streams. This requires each client
and the proxy to agree on a certain reference point in time in the live
stream. We call this reference point the fixedpoint relative to which all
time sensitive interaction is performed. We rely on a mapping between
global time (UTC) and the RTP timestamps in the media stream for
this purpose as is described below.

Consider the interaction between a live server and a proxy: The server
picks an RTP packet (the first for a unicast stream) that it considers the
start of the stream for a particular user and records the absolute time
that corresponds to this timestamp as the server fixed point for the
session. This information, Le. fixed time and RTP timestamp is relayed
to the proxy via the control channel, e.g. in the PLAY response message.
Given this information, the proxy, when it receives an RTP packet can
work out the absolute time that the server would have associated with
this packet (the clock frequency for the RTP time stamp is known from
the RTSP interaction). This absolute time is stored with each RTP
packet on the portal and is used for obtaining stored previous live content
from the portal. For example, a client might obtain from the portal web
interface a URL of the form
rtsp://pc-green:8554/1ive.m2t?pausepoint=utc:19991011T103400Z

536

based on the selection made from the schedule on the web interface.
The absolute time in the URL (the pausepoint), represents for example
the time when a particular program was aired live, and is used by the
proxy to serve the appropriate content by comparing it with the absolute
times stored with each RTP packet. The main point here is that all time
offsets into the media stream is effectively based on the RTP time stamps
of the live source which allows the indexing based on the time the content
was aired, which is crucial to our approach.

For per stream (or VCR-like) functions between the proxy and the
client we employ a similar approach. Again the server (or more correctly
the proxy in this case) gets the absolute time of the first RTP packet it is
about to send (Le. the proxy fixed point), to the client and sends this to
the client in a control message. The absolute time for this packet is the
absolute time the packet was first sent by the live source not the absolute
time when the proxy is about to send it. When the client is about to
play out this packet it takes a local time stamp which becomes the client
fixed point. Now when the user performs a per stream operation, e.g.,
a PAUSE, the client works out the time difference between the time at
which the operation was performed and the client fixed point and adds
this to the known proxy fixed point which is specified in the request sent
to the proxy as an absolute pausepoint as before.

(a) From multicast to unicast (b) From unicast to multicast

client server client server

Figure 8 (a) Moving from multicast to unicast and (b) moving from unicast to mul-
ticast

A Network Based Replay Portal 537

A user watching a live event that performs a PAUSE, will have to
be switched from (typically) a multicast stream to a unicast (per-user)
stream on which these operations can be performed. This can be done
by having the proxy send the client an REDIRECT request with the
transport parameters for the new unicast stream after the per-stream
operation, followed by the client doing a SETUP and PLAY with the
new transport parameters as per normal. Figure 8 (a) shows this ar-
rangement. At some later time the proxy might realize that the client's
unicast playout point has moved close to the playout point for the live
stream. This might for example happen as a result of the user fast-
forwarding through the stream. The proxy might then sent another
REDIRECT message to the client as an invitation to rejoin the live
(multicast) stream. At its discretion the client might then rejoin the live
stream by performing a SETUP and PLAY with the multicast transport
parameters and eventually tearing down the unicast connection. This is
depicted in Figure 8 (b). An alternative is for the client to explicitly re-
join the live (multicast) stream because of for example the user clicking
on a "joinlive" button.

3. RELATED WORK

If we focus the discussion on a single replay portal then its func-
tionality is similar to that of consumer electronic devices such as those
provided by TiVo [TiVo, 2000] and ReplayTV [ReplayTV, 2000]. The
products of these companies are very similar - both sell a combination
of a hardware device and a TV listings service. These devices provide
an in-home replay service, and do not allow the benefits of content shar-
ing provided by a networked replay portal. A networked solution can
also offer higher degrees of reliability, more sophisticated search and in-
dexing, and relieves the consumer of the burden of having to keep pace
with advances in technology. Also, as indicated in Section 1 the Replay
Portal architecture avoids the blanket broadcasting of content across
access networks which is not possible with regular consumer electronic
devices, which only deals with the video signal once it has already been
delivered to the home. Having a network based service also implies a
managed service freeing users from the chore of managing their own
content unless they so wish. Finally, in the Replay Portal architecture
a user is not limited in the number of simultaneous recordings that can
be performed by tuner limitations in a home device. Since all storing of
content happens inside the network, on shared service provider infras-
tructure, a user might be simultaneously recording multiple streams (at
the portal) while watching anyone of these (or indeed any other stream)

