
RED+ GATEWAYS FOR IDENTIFICATION AND 
DISCRIMINATION OF UNFRIENDLY BEST -EF­
FORT FLOWS IN THE INTERNET 

Thomas Zieglert:l:, Serge Fdidat , Ulrich Hofmann+ 
1" Universite Pierre et Marie Curie, Laboratoire Paris 6, Paris, France 

:f: Polytechnic University Salzburg, Schoolfor Telecommunications, Salzburg, Austria 

{Thomas.2iegler. Serge.FdidaJ@lip6.fr, {Thomas.2iegler. Ulrich.HofmannJ@jh-sbg.ac.at 

Abstract This paper proposes an add-on to the well known RED (Random Early Detec­
tion) algorithm called RED+. RED+ adds the functionality of identifying and 
discriminating high-bandwidth, unfriendly best-effort flows to RED gateways. 
It is based on the observation that unfriendly flows have higher arrival rates in 
times of congestion than friendly flows. Hence unfriendly flows can be discrimi­
nated if packets arriving at a router output-port are dropped as a function of 
RED's average queue size and the arrival rate of the packet's flow. RED+ is scal­
able regarding the amount per flow information stored in routers as it only allo­
cates per-flow state for the n highest bandwidth flows, where n is a configurable 
parameter. As shown by simulation, RED+ is able to identify and discriminate 
unresponsive flows avoiding problems of unfairness and congestion collapse. 
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1. INTRODUCTION 
So called "unfriendly flows" reduce their sending-rate into the net less con­

servatively in response to congestion-indications (packet-loss) than friendly 

flows 2. Consequently, unfriendly flows tend to grab an unfairly high portion 
of the bottleneck-bandwidth. "Unresponsive flows" exhibit an extreme kind of 
unfriendly behavior as they do not back-off at all in response to congestion 
indications. Simulations in [6] show that for a friendly and an unresponsive 
flow sharing a link, throughput of the friendly flow and arrival-rate of the 
unresponsive flow are inversely proportional. In other words, throughput of 
the friendly flow converges to zero if a non responsive flow's arrival-rate 
approaches the link-bandwidth. This behavior strongly violates the goal of 
fair distribution of bandwidth among best-effort flows. Additionally, unre­
sponsive flows can cause congestion collapse due congested links transmitting 

I This work is partly sponsored by Telecom Austria and FFF Austria. 
2 A flow is defined by IP address pair and port-numbers, respectively flow-ids. 
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packets that are only dropped later in the network [6]. 
For the Internet, TCP flows can be considered friendly as TCP congestion 

control in its different derivates exhibits roughly homogeneous behavior. Due 
to the dominance of TCP in today's Internet it is reasonable to define 
"friendly" as "TCP-friendly" [6]. However, this definition of friendliness may 
not hold for the future in case of widespread deployment of alternative con­
gestion-control mechanisms. 

The objective of this paper is to propose a queue-management mechanism 
called RED+ adding the functionality of identifying unfriendly flows to RED 
gateways [7]. Using RED as a basis, RED+ inherits desirable properties of 
RED like controllable queueing-delay, avoidance of global synchronization 
and avoidance of a bias against traffic-bursts. Note, however, that this add-on 
for identification of unfriendly flows is rather orthogonal from a specific 
queue-management algorithm as it solely requires a packet-drop function 
which is monotonically increasing with the queue-size and a facility for pref­
erential packet-dropping. Hence the mechanism proposed in this paper could 
be used in combination with other queue-management algorithms than RED. 

Due to the current lack of mechanisms like RED+ users have an incentive 
to be misbehaving and to generate unfriendly flows obtaining a higher share 
of the bottleneck bandwidth. Contrary, the deployment of mechanisms identi­
fying and discriminating unfriendly flows would encourage users to utilize 
conforming end-to-end congestion control. 

