
RED+ GATEWAYS FOR IDENTIFICATION AND
DISCRIMINATION OF UNFRIENDLY BEST -EF­
FORT FLOWS IN THE INTERNET

Thomas Zieglert:l:, Serge Fdidat , Ulrich Hofmann+
1" Universite Pierre et Marie Curie, Laboratoire Paris 6, Paris, France

:f: Polytechnic University Salzburg, Schoolfor Telecommunications, Salzburg, Austria

{Thomas.2iegler. Serge.FdidaJ@lip6.fr, {Thomas.2iegler. Ulrich.HofmannJ@jh-sbg.ac.at

Abstract This paper proposes an add-on to the well known RED (Random Early Detec­
tion) algorithm called RED+. RED+ adds the functionality of identifying and
discriminating high-bandwidth, unfriendly best-effort flows to RED gateways.
It is based on the observation that unfriendly flows have higher arrival rates in
times of congestion than friendly flows. Hence unfriendly flows can be discrimi­
nated if packets arriving at a router output-port are dropped as a function of
RED's average queue size and the arrival rate of the packet's flow. RED+ is scal­
able regarding the amount per flow information stored in routers as it only allo­
cates per-flow state for the n highest bandwidth flows, where n is a configurable
parameter. As shown by simulation, RED+ is able to identify and discriminate
unresponsive flows avoiding problems of unfairness and congestion collapse.

Keywords: Congestion Control, unfriendly Flows, RED Gateways, max-min Fairness

1. INTRODUCTION
So called "unfriendly flows" reduce their sending-rate into the net less con­

servatively in response to congestion-indications (packet-loss) than friendly

flows 2. Consequently, unfriendly flows tend to grab an unfairly high portion
of the bottleneck-bandwidth. "Unresponsive flows" exhibit an extreme kind of
unfriendly behavior as they do not back-off at all in response to congestion
indications. Simulations in [6] show that for a friendly and an unresponsive
flow sharing a link, throughput of the friendly flow and arrival-rate of the
unresponsive flow are inversely proportional. In other words, throughput of
the friendly flow converges to zero if a non responsive flow's arrival-rate
approaches the link-bandwidth. This behavior strongly violates the goal of
fair distribution of bandwidth among best-effort flows. Additionally, unre­
sponsive flows can cause congestion collapse due congested links transmitting

I This work is partly sponsored by Telecom Austria and FFF Austria.
2 A flow is defined by IP address pair and port-numbers, respectively flow-ids.

D. H. K. Tsang et al. (eds.), Broadband Communications
© Springer Science+Business Media New York 2000

28

packets that are only dropped later in the network [6].
For the Internet, TCP flows can be considered friendly as TCP congestion

control in its different derivates exhibits roughly homogeneous behavior. Due
to the dominance of TCP in today's Internet it is reasonable to define
"friendly" as "TCP-friendly" [6]. However, this definition of friendliness may
not hold for the future in case of widespread deployment of alternative con­
gestion-control mechanisms.

The objective of this paper is to propose a queue-management mechanism
called RED+ adding the functionality of identifying unfriendly flows to RED
gateways [7]. Using RED as a basis, RED+ inherits desirable properties of
RED like controllable queueing-delay, avoidance of global synchronization
and avoidance of a bias against traffic-bursts. Note, however, that this add-on
for identification of unfriendly flows is rather orthogonal from a specific
queue-management algorithm as it solely requires a packet-drop function
which is monotonically increasing with the queue-size and a facility for pref­
erential packet-dropping. Hence the mechanism proposed in this paper could
be used in combination with other queue-management algorithms than RED.

Due to the current lack of mechanisms like RED+ users have an incentive
to be misbehaving and to generate unfriendly flows obtaining a higher share
of the bottleneck bandwidth. Contrary, the deployment of mechanisms identi­
fying and discriminating unfriendly flows would encourage users to utilize
conforming end-to-end congestion control.