538

live. Prior work on network-based services for processing TV content in-
cludes Agora [Hyden and Sreenan, 1996] from Bell Labs. Agora allows
users to have personalized access to TV newsfeeds, its main focus being
techniques for efficient content extraction and event notification.

Addressing some of the same issues from a different angle are the
activities of the Advanced Television Enhancement Forum [Advanced
Television Enhancement Forum, 2000]. This type of interactive tele-
vision aims to add HTML data as overlay information on TV signals.
This approach does not change the fundamental broadcasting-everything
model and is therefore unlikely to succeed in an environment where users
are demanding personalized services.

Another important area of related work is Internet based content dis-
tribution. The replay portal architecture presented in this paper will
be a value added service to a "basic" streaming content distribution
network. Our architecture will make use of a content distribution net-
work in order to get content to portals and to exchange content between
portals and will then add the replay and related functions in a service
offering. Current product and service offerings in this space mainly cater
to Web traffic but support for streaming content is becoming available
from both the vendor and research communities [Francis, 1999, Sight-
Path, 2000, RealNetworks, 2000b, Fast Forward Networks, 2000]. One
part of the problem solved by these offerings resolves around on-demand
streaming of fairly short (low quality) clips where the objective and so-
lution is very similar to that of Web content, i.e. to get content closer to
users and to make intelligent choices as to what server will serve a partic-
ular request. The problem is generally addressed by creating an overlay
network of cooperating content distribution servers which interact with
each other and the actual content servers to offer load balancing, redun-
dancy and reduced latency. In the domain of live streaming content the
overlay network can also provide efficient application level distribution
trees between the content distribution servers and offer retransmission
facilities in the overlay network to compensate for the lack of such mech-
anisms in streaming protocols. Indeed one of the major problems with
current streaming offerings [RealNetworks, 2000a, Microsoft, 2000] is the
lack of standard protocols on which to transfer streaming content. This
means that content distribution server vendors are required to support
a number of proprietary protocols in order to realize their goals thus
increasing the price and complexity of their products. More seriously
though is the fact that these proprietary protocols are not subjected to
the same amount of scrutiny TCP has undergone and its impact on the
stability of the Internet is therefore unknown.

A Network Based Replay Portal 539

The final substantial area of related work is that of video-on-demand
(VOD). The work presented here is not VOD in the "traditional" sense,
where video content is somehow uploaded to a server and then made
available for on-demand viewing. Rather in our architecture, live schedule-
based content is made available for on-demand viewing as soon as it has
been "aired". Nonetheless, as soon as content is viewed on-demand, we
expect that many of the techniques and methods developed for VOD will
be applicable in our architecture. For example, access to popular con-
tent might well benefit from bat ching (Dan et al., 1994] or patching (Sen
et al., 1999] techniques. Batching involve slightly delaying a particular
request for content in the hope that other requests for the same content
will arrive soon so that all requests can be served with a single response
and content delivery. Patching on the other hand tries to exploit the
buffering capabilities of endpoints by allowing a client to receive (and
buffer) part of a clip from an existing stream, and the server then only
has to send the missing initial part of the stream.

4. CONCLUSION

We presented a hybrid IP-based architecture which explores the space
between broadcasting and personalized on-demand access to streaming
media. Our solution maintains the current schedule driven approach of
present day TV, while making previously "aired" content available for
on-demand viewing in a variety of ways. The architecture presents an
attractive means for service providers to gradually introduce a variety
of services, on a common IP transport infrastructure, which enables
the possibility of rich interaction between different packet based service
offerings.