2. RELATED RESEARCH 
The Random-Early-Detection (RED) algorithm [7] employs the parameter­

set {minth, maxth, maxp} in order to probabilistic ally drop packets arriving at 
a router output-port. If the average queue-size (avg) is smaller than minth no 
packet is dropped. If minth < avg < maxth, RED's packet-drop-probability 
varies between zero and maxp. If avg > maxth, each arriving packet is 
dropped. In order to take into account flows with different packet sizes, RED 
can be operated in "byte-mode" weighting the drop-probability by the incom­
ing packet's size. WRED [3] and RIO [4], both enhancements of RED 
intended for service-differentiation in the Internet [1], relate arriving packets 
to the parameter-set {minthin, maxthin, maxPin}, respectively {minthout' 

maxthout' maxpou,} if the packet has been marked as in, respectively out 
according to its flow's service-profile at a network boundary. Assuming mint­

hin ~ maxthout' in-profile packets are accommodated while out-of-profile 
packets have a drop-probability of one if avg > maxthOUl' Hence out-of-profile 
packets are discriminated against in-profile packets. As opposed to WRED, 
which uses one average queue size for all packets in the queue, RIO computes 
an extra average queue-size only for in-profile packets. 

In [6] routers execute a low-priority background task in periodic time-inter-
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vals. Unfriendly flows are identified as "non TCP friendly", "unresponsive" or 
"high bandwidth in times of congestion". [18] shows that the TCP-friendly 
test, as proposed in [6], is inaccurate as routers generally do not have knowl­
edge of the end-to-end RTT. Hence unfriendly flows are unlikely to be 
detected by this test. Flows identified as unfriendly are discriminated by 
reclassification into a lower priority queue. Note that reclassifying flows from 
one queue into another implies the caveat of packet misordering possibly 
causing TCP fast retransmits and reduction of the congestion window in case 
more than three packets arrive out-of-order [11] [12]. 

The FRED algorithm [13] uses per-active-flow accounting and preferen­
tially drops packets of flows having either more packets than a fair-share of 
the buffer-size stored or an outstanding-high number of packet drops. It has 
been shown in [18] that FRED is not able to restrict unresponsive flows to the 
fair-share in rather general scenarios. Additionally, per-active flow accounting 
means using very small time-scales enabling a bias against bursty traffic. 

[20] proposes an architecture in the context of the diff-serv [1] for identifi­
cation and discrimination of non-TCP-friendly flows. The principle is to 
detect non-TCP-friendly flows at the ingress-router by comparing arrival rates 
to equivalent TCP-friendly rates. If a flow is identified as non-TCP-friendly, 
its packets are marked as "unfriendly". Core routers discriminate packets 
marked as unfriendly with RED-based drop-preference mechanisms. The 
RTT is measured by means of a protocol between ingress- and egress routers 
hence the TCP-friendly test is significantly more accurate than in [6]. Addi­
tionally, [20] only requires storage of per-flow state and a flow-lookup in 
ingress- and egress routers and not in core-routers. 

Another idea to identify unfriendly flows has been proposed in [15]. A 
alternative approach to identification of unfriendly flows is to allocate a fair­
share to each flow (see [5], [18] and others). However, merely restricting 
unfriendly flows to their fair share does not necessarily create an incentive for 
users to implement end-to-end congestion control. Additionally, many unre­
sponsive best-effort flows restricted to their fair share may still cause conges­
tion collapse as shown in [6]. 

3. RED+ ALGORITHM 

3.1 Principle of RED+ 

At packet-arrival a flow-lookup in a hash-table storing per-flow state-infor­
mation is performed. Three counters are updated, measuring the number of 
bytes arrived per flow, of flows in state established or penalized and of all 
flows. Subsequently, RED+ determines if the packet's flow is in state "penal­
ized" (i.e. the flow is considered unfriendly by RED+). If this happens to be 
the case, WRED is executed with a lower parameter-set (min[. max[. maxp/) 
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else WRED is executed with the higher-parameter set (minh, maxh, maxPh). 

Assuming maxh > minh > maxI> mini and existence of sufficient demand from 
non-penalized flows the steady-state average queue-size converges between 
minh and maxh, hence the penalized flows have a drop-probability of one. If 
the average queue size is below maxI in case of moderate congestion RED+ 
additionally accommodates flows in state penalized. 

In order to determine which flows should be penalized RED+ computes an 
approximation of the max-min fair-share of the link-bandwidth in a periodic 
background task. We define "one period" as the constant interval of time 
between subsequent calls of the background task. 

The background task additionally computes a flow's state as a function of 
its arrival rate in comparison to the fair-share. If a flow's arrival rate in times 
of congestion is higher than the fair share RED+ sets the flow into state 
"penalized", else the flow is set to state "non-existent, new or established". 
The transitions between these states are explained in section 3.2. 