2. RELATED RESEARCH
The Random-Early-Detection (RED) algorithm [7] employs the parameter­

set {minth, maxth, maxp} in order to probabilistic ally drop packets arriving at
a router output-port. If the average queue-size (avg) is smaller than minth no
packet is dropped. If minth < avg < maxth, RED's packet-drop-probability
varies between zero and maxp. If avg > maxth, each arriving packet is
dropped. In order to take into account flows with different packet sizes, RED
can be operated in "byte-mode" weighting the drop-probability by the incom­
ing packet's size. WRED [3] and RIO [4], both enhancements of RED
intended for service-differentiation in the Internet [1], relate arriving packets
to the parameter-set {minthin, maxthin, maxPin}, respectively {minthout'

maxthout' maxpou,} if the packet has been marked as in, respectively out
according to its flow's service-profile at a network boundary. Assuming mint­

hin ~ maxthout' in-profile packets are accommodated while out-of-profile
packets have a drop-probability of one if avg > maxthOUl' Hence out-of-profile
packets are discriminated against in-profile packets. As opposed to WRED,
which uses one average queue size for all packets in the queue, RIO computes
an extra average queue-size only for in-profile packets.

In [6] routers execute a low-priority background task in periodic time-inter-

29

vals. Unfriendly flows are identified as "non TCP friendly", "unresponsive" or
"high bandwidth in times of congestion". [18] shows that the TCP-friendly
test, as proposed in [6], is inaccurate as routers generally do not have knowl­
edge of the end-to-end RTT. Hence unfriendly flows are unlikely to be
detected by this test. Flows identified as unfriendly are discriminated by
reclassification into a lower priority queue. Note that reclassifying flows from
one queue into another implies the caveat of packet misordering possibly
causing TCP fast retransmits and reduction of the congestion window in case
more than three packets arrive out-of-order [11] [12].

The FRED algorithm [13] uses per-active-flow accounting and preferen­
tially drops packets of flows having either more packets than a fair-share of
the buffer-size stored or an outstanding-high number of packet drops. It has
been shown in [18] that FRED is not able to restrict unresponsive flows to the
fair-share in rather general scenarios. Additionally, per-active flow accounting
means using very small time-scales enabling a bias against bursty traffic.

[20] proposes an architecture in the context of the diff-serv [1] for identifi­
cation and discrimination of non-TCP-friendly flows. The principle is to
detect non-TCP-friendly flows at the ingress-router by comparing arrival rates
to equivalent TCP-friendly rates. If a flow is identified as non-TCP-friendly,
its packets are marked as "unfriendly". Core routers discriminate packets
marked as unfriendly with RED-based drop-preference mechanisms. The
RTT is measured by means of a protocol between ingress- and egress routers
hence the TCP-friendly test is significantly more accurate than in [6]. Addi­
tionally, [20] only requires storage of per-flow state and a flow-lookup in
ingress- and egress routers and not in core-routers.

Another idea to identify unfriendly flows has been proposed in [15]. A
alternative approach to identification of unfriendly flows is to allocate a fair­
share to each flow (see [5], [18] and others). However, merely restricting
unfriendly flows to their fair share does not necessarily create an incentive for
users to implement end-to-end congestion control. Additionally, many unre­
sponsive best-effort flows restricted to their fair share may still cause conges­
tion collapse as shown in [6].

3. RED+ ALGORITHM

3.1 Principle of RED+

At packet-arrival a flow-lookup in a hash-table storing per-flow state-infor­
mation is performed. Three counters are updated, measuring the number of
bytes arrived per flow, of flows in state established or penalized and of all
flows. Subsequently, RED+ determines if the packet's flow is in state "penal­
ized" (i.e. the flow is considered unfriendly by RED+). If this happens to be
the case, WRED is executed with a lower parameter-set (min[. max[. maxp/)

30

else WRED is executed with the higher-parameter set (minh, maxh, maxPh).

Assuming maxh > minh > maxI> mini and existence of sufficient demand from
non-penalized flows the steady-state average queue-size converges between
minh and maxh, hence the penalized flows have a drop-probability of one. If
the average queue size is below maxI in case of moderate congestion RED+
additionally accommodates flows in state penalized.

In order to determine which flows should be penalized RED+ computes an
approximation of the max-min fair-share of the link-bandwidth in a periodic
background task. We define "one period" as the constant interval of time
between subsequent calls of the background task.

