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Abstract We proposed earlier an optimization approach to reactive flow control where the 
objective of the control is to maximize the total source utility over their trans­
mission rates. The source utility functions model their valuation of bandwidth 
and can be different for different sources. The control mechanism is derived 
as a gradient projection algorithm to solve the dual problem. In this paper we 
generalize the algorithm and the convergence result to an asynchronous setting 
where the computations at and the communications among the links and sources 
are uncoordinated and based on possibly outdated information. 
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1. INTRODUCTION 
We have proposed previously an optimization approach to flow control where 

the control mechanism is derived as a gradient projection algorithm to solve 
(the dual of) a global optimization problem [10; 11]. The purpose of this 
paper is to show that the basic algorithm converges in both synchronous and 
asynchronous settings. 

Specifically consider a network that consists of a set L of unidirectional 
links of capacity cl,t E L. The network is shared by a set S of sources, where 
source s is characterized by a utility function Us (x s) that is concave increasing 
in its transmission rate Xs. The goal is to calculate source rates that maximize 
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the sum of the utilities Z=SES US (x s) over x S subject to capacity constraints. 
Solving this problem centrally would require not only the knowledge of all 
utility functions, but worse still, complex coordination among potentially all 
sources due to the coupling of sources through shared links. The key to a 
distributed solution is to consider the dual problem that decomposes the task 
into simple local computations to be executed at individual links and sources. 

The algorithm takes the familiar form of reactive flow control. Based on 
the local aggregate source rate each link l E L calculates a 'price' Pl for a 
unit of bandwidth. A source s is fed back the scalar price pS = z= PI, where 
the sum is taken over all links that s uses, and it chooses a transmission rate 
Xs that maximizes its own benefit Us(xs) - pSxs, utility minus the bandwidth 
cost. These individually optimal rates (xs(pS), s E S) may not be socially 
optimal for a general price vector (PI, l E L), i.e., they may not maximize the 
total utility. The algorithm iteratively approaches a price vector (PI, l E L) 
that aligns individual and social optimality such that (XS (fit) , s E S) indeed 
maximizes the total utility. In order words, the price fis represents the complete 
congestion information source s needs for its control decision. 

The basic algorithm is presented in [10] and a preliminary prototype is 
briefly discussed in [11]. The basic algorithm requires communication of 
link prices to sources and source rates to links. This requirement is greatly 
simplified in [13,12], as follows. In [13] we prove that a link can simply set 
its price to a fraction of its buffer occupancy, thus eliminating the need for 
explicit communication from sources to links. This can be seen as have the 
links estiamte the gradient using local information in carrying out the gradient 
projection algorithm. In [12], we describe a marking scheme, inspired by [ 
6], that achieves the communication from links to sources using only binary 
feedback. The result is a variant of Random Early Detection (RED) scheme [ 
4], that not only stabilizes network queues, as RED does, but does so in a way 
that optimizes a global measure of performance. 

Optimization based flow control have also been proposed in [5; 7; 3; 8; 9; 6]. 
All these works, as ours, motivate flow control by an optimization problem 
and derive their control mechanisms as a solution to the optimization problem. 
They differ in their choice of objective functions or their solution approaches, 
and result in rather different flow control mechanisms to be implemented at 
the sources and the network links. In particular both [8; 9] and our work solve 
the same optimization problem of maximizing aggregate utility over source 
transmission rates. The two works however differ in their solution approach, 
which lead to different algorithms and their implementation through marking [ 
6; 12]. See [14] for a detailed comparison. 

The present paper is structured as follows. In Section 2 we present the 
optimization problem and its dual that motivate our approach. In Section 3 
we briefly derive a synchronous solution and present its convergence property. 
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In Section 4 we extend the synchronous algorithm and its convergence to an 
asynchronous setting. All proofs are omitted due to space limitation and can 
be found in [14]. 

