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Abstract We present a quasi-analytical method to compute the call blocking probabilities 
at a particular traffic density in a cellular system that employs dynamic channel 
assignment. The method is based on enumerating all the states in the entire 
state-space. a task that is beyond the capabilities of even the fastest computers 
when the cellular system has many cells and channels. We show how this task 
can be done by only focusing on the same system having just one channel. The 
results demonstrate that our combinatorial approach is very accurate. 
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1. INTRODUCTION 

By the end of the year 1998, the number of subscribers to a wireless commu­
nication system anywhere in the world was estimated to have been around 500 
million. Presently, the average growth rate around the world is steady at just 
over 40%, which means that the wireless world would double in size in about 2 
years' time. It has therefore become important to find means of increasing the 
capacity of cellular systems. This increase in capacity should not only absorb 
the expanding customer-base, but also maintain the present levels of quality of 
services. Many techniques have been employed to do just that: cell splitting [ 
4], cell sectoring [7], frequency hopping [2], reuse partitioning [12], channel 
coding [9] are some of those that have already been implemented in cellular 
systems. A further option is to have in place a Dynamic Channel Assignment 
(DCA) algorithm. 

Under DCA, channels are not distributed to cells in advance; all channels 
are deemed common to all the cells. A channel can be assigned to two callers 
in any two cells as long as they are separated by a 'buffer zone' of a cell's 
diameter. This is equivalent to saying that if a channel is used in one particular 
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cell, then it cannot be used in any of the surrounding ring of six cells. This 
constraint is known as one-cell buffering. A call request in a cell is assigned a 
channel if and only if it is not in use anywhere in that cell's buffer zone. 

Finding analytical estimations for the increase in capacity of cellular systems 
under DCA has proven to be a difficult task. Good approximations have 
been made in [1][3] [5][6][8][11]. However, an exact analysis has not been 
forthcoming. This paper attempts to do that in part. 

We will name the cell in which a call request arrives to be the call-cell. In 
DCA, a channel that is in use within a cell is said to be busy. All other channels 
are considered idle in that cell. Not all idle channels in a cell, however, can be 
assigned to call attempts originating there. Some of them are unavailable in 
that cell for assignment because those channels are already busy in other cells 
that fall within its buffer zone. Available channels to a cell are those that are 
not busy anywhere within that cell and its buffer zone. Note that only available 
channels of a cell are assignable to call attempts there. 

We denote the state of a channel in a cell by either a '1' (if it is busy) or a 
'0' (if it is idle). Throughout this paper, we let n be the number of channels 
at the disposal of the system. Then the state of a cell can be expressed in n 
bits. The state of the system is simply the collective states of all the cells. 
The set of all possible states of a system is its state space. In this paper, 
we first calculate the number of states in the state space S of a given cellular 
system. Then we calculate the number of those states in S that have at least 
one available channel in the call-cell - when the call-cell is specified. These 
are the states that permit a successful call attempt in the call-cell. The above 
computations are entirely mathematical. Furthermore, the enumeration of such 
states is independent of the traffic across the system. Finally, the probability 
of a state in S having at least one available channel in the call-cell is estimated 
via simulations. These traffic density dependent estimates are then made use 
of in computing the probability of a call attempt being blocked in a cell. 

The State Space Method. as we call the above approach, is explained 
through an example and tested on two cellular systems. Later. it is generalised 
to a system containing any number of cells and channels. 

2. EXAMPLE: THE 7-CELL SYSTEM 

We take the cellular system shown in Figure 1 to explain our State Space 
method initially. The system has 7 cells, n channels and uses one-cell buffering. 
We shall treat cell 1 as the call-cell for this example. Note that a busy channel 
in the call-cell cannot be assigned to another user anywhere in the system. 