The background task additionally computes a flow's state as a function of
its arrival rate in comparison to the fair-share. If a flow's arrival rate in times
of congestion is higher than the fair share RED+ sets the flow into state
"penalized", else the flow is set to state "non-existent, new or established".
The transitions between these states are explained in section 3.2.

Figure 1 summarizes the operations of RED+ at packet-arrival and gives a
rough overview of the background-task:

Packet arrival:
Perform flow-lookup
Update counters for measurement of arrival rates
If the flow is in state penalized

execute WRED with lower parameter-set (min" max" maxp,)
else

execute WRED with higher parameter-set (minh' maxh, maxPh)
Periodic background task:

Approximate max-min fair share of the link capacity
Compute the state of flows

Figure 1 RED+ pseudo-code

3.2 RED+ State Transitions
penalty test and low
BW test fails

test fails

LowBW
test applies

Figure 2 RED+ state machine

penalty test
applies, low BW
est fails

31

We examine the states a flow can pass during its lifetime as illustrated in
figure 2:

1.) non existent: a flow is in state "non existent" if it has no per-flow-infor­
mation stored. This state is virtual as RED+ is not aware of this flow.

2.) new: if a flow had its first packet drop and the hash table is not full, per
flow state-information (IP Addresses. Port numbers, a counter for measure­
ment of the per-flow arrival rate and 2 bits storing the flow's state) is allo­
cated. The flow's state changes from "non-existent" to "new". The
significance of the state new is to avoid false measurement of the per-flow
arrival rate which is required for the "low-bandwidth test" and the "penalty
test" (see point 3). Both tests compare the number of bytes received during the
last period with the fair-share. The storage of flows in the hash-table happens
asynchronously to the background task. Hence, if the penalty and the low­
bandwidth test were performed when the background task recognizes the flow
for the first time, the arrival rate of newly stored flows would be underesti­
mated as their byte counters had been updated for a shorter interval of time
than the counters of flows already stored in the hash-table for more than one
period. The meaning of the state new is to avoid the problem of underestima­
tion of the per-flow arrival rate for flows stored during the last period. Conse­
quently, the time between a flow's first packet drop and storage in the hash­
table and the first appliance of the penalty and low-bandwidth test is greater
than one period and smaller than two periods.

3.) established: if the background task scans a flow in state new for the first
time the flow's state is changed to "established". For established flows the
arrival rate is measured and two test are performed: first, the penalty test
determines if the flow's arrival rate since the last call of the background task
has been higher than the fair-share. If the penalty test applies the flow's state
is changed to "penalized". Second, the low-bandwidth test determines if the

arrival rate of a flow is below the fair-share divided by the "dealloc-param,,3
or if this flow has the minimum arrival rate of all penalized and established
flows (see section 3.3). If the low bandwidth test applies a flow's state changes
to non-existent (i.e. its per flow information in the hash-table is deallocated).

4.) penalized: For penalized flows the arrival rate is measured and two test
are performed: the penalty test determines if the flow's arrival rate since the
last call of the background task has been lower than the fair-share and the
flow's state should change to established; the low-bandwidth test is applied as
explained above in point 3.

3 The dealloc_param is a constant set to 16 in our simulations. Setting this parameter higher
decreases the probability that flow information of unfriendly flows with variable demand is
falsely deallocated but increases the probability that unfriendly flows can not be stored immedi­
ately if the hash-table is filled to a high degree.

32

3.3 Details on the Background Task

In order to allow router vendors to restrict the amount of stored per-flow
information to fit into the processor-cache, RED+ assumes a fixed, rather
small size of the hash-table. This implies, that the maximum number of flows
stored in the hash-table will generally be significantly smaller than the total
number of flows traversing the output port. Hence we need a mechanism that
only keeps the highest bandwidth flows in the hash table and accommodates
new flows even if the hash-table is filled to a high degree. RED+ allocates
flow-state if a flow experiences a packet-drop and the hash-table is not full.
Note that allocating flow state for flows having packet-drops implies that flow
state is likely to be stored for the high-bandwidth flows as a flow's drop-prob­
ability with RED is directly proportional to its arrival rate [20]. In order to
enable storage of new flows when the hash-table is filled to a high degree, the
background task deletes at least one flow having the minimum arrival rate of
all flows stored in the hash-table in each period (see low-bandwidth test
described in section 3.2). Allocating flow-state to flows likely having a high
arrival rate (i.e. flows experiencing drops) and deleting flow-state of the low­
est-bandwidth flows converges to a "maximum arrival rate allocation of the
hash-table" (i.e. only the highest bandwidth-flows are permanently stored in
the hash-table). Deleting the flows with the lowest arrival-rate additionally
solves the task of deallocating flows which have stopped transmitting packets.

