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Abstract 1 New traffic models are called for to facilitate the design of effective admission 
and flow control algorithms, and network performance evaluation in accom­
modating video traffic. We propose a new approach, sequentially modulated 
self-similar processes (SMSSPs), to model MPEG coded video traffic. SMSSPs 
are shown to be able to capture both short range dependency (SRD) and long 
range dependency (LRD) of the video traffic accurately. Traffic data are decom­
posed according to the MPEG data structure, into several parts, each modeled 
as a self-similar process. These processes are then modulated sequentially in a 
manner similar to how the frames are grouped into the GOP (Group of Pictures) 
pattern. 

Keywords: MPEG, modulated self-similar processes, video traffic modeling, long range 
dependency, short range dependency. 

1. INTRODUCTION 
The trend to transmit video over network, especially over ATM, is emerg­

ing. Traffic models are important to network design, performance evaluation, 
bandwidth allocation, and bit-rate control. It was, however, observed that tra­
ditional models fall short in describing video traffic because video traffic is 
strongly autocorrelated and bursty [1]. To accurately model video traffic, au­
tocorrelations among data should be taken into consideration. A considerable 
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amount of effort on video modeling has been reported. These models are used 
to capture two statistical factors: marginal distribution (first-order statistics) 
and autocorrelation function (second-order statistics) of traffic arrival times. 
The importance of long range dependency is among the most arguable issues 
in video modeling. Some of the results support the view that LRD has drastic 
impact on queuing performance [2],[3],[4],[5], while other results support the 
view that LRD has little impact on queuing performance because of the fact 
that the buffer capacity is limited in practice [6]. 

While the importance of long range dependency is arguable, the impact of 
short term autocorrelation in traffic processes on queuing performance with 
a finite buffer can be very drastic (see [7] and references in it). Simulation 
results show that the network queuing performance with strong and weak au­
tocorrelation traffic may be quite different. Thus, a model should capture not 
only the first-order statistics, but also the second-order statistics. SRD models 
can capture short-term autocorrelation, but fail to capture long-term depen­
dency. LRD models, on the other hand, can capture long-term dependency, but 
underestimate the short term dependency. 

Markov-Renewal-Modulated TES (transform expand sample) models were 
used to model JPEG encoded motion pictures. One of the drawbacks of TES 
is that the ACF of a TES process for lags beyond one cannot be derived 
analytically. It can only be obtained by searching in the parameter space, and 
thus good results can hardly be guaranteed [8]. 

The M / G / 00 input process model is a compromise between LRD and SRD 
models [8]. Simulation results were found to be better than those of a self­
similar process when the switch buffer is relatively small. Better results than 
those ofDAR(1) [9] model were found when the buffer size is large. The results 
were derived for JPEG and the I frames of MPEG sequences. As will be shown 
below, ACF of MPEG sequences is quite different from that of JPEG sequences 
and that of I sequences. In our opinion, it is almost impossible to accurately 
capture the ACF of MPEG compressed data by a simple function such as the 
exponential function, and thus this method fails to capture the second-order 
statistics of MPEG sequences. 

In [10], I, P, and B frames were modeled separately. I frames were described 
by three parts: scene length, average I frame size during a scene, and variations 
from average frame size during the scene. P and B frames were modeled as 
i.i.d processes. As we will show, I, P, and B frames are all LRD processes. 
Another characteristic of B frames is that its ACF exhibits a repeated pattern 
(see Fig. 1,2, and 3) (The repeated pattern appears in B frames only!). The fact 
that B frames occupy a very large part of the whole sequence and B frames are 
also rather large (actually in star wars, the largest frame is a B frame) suggests 
that the impact of B frames cannot be ignored, and it is inappropriate to model 
P and B frames as i.i.d processes. 
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Figure J ACF of star wars' I frames. Figure 2 ACF of star wars' P frames. 