First let us find the number of states in this cellular system's state space S. 
Call that number 5n . Before doing that, a simpler problem is tackled: let 51 
be the number of states for the same system when it has just one channel - that 
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Figure J The 7-cell system 

is, n = 1. 81 can be found by direct enumeration. It turns out that there is 1 
state with no calls, 7 states with one call, 9 states with two calls and 2 states 
with three calls. Hence, 

(I) 

We also find in Figure 1 that for the first state, the number of calls in progress 
across the system is o. For the next seven states, it is 1 and for the nine states 
thereafter it is 2. The number of calls in progress across the system is 3 for 
each of the last two states. There can be no state where 4 or more calls are 
in progress. We can express the above observations neatly by a generator 
polynomial which we define thus for the 7-cell, I-channel system: 

(2) 

The number of states with i calls in progress is simply the coefficient of xi in 
the generator polynomial. Furthermore, 8 1 = G(l). 

What if there are more than one channel in the system, though? The state of 
the 7-cell, n-channel system can always be broken down into a sum of the states 
of n identical 7-cell, I-channel systems. An example is shown in Figure 2 for 
n = 3. 

Figure 2(a) depicts the state of the 7-cell, 3-channel system. Channel #1 
is busy in cell 1; channels #2 and #3 are busy in cell 2, and so on. This 
state can be decomposed into the states of three 7 -cell, I-channel systems as 
in Figures 2(b), 2( c) and 2( d). The channel that the 7 -cell, I-channel system 
possesses in Figure 2(b) is #1. In Figures 2( c) and 2( d), they are channels #2 and 
#3, respectively. We will call each of the the last three figures a configuration. 
The xth configuration only shows in which cells channel #x is busy (by a '1' 
in them) and idle (by a '0' in them). It will be realised that this decomposition 
into configurations is possible regardless of the value of n and regardless of the 
cellular topology of the system. Each configuration is totally independent of 
the rest. And each of them can exist in 19 different states - the number of states 
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state channel #1 channel #2 channel #3 

(a) (b) (c) (d) 

Figure 2 The break-down for a state in a 7-cell, 3-channel system 

for the 7-cell, I-channel system. Hence. the total number of possible states for 
the 7-cell, n-channel system is 19 x 19 x ... x 19 (n times). i.e 

(3) 

It will also be realised that the generator polynomial for the 7-cell, n-channel 
system is Gn(x), where G(x) has been defined in equation 2. It follows that 
the maximum number of calls that can be in progress, at a time, is 3n. with 
each channel being busy in three cells. It also follows that Sn = Gn (1). 

Now, we calculate the number of states that have at least one available 
channel in cell 1 for the 7-cell, n-channel system. Let us call this number Tn. 
Focus back on the 7-cell, I-channel system and its state space in Table 1. Out 
of the 19 possible states in it, only one state has the channel being available in 
cell 1 - namely column 1. If the system happens to be in this state when a call 
attempt is received in cell 1, then it will be successful. The rest of the 18 states 
have the channel being either busy in the call-cell (state 2) or unavailable to the 
call-cell (states 3 - 19). If the system were in anyone of these 18 states, then a 
call attempt in cell 1 would be blocked. We note in passing that Tl = 1, then. 

Generalising to the n channel case, each of the n configurations in the de­
composition of the state of the 7 -cell, n-channel system can exist in 19 states, as 
was seen earlier. Out of which, only one state in nineteen in each configuration 
carries an available channel in the call-cell. Therefore, the number of states in 
the 7 -cell, n-channel system which have no available channels in the call-cell 
is 18 x 18 x ... x 18 (n times). Hence, 

(4) 

Comparing equations 4 and 3. it is seen that the proportion of states in the 
state-space that have at least one available channel in the call-cell increases 
with n. For instance, just over half the states fall into this category when 
n = 13. Note that Tn can be derived from the generator polynomial G(x): 
Tn = Gn(l) - [G(l) - 1]". 
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Now we move on to finding the probability that a cellular system is in a state 
where it has at least one available channel in the call-cell. This is an important 
quantity because it is also the probability that a call attempt in the call-cell will 
be successful. To begin with. turn again to the 7 -cell, I-channel system and its 
state space in Table I. States 18 and 19 are equiprobab\e. This is so because 
under uniform traffic across the system, it does not matter in which three cells 
the channel is busy. Similarly. all of the states having two calls in progress are 
also equiprobable (states 9 to 17). Whether a state having two calls in progress 
is more probable than a state having three calls in progress depends on the 
traffic density. Under heavy traffic, the former state may be less probable than 
the latter state. Note also that only states 3 to 8 are equiprobable because cell 1 
has six neighbours while the rest have only three; hence, the chances of a call 
attempt in cell I being successful (and being in state 2) are less than the chances 
of a call attempt elsewhere being successful. 