Figure 1 summarizes the operations of RED+ at packet-arrival and gives a 
rough overview of the background-task: 

Packet arrival: 
Perform flow-lookup 
Update counters for measurement of arrival rates 
If the flow is in state penalized 

execute WRED with lower parameter-set (min" max" maxp,) 
else 

execute WRED with higher parameter-set (minh' maxh, maxPh) 
Periodic background task: 

Approximate max-min fair share of the link capacity 
Compute the state of flows 

Figure 1 RED+ pseudo-code 

3.2 RED+ State Transitions 
penalty test and low 
BW test fails 

test fails 

LowBW 
test applies 

Figure 2 RED+ state machine 

penalty test 
applies, low BW 
est fails 
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We examine the states a flow can pass during its lifetime as illustrated in 
figure 2: 

1.) non existent: a flow is in state "non existent" if it has no per-flow-infor­
mation stored. This state is virtual as RED+ is not aware of this flow. 

2.) new: if a flow had its first packet drop and the hash table is not full, per 
flow state-information (IP Addresses. Port numbers, a counter for measure­
ment of the per-flow arrival rate and 2 bits storing the flow's state) is allo­
cated. The flow's state changes from "non-existent" to "new". The 
significance of the state new is to avoid false measurement of the per-flow 
arrival rate which is required for the "low-bandwidth test" and the "penalty 
test" (see point 3). Both tests compare the number of bytes received during the 
last period with the fair-share. The storage of flows in the hash-table happens 
asynchronously to the background task. Hence, if the penalty and the low­
bandwidth test were performed when the background task recognizes the flow 
for the first time, the arrival rate of newly stored flows would be underesti­
mated as their byte counters had been updated for a shorter interval of time 
than the counters of flows already stored in the hash-table for more than one 
period. The meaning of the state new is to avoid the problem of underestima­
tion of the per-flow arrival rate for flows stored during the last period. Conse­
quently, the time between a flow's first packet drop and storage in the hash­
table and the first appliance of the penalty and low-bandwidth test is greater 
than one period and smaller than two periods. 

3.) established: if the background task scans a flow in state new for the first 
time the flow's state is changed to "established". For established flows the 
arrival rate is measured and two test are performed: first, the penalty test 
determines if the flow's arrival rate since the last call of the background task 
has been higher than the fair-share. If the penalty test applies the flow's state 
is changed to "penalized". Second, the low-bandwidth test determines if the 

arrival rate of a flow is below the fair-share divided by the "dealloc-param,,3 
or if this flow has the minimum arrival rate of all penalized and established 
flows (see section 3.3). If the low bandwidth test applies a flow's state changes 
to non-existent (i.e. its per flow information in the hash-table is deallocated). 

4.) penalized: For penalized flows the arrival rate is measured and two test 
are performed: the penalty test determines if the flow's arrival rate since the 
last call of the background task has been lower than the fair-share and the 
flow's state should change to established; the low-bandwidth test is applied as 
explained above in point 3. 

3 The dealloc_param is a constant set to 16 in our simulations. Setting this parameter higher 
decreases the probability that flow information of unfriendly flows with variable demand is 
falsely deallocated but increases the probability that unfriendly flows can not be stored immedi­
ately if the hash-table is filled to a high degree. 
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3.3 Details on the Background Task 

In order to allow router vendors to restrict the amount of stored per-flow 
information to fit into the processor-cache, RED+ assumes a fixed, rather 
small size of the hash-table. This implies, that the maximum number of flows 
stored in the hash-table will generally be significantly smaller than the total 
number of flows traversing the output port. Hence we need a mechanism that 
only keeps the highest bandwidth flows in the hash table and accommodates 
new flows even if the hash-table is filled to a high degree. RED+ allocates 
flow-state if a flow experiences a packet-drop and the hash-table is not full. 
Note that allocating flow state for flows having packet-drops implies that flow 
state is likely to be stored for the high-bandwidth flows as a flow's drop-prob­
ability with RED is directly proportional to its arrival rate [20]. In order to 
enable storage of new flows when the hash-table is filled to a high degree, the 
background task deletes at least one flow having the minimum arrival rate of 
all flows stored in the hash-table in each period (see low-bandwidth test 
described in section 3.2). Allocating flow-state to flows likely having a high 
arrival rate (i.e. flows experiencing drops) and deleting flow-state of the low­
est-bandwidth flows converges to a "maximum arrival rate allocation of the 
hash-table" (i.e. only the highest bandwidth-flows are permanently stored in 
the hash-table). Deleting the flows with the lowest arrival-rate additionally 
solves the task of deallocating flows which have stopped transmitting packets. 