2. MODEL 

Consider a network that consists of a set L = {I, ... , L} of unidirectional 
links of capacity ct, l E L. The network is shared by a set S = {I, ... ,S} of 
sources. Source s is characterized by four parameters (L(s), Us, m s , Ms). The 
path L (s) ~ L is a subset of links that source s uses, Us : !R+ -t !R is a utility 
function, ms ~ 0 and Ms ~ 00 are the minimum and maximum transmission 
rates, respectively, required by source s. Source s attains a utility Us (x s) when 
it transmits at rate Xs that satisfies ms ~ Xs ~ Ms. We assume Us is increasing 
and strictly concave in its argument. Let Is = [m s , Msl denote the range in 
which source rate Xs must lie and I = (Is, s E S) be the vector. For each link 
llet S(l) = {s E S Il E L(s)} be the set of sources that use link l. Note that 
l E L(s) if and only if s E S(l). 

Our objective is to choose source rates x = (xs, s E S) so as to: 

P: maxxsEI. L Us(x s ) (1) 
s 

subject to L Xs ~ el, l = 1, ... ,L. (2) 

sES(I) 

The constraint (2) says that the total source rate at any link l is less than the 
capacity. A unique maximizer, called the primal optimal solution, exists since 
the objective function is strictly concave, and hence continuous, and the feasible 
solution set is compact. 

Though the objective function is separable in x s, the source rates Xs are 
coupled by the constraint (2). Solving the primal problem (1-2) directly 
requires coordination among possibly all sources and is impractical in real 
networks. The key to a distributed and decentralized solution is to look at its 
dual, e.g., [2, Section 3.4.2, 15]: 

D: minp~o D(p) = L Bs(pS) + LPlct 
s 

where 

LPI. 
IEL(s) 

(3) 

(4) 

(5) 

The first term of the dual objective function D(p) is decomposed into S sepa­
rable subproblems (4-5). If we interpret PI as the price per unit bandwidth at 
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link l then pS is the total price per unit bandwidth for all links in the path of s. 
Hence xsps represents the bandwidth cost to source s when it transmits at rate 
Xs, and Bs(pS) represents the maximum benefit s can achieve at the given price 
pS. We shall see that this scalar pS summarizes all the congestion information 
source s needs to know. A source s can be induced to solve maximization (4) 
by bandwidth charging. For each p, a unique maximizer, denoted by xs(p), 
exists since Us is strictly concave. 

In general (xs(p), s E S) may not be primal optimal, but by the duality 
theory, there exists a p* ~ 0 such that (x s (p* ), s E S) is indeed primal 
optimal. Hence we will focus on solving the dual problem (3). Once we have 
obtained the minimizing prices p* the primal optimal source rates x* = x(p*) 
can be obtained by individual sources s by solving (4), a simple maximization 
(see below). The important point to note is that, given p*, individual sources s 
can solve (4) separately without the need to coordinate with other sources. In 
a sense p* serves as a coordination signal that aligns individual optimality of 
(4) with social optimality of (1). Note that despite the notation, a source s does 
not require the vector price p, but only a scalar pS = LlEL(s) Pl that represents 
the sum of link prices on its path. 

Indeed the unique maximizer x (p) for (4) can be given explicitly, from the 
Kuhn-Tucker theorem, in terms of the marginal utility: 

(6) 

where [zl~ = max{a,min{b,x}}. Here U~-l is the inverse of U~, which 
exists over the range [U~ (Ms), U~ (ms) 1 since U; is continuous and Us strictly 
concave. It is indeed the demand function in economics. It is illustrated in 
Figure 1. Let x(p) = (xs(p), s E S). 

In this paper, we abuse notation and use x s (.) both as a function of scalar 

price p E ~+ and of vector price p E ~~I. When p is a scalar, Xs (p) is given 
by (6). When p is a vector, xs(p) = xs(pS) = xs(LIEL(s) pd. The meaning 
should be clear from the context. 

3. SYNCHRONOUS DISTRIBUTED ALGORITHM 

In [10; 14] we propose to solve the dual problem using the gradient projection 
algorithm where link prices are adjusted in opposite direction to the gradient 
\7 D (p) whose l-th component is given by: 

(7) 

where xl(p) := LSES(l) xs(p) is the aggregate source rate at link l. The 
synchronous algorithm there takes the following form. In each iteration, each 
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Ms +---. 

Figure 1 Source rate Xs(p) as a function of (scalar) price p. 

link l adjusts its price according to: 

(8) 

where [z]+ = max{z,O}. This is consistent with the law of supply and demand: 
if the demand xl (p( t)) for bandwidth at link l exceeds the supply q, raise price 
Pl(t); otherwise reduce price Pl(t). Each source adjusts its rate to: 

(9) 

They then exchange their results: each link receives from all sources using that 
link their sources rates and each source receives a scalar price equal to the sum 
of the link prices along its path. The iteration is repeated until it converges. 

