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Abstract This paper presents an adaptive control scheme using a newly developed 
Minimal Resource Allocation Network (MRAN) to solve the traffic con
gestion problem in ATM networks. MRAN generates a minimal radial 
basis function neural network by adding and pruning hidden neurons 
based on the input data and is ideal for on-line adaptive control for fast 
time varying nonlinear systems. The ATM traffic modeling is carried 
out using the well-known network simulation software OPNET for mul
tiplexed traffic (combining both speech and video signals). Performance 
of MRAN controller is compared with conventional method and Back
Propagation (BP) neural network controller with the aim of minimizing 
the congestion episodes and maintaining the quality. Simulation results 
indicate that MRAN controller performs better than both conventional 
and BP controller in reducing the congestion and maintaining a better 
quality of the traffic. 
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1. INTRODUCTION 
Congestion control is a traffic management mechanism to protect the 

network and the end-system from congestion in order to achieve net
work performance objectives, while at the same time promoting the ef
ficient use of network resources. Congestion control refers to the set 
of actions taken by the network to minimize the intensity, spread and 
duration of congestion. Feedback flow control is one of the solutions 
that have been extensively studied in the literature [1]. In feedback con
trol schemes, when possible traffic congestion is detected at any network 
element, feedback signals are sent to all the sources and the traffic sub
mitted to ATM connections is then regulated by modifying the source 
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coding rates. Recently, use of artificial neural networks (ANN) in traf
fic management of ATM networks is gaining momentum [2]-[3J. ANNs 
have several valuable properties that are quite useful when implement
ing ATM traffic control. First, ANNs can implement direct adaptive 
control tailored to the actual characteristics of the cell and lor call traf
fic. No explicit model of the traffic is needed as in traditional methods. 
ANNs can learn the relationships between many inputs and outputs and 
can explicitly consider propagation delay. Second, the parallel structure 
of ANNs can be exploited in hardware implementations, which provide 
short and predictable response times. 

Recently, an adaptive controller using neural networks for congestion 
control in ATM multiplexers has been developed [4]. The motivation 
to use neural networks is to utilize their learning capabilities to adap
tively control a non-linear dynamic system without having to define an 
accurate analytical model of the system. The neural network learns the 
dynamics of the system from input/output examples. Another moti
vation is to use the adaptive capabilities of neural networks to handle 
unpredictable time varying and statistical fluctuations of ATM traffic, 
which can not be described by theoretical models. 

In this scheme [4], the control signal is generated based on the real 
time measurement of arrival rate process and queuing processes which 
are indicative of the congestion episodes. This control signal is then fed 
back to the traffic sources to dynamically modulate the arrival rates by 
changing the source coding rates. The number of cells waiting in the 
multiplexer buffer is used as an indicator of congestion. During periods 
of buffer overloads, the source coding rates will be decreased at the ex
pense of quality, since decreasing the coding rate will decrease the signal 
to noise (SNR) ratio of the traffic. The sources coding rate for the Adap
tive Differential Pulse Code Modulation (ADPCM) scheme considered 
lie between 4 bits/sample, 3 bits/sample or 2 bits/sample. This involves 
a trade-off. The control law should try to strike a balance between min
imizing the cell loss rate on one hand and maximizing the coding rate 
on the other hand. To achieve this, a performance index function which 
consists of two error terms are defined, one the difference between the 
desired and actual number of cells waiting in the buffer and the second 
error term which is the difference between the original uncontrolled cod
ing rates of the coders and the controlled rate after applying the control 
signal. Maximizing the performance index involves in minimizing these 
two error terms and this is used to adjust the weights of the neural 
network. The neural network used is the well known back propagation 
feed forward network and the results indicate that the proposed neural 
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adaptive control scheme can reduce the congestion in the network in a 
significant manner. 