For computation of the max-min fair-share we use a derivate of the iterative 
mechanism explained in [16]. On the contrary to the mechanism in [16], 
RED+ only has partial knowledge of the per-flow arrival rates as flows in state 
non-existent and new are not taken into account. However, this lack of infor­
mation can be compensated, the max-min fair-share can be computed in all 
relevant cases and the maximum possible number of unfriendly flows given a 
certain capacity of the hash-table can be penalized if the algorithm in [16] is 
initialized differently (see appendix and [19] for details). After initialization, 
RED+ proceeds with the computation of the max-min fair share like the origi­
nal mechanism. 

In each iteration of the algorithm computing the fair share the whole hash­
table has to be scanned. Although only comparisons and additions are 
required, scanning the hash-table arbitrary times would mean too much over­
head for a real implementation. Hence we stop after n iterations (formally 
speaking, we perform an n'th order approximation to the fair-share in the 
max-min sense). In all our simulations, the max-min fair-share was approxi­
mated sufficiently accurate after two iterations (see [19]). 

The penalty test seems straight forward: if the arrival-rate of a flow during 
the last period is greater than the fair share, the flow's state is set to penalized, 
else the flow's state is set to established. However, by simulation (see [19]) we 
figured out that this policy would cause global synchronization in scenarios 
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with TCP flows because several TCP conversations would be penalized at one 
instance in time. Penalizing TCP flows means enforcing a high packet drop 
rate. The TCP-senders in turn significantly reduce their congestion window 
(and thereby their sending rate) at the same point in time causing global syn­
chronization. To avoid this problem we only penalize one flow - the estab­
lished flow with the maximum arrival-rate, and un-penalize another flow - the 
penalized flow with the minimum arrival rate. Obviously, this implies the 
drawback of longer convergence times. Consider a scenario with a period of k 
seconds. At one point in time I unresponsive CBR flows start to send with a 
rate above the fair share. It will take k * I seconds until all CBR flows are in 
state penalized. 

The periodic background task is invoked in constant time intervals. We 
have performed simulations with periods between three and eight seconds 
[19]. A period of 5 seconds seems appropriate in most cases. Obviously, 
longer time-intervals between calls of the background task cause longer con­
vergence times for detection of mUltiple unfriendly flows. Shorter time-inter­
vals between calls of the background task cause more load for the router. The 
background task can be made work-conserving by elongating the time-inter­
val between calls of the background task directly proportional to the total 
arrival rate at the router output-port. 

For detailed explanations of RED+ pseudo-code and discussion of further 
properties we have to refer to [19] due to space-limitations in this paper. 

4. SIMULATION OF RED+ 
We have implemented the RED+ algorithm in the ns simulator [9], version 

2. Simulations in [19] include scenarios investigating different RED+ parame­
ter settings, topologies, multiple congested gateways and different mixes of 
TCP, CBR and ON/OFF flows. Additionally, scenarios showing RED+ with 
ECN packet-marking instead of dropping [10][17] for flows in state non-exis­
tent, new and established, different bottleneck-link capacities, different RTTs 
and number of TCP flows are investigated. RED+ succeeds in detection of 
unfriendly flows in all scenarios. Further simulations show that the max-min 
fair share is sufficiently accurately approximated if the maximum number of 
iterations of the algorithm computing the fair-share ("n" parameter) is set to 2. 

Figure 3 Simulated network 
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RED+ parameters (see [7] for an explanation of RED-specific parameters): 
byte-mode = false, Wq = 0.002, mini = 20, maxI = 40, maxPI = 1, minh = 50, 
maxh = 150 packets, maxPh = 0.1, ECN is disabled, mean-pktsize = 500 bytes, 
period-length = 4 sec, dealloc-param = 16. n = 2. the hash-table stores state­
information of 15 flows at maximum. 

Other parameters:Simulation duration: 50 seconds, buffers at router output 
ports store 200 packets. All output-ports except the output-port at the RED+ 
gateway served by the 1.5 Mbps link use drop-tail queue management. 

Traffic: 3 CBR flows (flows 1,2,3) with rates of 400,200 and 100 kbps start 
at 0, 5 and 10 seconds of simulation time. Flow I is routed from source I to 
sink 1 hence it uses the 200 kbps link. 97 TCP-Reno and TCP-SACK flows 
transmit packets from sources to sinks and start randomly between zero and 
10 seconds. Packet sizes of TCP flows are uniformly distributed with a mean 
of 500 bytes. None of the flows terminates prior to the simulation. 