References

[Advanced Television Enhancement Forum, 2000] Advanced Television
Enhancement Forum (2000). http://www.atvef.com.

[Apache Software Foundation, 2000] Apache Software Foundation
(2000). http://www . apache. org.

[Basso et al., 1999] Basso, A., Cash, G., and Civanlar, M. (1999). Im-
plementation of a real-time MPEG-2 delivery system based on RTP.
Packet Video 99, NY.

[Dan et al., 1994] Dan, A., Sitaram, D., and Shahabuddin, P. (1994).
Scheduling policies for an on-demand video server with bat ching. Pro-
ceedings of the second ACM international conference on Multimedia.

540

[Eldering et al., 1999] Eldering, C. A., Sylla, M. L., and Eisenach, J. A.
(1999). Is There a Moore's Law for Bandwidth? IEEE Communica-
tions Magazine, 37(10):117-121.

[Fast Forward Networks, 2000] Fast Forward Networks (2000). http:
//www.ffnet.com.

[Fielding et al., 1999] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
Masinter, L., Leach, P., and Berners-Lee, T. (1999). Hypertext Trans-
fer Protocol - HTTP/l.l. RFC 2616.

[Francis, 1999] Francis, P. (1999). Yallcast: Extending the Internet Mul-
ticast Architecture. http://www.yallcast.com.

[Hyden and Sreenan, 1996] Hyden, E. and Sreenan, C. J. (1996). Agora
-a personalized digital newsfeed. NOSSDAV.

[Microsoft, 2000] Microsoft (2000). http://www.microsoft.com.
[RealNetworks, 1999] RealNetworks (1999). RTSP: Reference Im-

plementation. http://www.real.com/devzone/library /fireprot/
rtsp/index.html.

[RealNetworks,2000a] RealNetworks (2000a). http://www.real.com.
[RealNetworks, 2000b] RealNetworks (2000b). Real Broadcast Network.

http://www.rbn.com.
[ReplayTV, 2000] ReplayTV (2000). http://www.replaytv.com.
[Schulzrinne et al., 1996] Schulzrinne, H., Casner, S., Frederick, R., and

Jacobson, V. (1996). RTP: A Transport Protocol for Real-Time AIr
plications. RFC 1889.

[Schulzrinne et al., 1998] Schulzrinne, H., Rao, A., and Lanphier, R.
(1998). Real time streaming protocol (rtsp). RFC 2326.

[Sen et al., 1999] Sen, S., Gao, L., Rexford, J., and Towsley, D. (1999).
Optimal patching schemes for efficient multimedia streaming. NOSS-
DAV'99, Basking Ridge, NJ. Available form:http://www.nossdav.
org.

[SightPath,2000] SightPath (2000). http://www.sightpath.com.
[Sigma Designs, 2000] Sigma Designs (2000). http://www .

sigmadesigns.com/.
[TiVo,2000] TiVo (2000). http://www.tivo.com.
[van der Merwe et al., 1999] van der Merwe, J., Chu, Y.-H., Caceres, R.,

and Sreenan, C. (1999). mmdump: A tool for monitoring internet
multimedia traffic. AT&T TR 00.2.1, available from http:\\www.
research.att.com/resources/trs.

[Vision Tech, 2000] Vision Tech (2000). http://www . visiontech-dml.
com/.

	A NETWORK BASED REPLAY PORTAL
	1. NETWORK BASED REPLAY SERVICES
	1.1. SERVICE SCENARIOS

	2. REPLAY PORTAL DESIGN ANDIMPLEMENTATION
	2.1. PORTAL ARCHITECTURE
	2.2. PROTOTYPE IMPLEMENTATION

	3. RELATED WORK
	4. CONCLUSION