Recently, a new minimal radial basis function (RBF) neural network 
called Minimal Resource Allocation Network (MRAN) has been devel
oped by the authors [5], which uses a sequential learning scheme for 
adding and pruning RBF hidden layer neurons, so as to achieve a min
imal network with better approximation accuracy. When no neurons 
are added or removed, the algorithm uses an Extended Kalman Filter 
(EKF) to update the centers, widths and weights of each of the hidden 
neurons. This paper presents the application of MRAN for adaptive 
congestion control scheme for ATM networks. In comparison to the 
adaptive controller in [4] where the neural network had a fixed structure 
i.e. fixed number of neurons and only its weights were adjusted, in the 
proposed scheme the network builds up the hidden neurons from the 
input data and it does this in an efficient manner to realize a compact 
RBF network with better approximation accuracy. Also, instead of ad
justments of only the weights as in [4] the proposed MRAN adaptive 
control scheme provides for adjustments of the centers, widths and also 
the weights which result in better approximation for the input -output 
nonlinear functions. 

The paper is organized as follows. Section 2 describes the proposed 
adaptive control scheme using MRAN for congestion control of ATM 
traffic, which is similar to that of [4]. Section 3 describes briefly MRAN 
algorithm. Section 4 describes the adaptive neural control for ATM net
works under heavy traffic using OPNET while section 5 show MRAN 
controller performs to clear the heavy congestion in the network. Con
clusions from this study are summarized in Section 6. 

2. ADAPTIVE CONGESTION 
CONTROLLER FOR ATM NETWORKS 

Figure 1 shows the adaptive congestion control scheme using MRAN 
and is similar to the scheme in [4] except that the neural controller is 
based on MRAN instead of BP network. In Fig.l, the controlled source 
coding rate is defined by the equation: 

C(k) = Co'lJ,(k) (1) 

where 
C(k) = controlled coding rate at sample k 
Co(k) = maximum uncontrolled coding rate of the source 
u(k) = feedback control signal produced by the controller at sample k 
n(k+l) = number of cells in the buffer at sample (k+l) 
nd(k + 1) = desired number of cells in the buffer at sample (k+l), 
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nd(k + 1) ~ nmax (maximum length of the buffer) 
u(k+1) = feedback control signal at the sample (k+1) 
Ud( k + 1) = desired value of the feedback control signal which is also the 
maximum value of the feedback control signal: u(k + 1) ~ ud(k + 1) 
z-l represents a unit delay. 

Link 

Figure 1 Adaptive Congestion Controller Using MRAN 

The congestion control system consists of a critic part and a neural 
networks controller part. The inputs to the control algorithm are taped 
delay values of the number of cells in the multiplexer buffer (which is 
a measure of potential congestion problem) and the taped delay of the 
feedback control signal. The controller's output is a predicted optimal 
control signal that is fed back to the input sources to alter their coding 
rates. This will directly control the traffic arrival rate. During over
flow condition, the control signal will reduce the packet arrival rate by 
decreasing the coding rate of the ADPCM for both bursty and VBR 
sources. On the other hand, the coding rate is switched back to higher 
level to maintain the traffic quality. 

The critic part involves the performance index of the system (cost 
function) to be minimized. According to this cost function, the critic 
part evaluates the system performance and generates an evaluation sig
nal that is a function of the deviation of the system performance from 
the desired optimal level and is used to change the weights of the neural 
network controller. Hence, if the control signal is driving the system to
ward the desired objectives, it is reinforced. Otherwise, the weights are 
changed to generate a correct control signal. The control signal value 
will keep updating to minimize two error signals over the measurement 
period: the difference between the original uncontrolled coding rate of 
the coders and the controlled rate after applying the control signal; and 
the difference between the desired and actual number of cell in the buffer. 
There is a tradeoff between these two objectives, means minimizing the 
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former will at the same time increase the second error signal term. The 
performance index function (J) is given as below: 

L 

J(P) = L RnSn(k + l)c:;(k + 1) + Ruc:~(k + 1)) (2) 
k=l 

P = trial number 
L = length of the measurement period 
Sn (k + 1) = Reward Signal to reset the control signal as long as the 
number of cells in the buffer is less than the desired level. 

= 0 if n(k + 1) < nd(k + 1) 
= 1 if n(k + 1) ~ nd(k + 1) 

Rn = weight value on the buffer overflow performance index 
Rn = weight value the on the the coding rate performance measure. 
c:~(k + 1) = (nd(k + 1) - n(k + 1))2 
c:~(k + 1) = (ud(k + 1) - u(k + 1))2 
En = deviation from voice/video quality from its maximum coding rate. 
En = cell loss term. 