~ 

25 ~ ~ 
:c --flow I :c \0 

.t; 20 ---flow 2 .t; --flow I .~ -----flow 3 .~ 

"C "C 
I: 15 I: 
os os 

.I:> 0:!2 5 ~ OJ 

0 10 i 
c .. .. Q. 
OJ 5 0 
Q" .. 

"C 

0 0 """""""""'"1 
10 20 30 40 50 

time time 
Figure 4 Left part: per-flow bandwidth allocation as a percentage of the bottleneck-capacity 
between the RED+ and the drop-tail gateway: right part: per-flow droprate at the 200 kbps 

link as a percentage of the link-capacity between the RED+ and the drop-tail gateway. 

As shown in the left part of figure 4, RED+ sets the unresponsive CBR 
flows into state penalized between 10 and 20 seconds of simulation time, 
starting with the highest bandwidth flow. CBR flows are detected as 
unfriendly within 2 periods since their first packet-drop and allocation of 
flow-state. Due to their unresponsiveness they stay in state penalized and are 
shut out for the rest of the simulation. 

During the first seconds of simulation time flow! (the CBR flow traversing 
the 200 kbps link) is not penalized, hence it consumes a significant portion of 
the link-capacity between the RED+ and the drop-tail gateway and experi­
ences vast packet drops at the second congested link. This behavior causes 
wastage of bandwidth and may cause congestion-collapse in the extreme 
case4 [6]. As soon as flow I is in state penalized its share of the link-capacity 
between the RED+ and the drop-tail gateway - and thereby its droprate at the 
200 kbps link - equals zero (see figure 4, right part). 
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The simulation shows that RED+ is able to penalize unfriendly flows in 
case the total number of flows is significantly larger than the capacity of the 
hash-table. The hash-table is capable of storing state-information of 15 flows 
while the total number of flows traversing the RED+ output-port equals 100. 

200 

• 
150 

'" .... 
':;l 
... 100 = '" = .... 

50 

0 
0 to 20 30 40 50 

time 

-- queue 
--avg . 
- - - mio_h 
- - - max_h 
...... mio_1 
. ....• max_1 

Figure 5 Average and instantaneous queue·size over time at the RED+ gateway 

Figure 5 shows the reason why flows in state penalized are completely shut 
out: the average queue size converges between minh and maxh as there is suffi-
cient demand from CBR and TCP flows. MaXI is smaller than minh, hence 
flows in state penalized experience a drop-probability of one. 

5. CONCLUSIONS 
As shown by simulation, RED+ is able to solve the problem of unfairness 

and congestion-collapse due to unresponsive best-effort flows. Unresponsive 
flows are completely shut out once they are detected. Due to this severe form 
of discrimination the current incentive for users to be misbehaving and to cre­
ate unresponsive flows would disappear in case RED+ was deployed in the 
Internet. On the contrary, users would get the desirable incentive to implement 
conservative end-to-end congestion control. 

While providing these functionalities RED+ only stores state-information 
of a small portion of the flows traversing the router output-port. Additionally, 
RED+ only requires a few additions (counter updates at packet arrival) 
besides the flow-lookup and the execution of a drop-preference mechanism 
(like WRED) in the data-forwarding-path. More complex operations are per­
formed in a periodic background task which can be made work-conserving. 

As opposed to [19] where the behavior of RED+ has been extensively 
investigated (see section 4. for a brief overview), the limited scope of this 
paper only allows showing a few simulations. [19] additionally shows detailed 
pseudo-code of the algorithm lacking in this paper. 

4 If the arrival rate of flow 1 was greater than the link-capacity between the RED+ and the drop­
tail gateway, flow I had a throughput of 200kbps. All other flows were shut out completely. 
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Discrimination between friendly and unfriendly flows can not be perfect 
with mechanisms like RED+. Friendly TCP flows may be penalized falsely 
and unfriendly flows may not be penalized at all if their arrival rate in times of 
congestion is only marginally higher than the fair share. If a TCP flow is 
penalized most of its packets are dropped causing significant reduction of its 
arrival rate at the RED+ gateway. Consequently, the penalization is removed 
from the flow in the next period. Figuring out the operational bounds of RED+ 
with regards to falsely penalizing TCP flows and failing to identify unfriendly 
flows will be the task of a future paper. Additionally, the behavior of RED+ in 
the presence of unfriendly but responsive flows will be investigated. 
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APPENDIX 