In this paper, we propose to model MPEG compressed video sequence by 
sequentially modulated self-similar processes, in which the original sequences 
are decomposed into several parts that can be modeled by self-similar processes. 
It has been found that video traffic possesses self-similarity, and thus it is natural 
to model video traffic by self-similar processes. Self-similar processes have 
very simple ACF forms, and therefore, are easier to analyze than other kinds 
of processes. The rest of the paper is organized as follows. Section 2 describes 
empirical data and ACF. Concepts of SRO, LRO and self-similar processes are 
presented in Section 3. Modeling of decomposed data and the whole data set 
along with simulation results are discussed and presented in Section 4. 

2. EMPIRICAL DATA AND ACF 

The empirical data used here was MPEG coded data of Star Wars2. The 
source contains materials ranging from low complexity/motion scenes to those 
with high and very high actions. The data file consists of 174,136 frames, 
each having a different frame size (bytes per frame). The movie length is 
approximately 2 hours at 24 frames per second. The original video was captured 
as 408 lines by 508 pixels. and then interpolated to 240 x 352 (Luminance -
Y), and 120x 176 (Chrominance - U and V). Every frame was partitioned 
into blocks of 8 x 8 pixels. These data blocks were transformed using OCT. 
After OCT transformation. coefficients were quantized and Huffman coded. 
Run length coding was further used to reduce bit rate. Motion estimation 
techniques were used to compress data volume. The frames were organized as 
follows: IBBPBBPBBPBB IBBPBB ...• i.e., 12 frames in a Group of Pictures 

2The MPEG coded data were the courtesy of M.W. Garrett of Bellcore and M. Vetterli of UC Berkeley. 
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(GOP). I frames are those which use intra frame coding method (without motion 
estimation), P frames are those which use inter frame coding technique (with 
motion estimation), and B frames can be predicted using forward and backward 
prediction. 

The ACF of the MPEG coded Star War is shown in Fig 4. It fluctuates around 
three envelopes, reflecting the fact that, after the use of motion estimation and 
forwardlbackward prediction techniques, the dependency between frames is 
reduced. This characteristic should be taken into consideration in modeling 
MPEG coded video sequences. We propose to decompose the sequence into 
I, P, B l , B 2 ,' .. , Bs according to the GOP pattern, and model every part by a 
different self-similar process. 

Figure 3 ACF of star wars' B frames. Figure 4 ACF of the MPEG video. 

3. SRD, LRD, AND SELF SIMILARITY 

Consider a stationary process X = {Xn : n = 1,2, ... } with mean f.,l and 
variance a 2 . The autocorrelation function and the variance of X are denoted 
as: 

(1) 

and 

(2) 

X is said to be SRD if 2:=r=o r(k) is finite; otherwise, the process is said to be 
LRD [11]. 

Let X defined above have the following autocorrelation function: 

r(k) ....... k-{3 L(k), k ---t 00 (3) 
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where 0 < f3 < 1, and L is a slowly varying function as k ---+ 00, i.e., 
limHoo L(tx)/ L(t) = 1 for all x > O. Consider the aggregated process 

x(m) = {X(m)} = {X(m) X(m) } 
t 1 , 2 ' . .. , 

where 

(m) 1 
X t = -(Xtm- m+1 + ... + X tm ), t E Q,m E Q, (4) 

m 

and Q is a positive integer set. X is said to be exactly second-order self­
similar [11] if 

(5) 

and 

(6) 

for all m E {I, 2, 3,··· } and k E {O, 1,2,··· }. Here r(m)(k) is the autocor­
relation function of x(m). In fact, Eq. (5) is sufficient to define a self-similar 
process since Eq. (3) and ( 6) can be derived from Eq. (5) [11]. 

Since empirical video traffic exhibits self-similarity and long range depen­
dency, it is intuitive to use self-similar processes to model video traffic. It is 
one of the most often used processes to capture LRD of video traffic. Often 
times, a self-similar process is simply referred to as a LRD process. 

Hurst parameter H = 1 - f3 /2(0 < f3 < 1) is used to measure the similarity 
of a process. It is the only parameter needed to describe a second-order self­
similar process. For a process with self-similarity, 1/2 < H < 1. 