For computation of the max-min fair-share we use a derivate of the iterative
mechanism explained in [16]. On the contrary to the mechanism in [16],
RED+ only has partial knowledge of the per-flow arrival rates as flows in state
non-existent and new are not taken into account. However, this lack of infor­
mation can be compensated, the max-min fair-share can be computed in all
relevant cases and the maximum possible number of unfriendly flows given a
certain capacity of the hash-table can be penalized if the algorithm in [16] is
initialized differently (see appendix and [19] for details). After initialization,
RED+ proceeds with the computation of the max-min fair share like the origi­
nal mechanism.

In each iteration of the algorithm computing the fair share the whole hash­
table has to be scanned. Although only comparisons and additions are
required, scanning the hash-table arbitrary times would mean too much over­
head for a real implementation. Hence we stop after n iterations (formally
speaking, we perform an n'th order approximation to the fair-share in the
max-min sense). In all our simulations, the max-min fair-share was approxi­
mated sufficiently accurate after two iterations (see [19]).

The penalty test seems straight forward: if the arrival-rate of a flow during
the last period is greater than the fair share, the flow's state is set to penalized,
else the flow's state is set to established. However, by simulation (see [19]) we
figured out that this policy would cause global synchronization in scenarios

33

with TCP flows because several TCP conversations would be penalized at one
instance in time. Penalizing TCP flows means enforcing a high packet drop
rate. The TCP-senders in turn significantly reduce their congestion window
(and thereby their sending rate) at the same point in time causing global syn­
chronization. To avoid this problem we only penalize one flow - the estab­
lished flow with the maximum arrival-rate, and un-penalize another flow - the
penalized flow with the minimum arrival rate. Obviously, this implies the
drawback of longer convergence times. Consider a scenario with a period of k
seconds. At one point in time I unresponsive CBR flows start to send with a
rate above the fair share. It will take k * I seconds until all CBR flows are in
state penalized.

The periodic background task is invoked in constant time intervals. We
have performed simulations with periods between three and eight seconds
[19]. A period of 5 seconds seems appropriate in most cases. Obviously,
longer time-intervals between calls of the background task cause longer con­
vergence times for detection of mUltiple unfriendly flows. Shorter time-inter­
vals between calls of the background task cause more load for the router. The
background task can be made work-conserving by elongating the time-inter­
val between calls of the background task directly proportional to the total
arrival rate at the router output-port.

For detailed explanations of RED+ pseudo-code and discussion of further
properties we have to refer to [19] due to space-limitations in this paper.

4. SIMULATION OF RED+
We have implemented the RED+ algorithm in the ns simulator [9], version

2. Simulations in [19] include scenarios investigating different RED+ parame­
ter settings, topologies, multiple congested gateways and different mixes of
TCP, CBR and ON/OFF flows. Additionally, scenarios showing RED+ with
ECN packet-marking instead of dropping [10][17] for flows in state non-exis­
tent, new and established, different bottleneck-link capacities, different RTTs
and number of TCP flows are investigated. RED+ succeeds in detection of
unfriendly flows in all scenarios. Further simulations show that the max-min
fair share is sufficiently accurately approximated if the maximum number of
iterations of the algorithm computing the fair-share ("n" parameter) is set to 2.

Figure 3 Simulated network

34

RED+ parameters (see [7] for an explanation of RED-specific parameters):
byte-mode = false, Wq = 0.002, mini = 20, maxI = 40, maxPI = 1, minh = 50,
maxh = 150 packets, maxPh = 0.1, ECN is disabled, mean-pktsize = 500 bytes,
period-length = 4 sec, dealloc-param = 16. n = 2. the hash-table stores state­
information of 15 flows at maximum.