The term En represents the cell loss and the term En represents the 
deviation of the traffic quality from its maximum value. Thus, the feed
back control signal is determined such that it minimizes both the cell loss 
rate and the deviation of the traffic quality from its original uncontrolled 
value. 

3. MINIMAL RESOURCE 
ALLOCATION NETWORK(MRAN) 

The MRAN is a minimal Radial Basis Function Neural Network 
(RBFNN) which is a sequential learning algorithm recently developed 
by Yingwei et al [5J which combines the growth criterion of RAN with a 
pruning strategy to realize a minimum RAN. The hidden layer consists of 
an array of neurons «PI to <Pn) connected to the output by n connection 
weights (a1 to an). The output of the hidden layer is the vector <Pk(X) 
with m inputs :r,(Xl to xmJ The second layer of the RBF network is 
essentially a linear combiner. The overall network response is: 

K 

f(x) = ao + Lak<Pk(X) (3) 
k=l 

where <Pk(X) is the response of the kth hidden neuron to the input x, and 
ak is the weight connecting the kth hidden unit to the output unit. ao 
is the bias term. Here, K represents the number of hidden neurons in 
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the network. <Pk(X) is a Gaussian function given by, 

<Pk(X) = exp( -llx - JLkl1 2 /a~) (4) 

where JLk is the center and ak is the width of the Gaussian function. II II 
denotes the Euclidean norm. 

In the MRAN algorithm, the network begins with no hidden units. As 
each input-output training data (xn, Yn) is received, the network is built 
up based on certain growth criteria. The algorithm adds hidden units, 
as well as adjusts the existing network, according to the data received. 
The criteria that must be met before a new hidden unit is added are : 

en = Yn - f(xn.} > emin 

erm.sn = 
e? 
_t 

n 

M 
i=n-(M-l) 

> eminl 

(5) 

(6) 

(7) 

where JLnr is the center (of the hidden unit) which is closest to Xn, 
the data that was just received. En , emin and eminl are thresholds to 
be selected appropriately. Equation (5) ensures that the new node to 
be added is sufficiently far from all the existing nodes. Equation (6) 
decides if the existing nodes are insufficient to obtain a network output 
that meets the error specification. Equation (7) checks that the network 
has not met the required sum squared error specification for the past 
M outputs of the network. Only when all these criteria are met, is a 
new hidden node added to the network. Each new hidden unit added 
to the network will have the following parameters associated with it 
:aK+l = en , JLK+l = Xn , aK+l = ~llxn - JLnrll· 

The overlap of the responses of the hidden units in the input space is 
determined by /'i" the overlap factor. When an input to the network, does 
not meet the criteria for a new hidden unit to be added, the network 
parameters w = lao, aI, JLf, aI, ... , aK, JLk, aKV are adapted using the 
EKF as follows : 

(8) 

where kn is the Kalman gain vector given by, 

(9) 
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where an is the gradient vector (for details, see[5]),Rn is the variance of 
the measurement noise and Pn is the error covariance matrix which is 
updated by, 

(10) 

where Q is a scalar that determines the allowed random step in the 
direction of the gradient vector. If the number of parameters to be 
adjusted is N, Pn is a N x N positive definite symmetric matrix. 

The algorithm also incorporates a pruning strategy, which is used to 
prune hidden nodes that do not contribute significantly to the output 
of the network, or are too close to each other. The former is done by 
observing the output of each of the hidden nodes for a period of time, 
and then removing the node that has not been contributing a significant 
output for that period. Consider the output, Ok of the kth hidden unit: 

(11) 

If Gk or O'k in the above equation is small, Ok might become small. 
Also, if IIx - J-tkll is large, the output will be small. This would mean 
that the input is far away from the center of this hidden unit. To reduce 
inconsistency caused by using the absolute values of the outputs, their 
values are normalized to that of the highest output. This normalized 
output of each node is then observed for M consecutive inputs. A node 
is pruned, if the output of that node falls below a threshold value for 
M consecutive inputs. The dimensions of the EKF are then reduced to 
suit the reduced network. 