We prove in [13; 14] that the algorithm generates a sequence that approaches 
the optimal rate allocation, provided the following conditions are satisfied: 

Cl: On the interval Is = [ms, MsJ, the utility functions Us are increasing, 
strictly concave, and twice continuously differentiable. 

C2: The curvatures of Us are bounded away from zero on Is: -U;'(xs) ~ 
lias> 0 for all Xs E Is. 

These conditions imply that the dual objective function is Lipschitz which 
guarantees the convergence of gradient projection algorithms. Define L := 

maxsES 1£(8)1. S := maxlEL IS(l)l, and a := max {as, 8 E S}. In words L 
is the length of a longest path used by the sources, S is the number of sources 
sharing a most congested link, and a is the upper bound on all -U;'(xs). 
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Theorem 1 Suppose assumptions CI-C2 hold. Provided that the stepsize I 
satisfies 0 < I < 2/o.LS, starting from any initial rates m :s: x(O) :s: M and 
prices p(O) 2: 0, every accumulation point (x*, p*) of the sequence (x(t), p( t)) 
generated by algorithm (8-9) are primal-dual optimal. That is, x* gives the 
source rates that maximize total utility and p* the shadow bandwidth prices. 

4. ASYNCHRONOUS DISTRIBUTED ALGORITHM 

The synchronous model of the last section assumes that updates at the 
sources and the links are synchronized to occur at times t = 1,2,.... In 
this section we will extend the model to an asynchronous setting which better 
resembles the reality of large networks. In such networks sources may be 
located at different distances from the network links. Network state (prices in 
our case) may be probed by different sources at different rates, e.g., the Resource 
Management (RM) cells in an ATM networks are sent at different rates by 
different sources. Feedbacks may reach different sources after different, and 
variable, delays. These complications make our distributed computation system 
consisting of links and sources asynchronous. In such a system some processors 
may compute faster and execute more iterations than others, some processors 
may communicate more frequently than others, and the communication delays 
may be substantial and unpredictable. 

Let T/ <;;;; {I, 2, ... ,} be a set of times at which link l adjusts its price 
based on its current knowledge of source rates and T} <;;;; {I, 2, ... , } a set of 
times at which source s updates its rate. The asynchronous algorithm is similar 
to the synchronous algorithm, except that computations and communications 
by sources and links are not coordinated and the computations are carried out 
using possibly outdated information. 

Algorithm: Asynchronous Gradient Projection 

Link l's algorithm: 

1. From time to time link l receives source rates from sources that go through 
link l. Link l replaces the oldest rates in its local memory with the newly 
received rates. 

2. At each update time t E Tl, link l computes an estimate Al(t) of 
8D/8PI(p(t)) (see (11-14) below) and adjusts its price according to 

Pl(t + 1) 

where PI is a large constant satisfying PI > maxsES(I) U;(ms) and 
[a]g = min{ max{O, a}, a}. Attimes t ~ T/. Pl(t + 1) = Pl(t). 
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3. From time to time link 1 communicates the current price to sources that 
go through link 1. 

Source s's algorithm: 

I. From time to time source s receives bandwidth prices fedback from links 
in its path. Source s replaces the oldest prices in its local memory with 
the newly received ones. 

2. At each update time t E Ts source s chooses a new rate based on its 
current estimate pS(t) of prices (see (16-18) below): 

It then transmits at this rate until the next update, i.e., xs(t + 1) = xs(t) 
fort ~ Ts· 

3. From time to time source s communicates the current source rate to links 
in its path. 

We now describe more precisely the update steps in the above algorithm. 
Link 1 updates its price at times t E Tl according to 

where (cf. (7» 

with 

= CI - xl(t) 

L XIs(t) 
sES(I) 

t 

XIs(t) = L als(t', t) xs(t'), s E 8(1) 
t'=t-to 

t 

(10) 

(11) 

(12) 

(13) 