Other parameters:Simulation duration: 50 seconds, buffers at router output
ports store 200 packets. All output-ports except the output-port at the RED+
gateway served by the 1.5 Mbps link use drop-tail queue management.

Traffic: 3 CBR flows (flows 1,2,3) with rates of 400,200 and 100 kbps start
at 0, 5 and 10 seconds of simulation time. Flow I is routed from source I to
sink 1 hence it uses the 200 kbps link. 97 TCP-Reno and TCP-SACK flows
transmit packets from sources to sinks and start randomly between zero and
10 seconds. Packet sizes of TCP flows are uniformly distributed with a mean
of 500 bytes. None of the flows terminates prior to the simulation.

~

25 ~ ~
:c --flow I :c \0

.t; 20 ---flow 2 .t; --flow I .~ -----flow 3 .~

"C "C
I: 15 I:
os os

.I:> 0:!2 5 ~ OJ

0 10 i
c Q.
OJ 5 0
Q" ..

"C

0 0 """""""""'"1
10 20 30 40 50

time time
Figure 4 Left part: per-flow bandwidth allocation as a percentage of the bottleneck-capacity
between the RED+ and the drop-tail gateway: right part: per-flow droprate at the 200 kbps

link as a percentage of the link-capacity between the RED+ and the drop-tail gateway.

As shown in the left part of figure 4, RED+ sets the unresponsive CBR
flows into state penalized between 10 and 20 seconds of simulation time,
starting with the highest bandwidth flow. CBR flows are detected as
unfriendly within 2 periods since their first packet-drop and allocation of
flow-state. Due to their unresponsiveness they stay in state penalized and are
shut out for the rest of the simulation.

During the first seconds of simulation time flow! (the CBR flow traversing
the 200 kbps link) is not penalized, hence it consumes a significant portion of
the link-capacity between the RED+ and the drop-tail gateway and experi­
ences vast packet drops at the second congested link. This behavior causes
wastage of bandwidth and may cause congestion-collapse in the extreme
case4 [6]. As soon as flow I is in state penalized its share of the link-capacity
between the RED+ and the drop-tail gateway - and thereby its droprate at the
200 kbps link - equals zero (see figure 4, right part).

35

The simulation shows that RED+ is able to penalize unfriendly flows in
case the total number of flows is significantly larger than the capacity of the
hash-table. The hash-table is capable of storing state-information of 15 flows
while the total number of flows traversing the RED+ output-port equals 100.

200

•
150

'"
':;l
... 100 = '" =

50

0
0 to 20 30 40 50

time

-- queue
--avg .
- - - mio_h
- - - max_h
...... mio_1
.• max_1

Figure 5 Average and instantaneous queue·size over time at the RED+ gateway

Figure 5 shows the reason why flows in state penalized are completely shut
out: the average queue size converges between minh and maxh as there is suffi-
cient demand from CBR and TCP flows. MaXI is smaller than minh, hence
flows in state penalized experience a drop-probability of one.

5. CONCLUSIONS
As shown by simulation, RED+ is able to solve the problem of unfairness

and congestion-collapse due to unresponsive best-effort flows. Unresponsive
flows are completely shut out once they are detected. Due to this severe form
of discrimination the current incentive for users to be misbehaving and to cre­
ate unresponsive flows would disappear in case RED+ was deployed in the
Internet. On the contrary, users would get the desirable incentive to implement
conservative end-to-end congestion control.

While providing these functionalities RED+ only stores state-information
of a small portion of the flows traversing the router output-port. Additionally,
RED+ only requires a few additions (counter updates at packet arrival)
besides the flow-lookup and the execution of a drop-preference mechanism
(like WRED) in the data-forwarding-path. More complex operations are per­
formed in a periodic background task which can be made work-conserving.

As opposed to [19] where the behavior of RED+ has been extensively
investigated (see section 4. for a brief overview), the limited scope of this
paper only allows showing a few simulations. [19] additionally shows detailed
pseudo-code of the algorithm lacking in this paper.