4. OPNET SIMULATION OF 
ATM WITH HEAVY TRAFFIC 

The ATM traffic system is simulated using OPNET Modeler[6]. OP
timized Network Engineering Tools (OPNET) is a comprehensive engi
neering system capable of simulating communications networks with de
tailed protocol modeling and performance analysis. OPNET features in
clude graphical specification of models; a dynamic, event-scheduled Sim
ulation Kernel; integrated data analysis tools; and hierarchical, object
based modeling. OPNET's hierarchical modeling structure accommo
dates special problems such as distributed algorithm development. 

The traffic model is shown in Figure 2. There are 3 kind of input 
sources: bursty, VBR and custom traffic. Two bursty sources with aver
age arrival rate of 29 packets/sec and VBR sources are multiplexed into 
a FIFO queue. The custom traffic is set to randomly add in some heavy 
traffic load to overload the network, from there, observations of how the 
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MRAN and BP controller perform to overcome the congestion under 
heavy traffic condition can be made. Here, the custom traffic with con
stant arrival rate of 50 packet/sec was fed iEto the queue at the period of 
50-100 sec, 200-230 sec, 350-400 sec and 500-550 sec. Each bursty source 

Traffic Sources 

Finite Buffer 

Bursty1 ~rriving 
~~ Bursty 2 '::::::' ----------:--.-,-...--,-, 

VBR1 0 . 
VBR2 ~_-'-....l-...l.-..L......J 

);. packets/.ec: 
Custom Average rate 1/1J. bits/packets 

Figure 2 G/D/l/50 Traffic Model 

is simulated using ON/OFF binary-state model. In this case, 29 cells 
are generated during ON period while no cell is generated during the 
OFF period. Both periods are exponentially distributed random vari
ables with means 1/(3= 0.35 sec and I/o: = 0.65 sec. At the same time, 
the service capacity is set to 100 packets/sec which will lead to utiliza
tion over 100%. Consequently, severe traffic congestion will be occurred. 
The traffic control scheme will handle this problem by decreasing the 
source-coding rate. As a result, packet arrival rate will be reduced to 
avoid the congestion episode. On the other hand, compression made (by 
reducing the coding rate) will affect the quality of the traffic sources. 

This G/D/l/50 queue consists of a first-in-first-out (FIFO) buffer 
with packets arriving randomly and a server, which retrieves packets 
from the buffer at a constant service rate. Its performance depends on 
three parameters: packet arrival rate, packet size, and service capacity. 
If the combined effect of the average packet arrival rate and the average 
packet size exceeds the service capacity, the queue size will be fill up 
immediately. In order to assess the performance of the controller, first 
the simulation is carried out without any controller and this results in a 
severe congestion. Figure 3 present the typical simulation results based 
on OPNET simulation for this case. Figure 3(a) shows the traffic situ
ation without any controller and it can be clearly seen that the traffic 
condition is heavily congested especially for the period where custom 
traffic with a constant arrival rate of 50 packets/sec was pumped into 
the queue. The number of cell in the buffer is concentrated at the top 
of the capacity of the buffer as shown in Figure 3(b). This leads to a 
serious congestion problem where as we can observe from Figure 3(c), 
that overflow occurs more than 15,000 times. Thus, the buffer is said to 
be severely overloaded. As a result, a very high Cell Loss Rate at about 
0.25 occurred all the time according to Figure 3(d). The cost function 
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Figll'/,e :1 Multiplexed Traffic without Control 

and the its accumulated sum are also shown in Figure 3(e) and Figure 
3(f) respectively as a deviation measurement from its optimal condition. 

5. PERFORMANCE OF MRAN 
CONGESTION CONTROLLER 

After knowing that in the above scenario the congestion problem is 
severe and noting that it is quite hard to overcome congestion for a 
dynamically changing multiplexed traffic, the MRAN controller is inte
grated into the loop and Figure 4 shows the performance of the MRAN 
controller. In the adaptive traffic control system, MRAN will intelli
gently adjust the coding rate so that it can optimize the traffic quality 
and congestion. The time interval rate about 0.01 sec is small enough 
to obtain the significant changes in the queuing system. The length of 
the measurement period will affect the sensitivity for the neural network 
control system to overcome the congestion. However, too frequent up
dates may result in possible instabilities in the controller. Besides, the 
weight parameter Rll and Rn, give the priority either for achieving good 
traffic quality or minimized cell loss rate. 