Let the probability of this system having no calls in progress be 71'0. Let the 
probability of cell 1 having a busy channel be 71' a and the probability of any 
other cell alone having a busy channel be 71'b. Also let the probabilities that the 
system has two and three calls in progress be 71'2 and 71'3, respectively. It must 
be noted that theses probabilities depend on the traffic density in the system. 
As the system has to be in one of the 19 states possible, we have that 

(5) 

Now, 

Prob (call attempt in cell I is successful) = Prob (system in state 1) = 71'0. 

Therefore, the blocking probability for the call-cell in the 7-cell, I-channel 
system is given by 

(6) 

With increased traffic density, 71'0 decreases and Bl increases. 
Now, these probabilities are estimated when the system has n channels. 

Firstly, an assumption is made: the DCA algorithm used by the system is such 
that it does not consistently choose one particular available channel over another 
in the call-cell. This is necessary to maintain the independence assumption 
between configurations. Therefore, the responsibility of assigning an available 
channel to the offered traffic stream in the call-cell falls evenly on all n channels. 
Hence, it is seen that the probability that a channel is busy in 0, 1, 2 or 3 cells 
in the 7-cell, n-channel system under a uniform traffic density of p Erlangs per 
cell is the same as the probability that the channel is busy in 0, I, 2 or 3 cells 
in the 7 -cell, I-channel system under a uniform traffic density of p / n Erlangs 
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per cell, respectively. Having found 71"0, 7I"a, 7I"b, 71"2 and 71"3 via this technique, 

Prob (call attempt in cell I is successful) 

Prob (at least one available channel in cell I) 

1 - Prob (no available channels in cell 1) = 1 - (1 - 71"0) n . 

Therefore, the blocking probability for the call-cell in the 7-cell, n-channel 
system is given by 

(7) 

3. APPLICATION TO THE 2S-CELL SYSTEM 

The State Space method is now applied to a larger cellular system shown in 
Figure 3. The number of channels at its disposal is n. One-cell buffering is 
used. We refrain from specifying a particular cell as the call-cell. The reason is 
that we want the estimated blocking probabilities to be applicable to any cell in 
the system - not just for cell I as in our example. To do that, first all cells must 
be made identical. Hence, we only analyse the system under uniform traffic 
density. Furthermore, all the cells are made to have exactly six neighbouring 
cells. This is achieved by juxtaposing replicas of the system to the top and 
bottom, and left and right of it. The resulting toroidal topology of the system 
is edgeless. Figure 3 depicts how cells I and 5, or cells 3 and 23 are really 
adjacent to each other. 

Figure 3 The 25 cell system 

The example showed that all enumeration can be done from the genera­
tor polynomial of a cellular system with n = 1. Therefore, the generator 
polynomial for the 25-cell, I-channel system is found first. It turns out to be 

G(x) = 1 + 25x + 225x2 + 900x3 + 1600x4 + llOOx5 + 225x6 . (8) 

A short program was written to directly enumerate all possible states on a 
computer to determine the coefficients above. Therefore, the total number of 
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states in the state space of the 25-cell, I-channel system is given by 

81 = G(I) = 4076. (9) 

Out of all those, how many states have the channel as available in one particular 
cell? It is not simply the first of the 4076 states; the one where no call is in 
progress in the system. This happened to be the case in our example because 
the call-cell and its buffer zone comprised the entire system. Now, there can 
be calls in progress on a channel outside a particular cell's buffer zone and still 
that channel would be available in that cell. Hence, we need to find the number 
of states in the state space where no calls are in progress within a particular cell 
and its buffer zone. The result is the following generator polynomial: 