4 If the arrival rate of flow 1 was greater than the link-capacity between the RED+ and the drop­
tail gateway, flow I had a throughput of 200kbps. All other flows were shut out completely.

36

Discrimination between friendly and unfriendly flows can not be perfect
with mechanisms like RED+. Friendly TCP flows may be penalized falsely
and unfriendly flows may not be penalized at all if their arrival rate in times of
congestion is only marginally higher than the fair share. If a TCP flow is
penalized most of its packets are dropped causing significant reduction of its
arrival rate at the RED+ gateway. Consequently, the penalization is removed
from the flow in the next period. Figuring out the operational bounds of RED+
with regards to falsely penalizing TCP flows and failing to identify unfriendly
flows will be the task of a future paper. Additionally, the behavior of RED+ in
the presence of unfriendly but responsive flows will be investigated.

References

[1] S. Blake et aI., "An Architecture for Differentiated Services", RFC 2475,
December 1998

[2] B. Braden, V. Jacobson et aI., "Recommendations on Queue Management
in the Internet", Internet draft, March 1997

[3] Cisco pages, http://www.cisco.comlwarp/publicI732/netflow/qos_ds.html
[4] D. Clark, "Explicit Allocation of Best Effort Packet Delivery Service", ht­

tp:llwww .ietf.orglhtml.charters/di ffserv -charter .html
[5] A. Demers, S. Keshav, S. Shenker, "Analysis and Simulation of a Fair

Queueing Algorithm", Proc. of ACM SIGCOMM, 1989
[6] S. Floyd, K. Fall, "Promoting the Use of End-to-End Congestion Control",

Submitted to IEEElACM Transactions on Networking, February 1998, ht­
tp://www.aciri.org/tloyd

[7] S. Floyd, V. Jacobson, "Random Early Detection Gateways for Congestion
Avoidance", IEEE/ACM Transaction on Networking, August 1993

[8] S. Floyd, V. Jacobson, "On Traffic Phase Effects in Packet Switched Gate­
ways", Computer Communications Review, 1991

[9] NS simulator homepage, http://www-mash.cs.berkeley.edu/ns/
[10]S. Floyd, "TCP and Explicit Congestion Notification", http://www­

nrg.ee.lbl.gov/tloyd/ecn.html
[lI]V. Jacobson, "Congestion Avoidance and Control", Proc. of ACM SIG­

COMM, Aug.1988
[12]V. Jacobson, "Modified TCP Congestion Avoidance Algorithm", Message

to end2end -interest mailing list, April 1990
[13]D. Lin, R. Morris, "Dynamics of Random Early Detection", Proc. of ACM

SIGCOMM, 1997
[14]M. Mathis et ai, "The Macroscopic Behavior of the TCP Congestion

A voidance Algorithm", Computer Communications Review, July 1997
[15]TJ. Ott, T.V. Lakshman, L.H. Wong, "SRED: Stabilized RED", Proc. of

IEEE INFOCOM, 1999
[16]K. K. Ramakrishnan, D. Chiu, R. Jain, "Congestion Avoidance in Com­

puter Networks with a connectionless Network Layer; Part 4, A selective
binary feedback scheme for general topologies", DEC-TR-510, 1987

[17]K.K. Ramakrishnan, S. Floyd, "A Proposal to add Explicit Congestion No­
tification (ECN) to IP", RFC2491, January 1999

37

[18]1. Stoic a, S. Shenker, H. Zhang, "Core-stateless Fair Queueing: achieving
approximately fair Bandwidth-Allocations in High-Speed Networks",
Proc. of ACM SIGCOMM, 1998

[19]T. Ziegler, U. Hofmann, S. Fdida, "RED+ Gateways for detection and dis­
crimination of unresponsive flows", Technical Report, December 1998,
http://www-rp.lip6.fr/InfosTheme/Anglais/publicationsan.htm

[20]T. Ziegler, S. Fdida, U. Hofmann, "A distributed Mechanism for detection
and discrimination of non-TCP-friendly Flows in the Internet", February
1999, http://www-rp.lip6.fr/InfosTheme/Anglais/publicationsan.htm