The MRAN controller is allowed to operate and its efficiency in re
moving the congestion is assessed . Figure 4(a) shows the buffer size 
after applying the MRAN control. As we can observe, there is only a 
few short period of congestion. Initially, in the case without control, the 
buffer size is always full which lead to serious traffic congestion. Figure 
4(b) shows the buffer occurrence histogram in which the buffer size is 
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always below the maximum buffer capacity and it is concentrated in the 
range of 1-30 cells. This can definitely avoid overflow. Figure 4(c) shows 
the overflow vs. time. Figure 4( d) shows the Cell Loss Rate (CLR) which 
is the ratio of lost cells to the total number of transmitted cells to the 
buffer. Again, it is clear that MRAN works to keep the CLR as low as 
2.5x10-3 . At the same time, Figure 4(e) shows the cost function which 
is minimized by the traffic control system. The MRAN control tackles 
the congestion very well and tries to minimize the cost function imme
diately by adaptively changing the source-coding rate through feedback 
control signal. Figure 4( f) is the total cost function cumulated over the 
time. In the case without control, the cost function will keep increasing 
exponentially. However, MRAN keeps a control of it although there are 
a lot of dynamically traffic fluctuation condition. 
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Figm'e 4 Multiplexed Traffic with MRAN Control 

Some performance comparisons between the conventional, BP and 
MRAN congestion controller have been done. Conventional control 
which is a modified simple ERICA congestion control scheme is being 
used to reduce the packet generation rate to the queue when congestion 
is detected. This conventional control scheme will decrease the source 
coding rate by a factor of 0.10 during congested period and increased the 
source coding rate by a factor of 0.01 when the congestion is over. This 
decreasing rate chosen is 10 times larger than increasing rate, this is to 
ensure that congestion can be avoided effectively. At the same time, by 
increasing the traffic with 0.01 any immediate congestion situation that 
occured can be recovered faster. There are three most important crite
ria to be highlighted: Traffic Quality, Cell Loss Rate and the total cost 
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function as a measure of the overall performance of the system. Figure 
5 below shows the Cell Loss Rate for the conventional, BP and MRAN 
controller which have been plotted in the same graph. 

Multlpl.x.d Trat'I'Ie Cell Lo •• Rat. 

'--j o.oeoo 

0.0500 

00"00 

a 0.0300 

O.O::ilOO 

0.0100 

0.0000 

o ~ of> 

MRAN _BPi 

Figure 5 Cell Loss Rate 

It is obvious that MRAN does a much better job to reduce and main
tain the CLR as low as possible. At the same time, it manages to 
maintain the traffic quality as shown in Figure 6 although under severe 
congestion period when the Custom Source sent a large amount of packet 
for certain durations. On the other hand, the cumulated cost function is 
used to compare the overall performance of the controllers to do the best 
optimization job for maintaining the traffic quality and keep the CLR 
at very low level. This is shown in Figure 6 where MRAN controller 
is much better than BP along the simulation time. Again, the graph 
indicates that MRAN tackles the congestion problem faster and more 
efficiently than conventional or BP. 

Multiplexed Traffic Quality 
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Figure 6 Traffic Quality 

From the above simulation results, MRAN performed better where it 
can reduce CLR four times lower and at the same time maintain the 
traffic quality 5% higher than BP controller. Furthermore, MRAN can 
react faster with its most optimized network structure. 
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6. CONCLUSION 

In this paper, three adaptive congestion control schemes using conven
tional method, BP neural networks and the recently developed MRAN 
are compared using OPNET simulation of ATM networks with heavy 
traffic. The neural network controllers generate feedback control signal 
in accordance to the traffic congestion situation and try to reduce the 
congestion episodes while maintaining the quality of the traffic. The 
performance index used as a measure of the traffic performance consists 
of two parameters with different weights, one concerning the cell loss 
rate while the other is related to the quality of multiplexed traffic. It is 
shown that MRAN can adapt and control the system more effectively as 
compared to conventional or BP controller even under heavy congestion. 
Based on a detailed comparison based on several simulation studies, it 
is shown that MRAN controller responds faster and is more efficient 
than conventional and BP schemes. This is due to the minimal network 
structure of MRAN which is suitable for fast sequential learning and 
application to the time-varying nonlinear dynamic system. 
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