L als(t',t) = 1, Vt,V1,swithSE8(1). (14) 
t'=t-to 

In (10) the projection onto the range [O,pz], instead of [0, 00), can be motivated 
by the fact that in practice a price must be represented by a finite number of bits. 
Moreover, since PI > maxsES(I) U;(ms), the projection imposes no restriction 
on the source rates. In (11-12), xl(t) = 2:sES(I) XIs(t) is the aggregate 
estimated source rates. Note that the estimate XIs(t) depends on (I, s, t) and 
can be different for different link-source pairs and at different times. It is 
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obtained by 'averaging' (convex sum) over the past source rates (see (13-14». 
This model is very general and includes in particular the foIlowing two popular 
types of policies: 

• Latest data only: only the last received rate Xs (T), for some (possibly 
unknown)T E {t-to,oo.,t},isusedtoestimatexls(t),i.e.,als(t',t) = 1 
if t' = T and 0 otherwise. 

• Latest average: only the average over the latest k received rates is used 
in the estimate Xls(t), i.e., als(t', t) > 0 for t' = T - k + 1, ... , T and 0 
otherwise, for some (possibly unknown) T E {t - to, 00., t}. 

The interpretation in both cases is that rates xs(t') for t' > T have not been 
received at link i by time t, and rates x s (t') for t' < T or for t' :::; T - k have 
been discarded. 

In the following, we abuse notation and use x s (.) both as a function of time, 
to denote source rate at time t under the algorithm. and as a function of price 
given by (6). The meaning should be clear from the context. 

Source s updates its rate at times t E T; according to 

(15) 

where x s (-) is given by (6), and 

j/(t) L Pls (t) (16) 

lEL(s) 
t 

Pls (t) L bls(t', t) Pl(t'), i E L(s) (17) 
t'=t-to 

with 
t 

L bls(t', t) = 1, Vt, Vi, s with i E L(s). (18) 
tf =t-to 

In (15-16) the source computation is the same as in the synchronous case 
except that it is based on its current estimate pS (t) of link prices. As in the 
link algrithm the estimated link price Pls (t) is obtained by 'averaging' over 
the past available prices (see (17-18», and can depend on (i, s, t). Again the 
'averaging' model is very general and include the policy of using only the last 
received price or the average over the last k prices; see above. 

Note that (13) and (\ 7) above tacitly assume that the one-way delay between 
any (i, s) pair is no more than to. 

Our main result states that the difference between the various estimates and 
their true values converges to zero and that the algorithm yields the optimal 
rate allocation, provided the following additional assumption is satisfied: 
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C3: For all links l and sources s, the time between consecutive updates (i.e., 
the difference between consecutive elements of T/ or T;) is bounded. 

Theorem 2 The conclusion of Theorem / holds provided assumptions C/-C3 
are satisfied and the stepsize 'Y is sufficiently small. 

5. CONCLUSION 

We have presented an asychronnous model for optimization flow control 
proposed in [10], where the objective of the control is to maximize total user 
utilities. We have shown that both the synchronouns and the asynchronous 
algorithms converge under very mild conditions on the utility functions. 

We close with extensions on the work presented in this paper. The basic 
algorithm presented here requires communication between links and sources. 
In [13] we prove that it is possible to eliminate the need for explicit com­
munication from sources to links. In [12], we describe a marking scheme that 
simplifies the communication in the reverse direction to binary feedback. These 
simplifications combine to yield a variant of RED scheme, called REM (Early 
Random Marking), that is applicable to Interent using the proposed explicit 
congestion notification bit in IP header. The optimization framework in which 
REM is derived has two advantages. First, though it may not be possible, 
nor critical, that optimality is exactly attained in a real network, the optimiza­
tion framework offers a means to explicitly steer the entire network towards 
a desirable operating point. Second it makes possible a systematic method to 
design and refine practical flow control schemes, which can be treated simply 
as implementations of a certain optimization algorithm, where modifications 
to the flow control mechanism is guided by modifications to the optimization 
algorithm. For instance, it is well known that Newton algorithm has much 
faster convergence than gradient projection algorithm. By replacing the gra­
dient projection algorithm presented in [10; 14] by the Newton algorithm we 
derive in [1] a practical Newton-like flow control scheme that can be proved to 
maintain optimality, has the same communication requirement as the original 
scheme but enjoys a much better convergence property. 
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