Go(x) = 1 + 18x + 108x2 + 256x3 + 220x4 + 54x5 . (10) 

This means that if, say, cell 13 happens to the call-cell, then there are 54 states 
where the call-cell and its buffer zone have no calls in progress and the rest 
of the cells collectively have five calls in progress - in cells I, 4, 16, 19 and 
23, for example. The point is that every state that contributes to Go(x), and 
there are Go(l) = 657 of them, allows the call-cell to have the channel as 
available. And every state that does not contribute to Go (x) makes the channel 
unavailable to the call-cell. Generalising to the 25-cell, n-channel system, we 
have the following: the total number of state in the state space is 

(11) 

and number of states that have at least one available channel in a particular cell 
is 

It takes just four channels to have a state space where half the elements in it 
would have at least one available channel to a given cell. 

What is the probability that the 25-cell, I-channel system is in a state where 
a call attempt in a cell will be successful? Note that there are ai states, with i 
calls in progress in each, that have the channel as available in a cell. Here, ai's 
are the coefficients of the generator polynomial Go(x). The total probability 
that the system is in one of these states is then given by L:~=o a(JTi, where 7fi 
is the probability that the channel is busy in i cells at some particular uniform 
traffic density p Erlangs per cell. The 7fi'S also have to satisfy the following 
equation (c.f Equation 5): 

7fo + 257f1 + 2257f2 + 9007f3 + 16007f4 + 11007f5 + 2257f6 = 1. (13) 

The probability of blocking for a call attempt in any cell is thus given by 

B1 = 1 - (7fo + 187f1 + I087f2 + 2567f3 + 2207f4 + 547f5)· (14) 
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Just as in the example, the probability of blocking in any cell in the 25-cell, 
n-channel system, at a traffic density of p Erlangs per cell, can be expressed as 

The 7ri'S have to be obtained from simulating the 25-cell, I-channel system at 
a uniform traffic density of pin Erlangs per cell. 

4. RESULTS 
The State Space method for calculating blocking probabilities is put to the 

test in the 25-cell system with n = 45. The traffic density p was varied from 8 
to 20 Erlangs per cell. A simulation is run for the 25-cell, I-channel system to 
obtain the probabilities 7ri, i = 0,1,2,3,4,5 and 6. Note that in the simulations 
the offered traffic would have to be in the range 485 - ~g Erlangs per cell. Note 
also that no consideration need be given to the choice of DCA algorithm that 
has to be employed in the system - as there is only one channel. Once the 7ri'S 

are found, the blocking probabilities are estimated from equation 15. These 
estimates are compared against the blocking probabilities obtained by running 
the full simulation for the 25-cell, 45-channel system. Here, a DCA algorithm 
is necessary and the one chosen was called Random Channel Search algorithm 
[to]. This algorithm assigns any available channel, picked randomly, in the 
call-cell to a call attempt there and blocks it if none is available. 

The comparison of blocking probabilities is shown in Figure 4. The State 
Space method approximates the actual call blocking probabilities very well 
across all traffic densities. 

5. CONCLUSIONS 
We proposed a novel method for estimating the call blocking probabilities 

for a cellular system with arbitrarily many cells and arbitrarily many channels. 
For a given system, by assuming that only one channel is available for users 
anywhere in the system, two generator polynomials G (x) and Go (x) are found. 
This allows us to compute the total number of states in the state space when 
there are n channels in the system that can be assigned dynamically. The 
number of states that have at least one available channel in a particular cell can 
also be found. Both of the above computations are exact. The probabilities of 
call blocking at some traffic density can be estimated if the probabilities of i 
calls in progress in the system is known in advance. We approximate them from 
simulations. The simulations are confined to the simple case when the system 
has just one channel. The results demonstrate that the State Space method is 
accurate. 
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Figure 4 Call blocking probabilities for the 25-cell, 45-channel system 
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