[16] proposes an iterative mechanism computing the max-min fair-share in 

iteration-step i (A~air) as follows: 

. B-dilow 
A fair == hi 

B denotes the link-capacity, dilow denotes the sum of the arrivalrates of the 
flows having arrival rates below ~r equal A~ai" hi denotes the number of flows 
having arrival rates higher than A fair The dlol!' qu~ntit~ is initialized to zero, h 

is initialized to the total number of flows. If hi == hl - J, A fair equals the max-min 
fair share (A/air) and the iteration can be terminated. A max-min fair alloca­
tion of B fully satisfies the demand of flows having arrival rates below A/air 

and restricts flows having arrival rates above A/air to A/air 

As mentioned in section 3.1, RED+ measures the per-flow arrival rate of 
flows in state penalized or established, the total arrival rate of flows in state 
penalized or established O'-ep) and the total arrival rate of all flows (AaU)' For 
computation of the fair-share, RED+ initializes the dlow quantity to the total 
arrival rate of flows in state new or non existent, Aall - Aep; h is initialized to 
the number of flows in state penalized or established. After the initialization 
RED+ continues with the computation of the max-min fair share as explained 
above for the original mechanism. 

For the following considerations we assume that the process of maximum 
arrival rate allocation (see section 3.3, first paragraph) is in steady state, i.e. 
only the highest bandwidth flows are stored in the hash-table. The n parameter 
limiting the numbers of iterations of the algorithm computing the fair share, is 
assumed to be infinity. 

Theorem: RED+ penalizes the maximum possible number of flows having 
arrival rates above the max-min fair share, given a certain size of the hash­
table. 

Explanation: Let m denote the maximum number of flows which can be 
permanently stored in the hash-table. We distinguish between two cases and 
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show that in the first case exactly the flows having arrival rates above the max­
min fair share are penalized, in the second case the maximum possible num­
ber of flows above the max-min fair share (i.e. m flows) is penalized. 

First case: the number of flows with arrival rates higher than the max-min 
fair-share is smaller than or equal m. Under the assumption of maximum 
arrival rate allocation, the arrival rate of each flow in state non-existent or new 
has to be below the max-min fair-share in this case. The arrival rate of flows in 
state non-existent or new would contribute to dtow in the original mechanism, 
hence we may initialize dtow to the total arrival rate of flows in state new or 
non existent, Aall - Aep. As only flows in state established or penalized remain 
to be considered h can be initialized to the number of flows in state penalized 
or established. After the algorithm has terminated, the max-min fair share 
computed by RED+ equals the value computed by the original mechanism 
with knowledge of all per-flow arrivalrates. 

Second, inverse case: there are flows in state non-existent or new having an 
arrival rate above the max-min fair share. As convergence to a maximally 
arrival rate allocation of the hash table has been achieved, we know that any 
flow in state established or penalized has a higher arrival-rate than any flow in 
state non-existent or new. Hence all flows in state penalized or established 
have to have arrivalrates above the max-min fair share either. 

The total portion of the link bandwidth RED+'s derivate for computation of 
the max-min fair share allocates to the established and penalized flows is 
given by maximum(O, B - dtow)' where dtow equals the total arrival rate of the 
flows in state non-existent or new. From the assumption of existence of flows 
in state non-existent or new having an arrival rate above the max-min fair 
share follows that RED+'s dtow is greater than the dlow value of the original 
mechanism. Consequently, RED+ allocates a smaller portion ofthe link-band­
width to the established and penalized flows than the original mechanism; 
therefore the fair-share computed by RED+ is smaller than the max-min fair­
share computed by the original algorithm. As flows in state penalized or 
established have arrival rates above the max-min fair share (see last paragraph) 
and RED+'s fair-share is smaller than the max-min fair share all flows perma­
nently stored in the hash-table are penalized. 

Although the algorithm fails in computing the max-min fair share in the 
second case, it is correct to penalize the flows stored in the hash-table as these 
flows have arrival rates above the max-min fair-share, as shown above. Obvi­
ously, not all flows with arrival rates above the fair share are penalized as 
there are flows with an arrival rate above the max-min fair-share in state non­
existent or new which are not taken into account by RED+. However, RED+ 
penalizes the maximum possible number of the highest bandwidth flows tra­
versing the output-port, given a certain size of the hash-table. 