APPENDIX

[16] proposes an iterative mechanism computing the max-min fair-share in

iteration-step i (A~air) as follows:

. B-dilow
A fair == hi

B denotes the link-capacity, dilow denotes the sum of the arrivalrates of the
flows having arrival rates below ~r equal A~ai" hi denotes the number of flows
having arrival rates higher than A fair The dlol!' qu~ntit~ is initialized to zero, h

is initialized to the total number of flows. If hi == hl - J, A fair equals the max-min
fair share (A/air) and the iteration can be terminated. A max-min fair alloca­
tion of B fully satisfies the demand of flows having arrival rates below A/air

and restricts flows having arrival rates above A/air to A/air

As mentioned in section 3.1, RED+ measures the per-flow arrival rate of
flows in state penalized or established, the total arrival rate of flows in state
penalized or established O'-ep) and the total arrival rate of all flows (AaU)' For
computation of the fair-share, RED+ initializes the dlow quantity to the total
arrival rate of flows in state new or non existent, Aall - Aep; h is initialized to
the number of flows in state penalized or established. After the initialization
RED+ continues with the computation of the max-min fair share as explained
above for the original mechanism.

For the following considerations we assume that the process of maximum
arrival rate allocation (see section 3.3, first paragraph) is in steady state, i.e.
only the highest bandwidth flows are stored in the hash-table. The n parameter
limiting the numbers of iterations of the algorithm computing the fair share, is
assumed to be infinity.

Theorem: RED+ penalizes the maximum possible number of flows having
arrival rates above the max-min fair share, given a certain size of the hash­
table.

Explanation: Let m denote the maximum number of flows which can be
permanently stored in the hash-table. We distinguish between two cases and

38

show that in the first case exactly the flows having arrival rates above the max­
min fair share are penalized, in the second case the maximum possible num­
ber of flows above the max-min fair share (i.e. m flows) is penalized.

First case: the number of flows with arrival rates higher than the max-min
fair-share is smaller than or equal m. Under the assumption of maximum
arrival rate allocation, the arrival rate of each flow in state non-existent or new
has to be below the max-min fair-share in this case. The arrival rate of flows in
state non-existent or new would contribute to dtow in the original mechanism,
hence we may initialize dtow to the total arrival rate of flows in state new or
non existent, Aall - Aep. As only flows in state established or penalized remain
to be considered h can be initialized to the number of flows in state penalized
or established. After the algorithm has terminated, the max-min fair share
computed by RED+ equals the value computed by the original mechanism
with knowledge of all per-flow arrivalrates.

Second, inverse case: there are flows in state non-existent or new having an
arrival rate above the max-min fair share. As convergence to a maximally
arrival rate allocation of the hash table has been achieved, we know that any
flow in state established or penalized has a higher arrival-rate than any flow in
state non-existent or new. Hence all flows in state penalized or established
have to have arrivalrates above the max-min fair share either.

The total portion of the link bandwidth RED+'s derivate for computation of
the max-min fair share allocates to the established and penalized flows is
given by maximum(O, B - dtow)' where dtow equals the total arrival rate of the
flows in state non-existent or new. From the assumption of existence of flows
in state non-existent or new having an arrival rate above the max-min fair
share follows that RED+'s dtow is greater than the dlow value of the original
mechanism. Consequently, RED+ allocates a smaller portion ofthe link-band­
width to the established and penalized flows than the original mechanism;
therefore the fair-share computed by RED+ is smaller than the max-min fair­
share computed by the original algorithm. As flows in state penalized or
established have arrival rates above the max-min fair share (see last paragraph)
and RED+'s fair-share is smaller than the max-min fair share all flows perma­
nently stored in the hash-table are penalized.

Although the algorithm fails in computing the max-min fair share in the
second case, it is correct to penalize the flows stored in the hash-table as these
flows have arrival rates above the max-min fair-share, as shown above. Obvi­
ously, not all flows with arrival rates above the fair share are penalized as
there are flows with an arrival rate above the max-min fair-share in state non­
existent or new which are not taken into account by RED+. However, RED+
penalizes the maximum possible number of the highest bandwidth flows tra­
versing the output-port, given a certain size of the hash-table.