4. MODELING MPEG TRAFFIC 
In order to model MPEG coded data, we decompose the MPEG traffic into 10 

sub-sequences Xl, X P, X B1 , X B2' ... , and X B8. X I consists of all I frames, 
Xp consists of all P frames, the first B frames in all GOPs constitute XB1 ' the 
second B frames in all GOPs constitute XB2' and so on. We have used k- fJ , 

e-fJk , and e-fJ../k, corresponding to the ACFs of a self-similar process, a Markov 
process, and an M/G/co input process, respectively, to approximate ACFs of 
these processes. For illustrative purposes, some of these approximations are 
shown in Fig. 5 to 12. The sums of squares of errors obtained by the three 
kinds of methods are tabulated in Table 1. It is quite obvious that self-similar 
processes are better choices. We therefore use self-similar processes to model 
these data. 

Using the least squares method, f3 = 0.4663, 0.3546, 0.4468, 0.4779, 
0.4294, 0.4656, 0.4380, 0.4682, 0.4465, and 0.4606 are derived for Xl, Xp, 
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Table 1 Least square errors obtained by self-similar process, markov and M /G /00 method 
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Figure 5 Approximation for ACF of I frames Figure 6 Approximation for ACF of P frames 
by: LRD, M/G/oo, and Markov processes. by: LRD, M/G/oo, and Markov processes. 
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Figure 7 Approximation for ACF of Bl Figure 8 Approximation for ACF of B2 
frames by : LRD, M/G/oo, and Markov pro- frames by : LRD, M/G/oo, and Markov pro-
cesses. cesses. 

X Bl' X B2 , ' .. , and X B8' respectively. The corresponding Hurst parameters 
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Figure 9 Approximation for ACF of B3 Figure /0 Approximation for ACF of B4 
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Figure 1 J Approximation for ACF of B7 Figure 12 Approximation for ACF of B8 
frames by : LRD. M/G/oo. and Markov pro- frames by : LRD. M/G/oo. and Markov pro-
cesses cesses 

for these processes are H = 0.7668, 0.8227, 0.7766, 0.7610, 0.7853, 0.7672, 
0.7810, 0.7659, 0.7768, 0.7697, respectively. 

To model marginal distributions of these processes, we use Beta distributions 
which have the following form of probability density function: 

{
I c<rr») (~)'Y-l(l ~)77-1 

/1-1 -/1-0 r l' r 77 /1-1-/1-0 - /1-1-/1-0 

!(Xj'Y,'f/,po,pt} = po:S x:S Pl,O < "1,0 < 'f/ 
o otherwise, 

(7) 
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where 'Y and 'TJ are shape parameters, and [11-0,11-1] is the domain where the 
distribution is defined. They can be estimated by the following formulae [12]: 

where 

r, = 1 - x [x(l - x) - 82] 
8 2 

, xr, 
'Y=-1 --x 

(8) 

(9) 

(10) 

(11) 

and N is the number of data in the data set. Using these formulae, r, = 1.5237, 
1.5699, 1.4172, 1.3016, 1.6858, 1.6329, 1.7276, 1.4218, 4.0585, 1.5402, and 
l' = 12.7263, 11.1939, 8.1089, 8.1604, 11.8499, 13.9278, 12.2180, 8.6536, 
10.4233,11.1768 are derived for XI, Xp, XBI' XB2' "', and XBs' respec­
tively. 

By combining XI, Xp, XBI' XB2"', and XBs in a manner similar to the 
GOP pattern, a model for MPEG coded traffic is obtained. This model can be 
used to generate traffic data. 

Fig. 13 shows a trace of the empirical video traffic, and the trace generated 
by our model is shown in Fig. 14. Note the similarity between these two figures. 
Since traffic is random, the appropriateness of a traffic model should be judged 
by its statistical properties rather than the mere similarity between these two 
figures. This can be demonstrated by the ACF of the generated traffic shown 
in Fig. 15 (compare to Fig. 4), and the ACF of B frames shown in Fig. 16 
(compare to Fig. 3), implying that the proposed model can capture both the 
LRD and SRD of B frames3. The ACF of P and I frames can also be captured 
very well (not shown here owing to the limited space.) 

s. CONCLUSIONS 

We have proposed a new traffic model, sequentially modulated self-similar 
processes, to model MPEG compressed video sequence. The model can match 

3That is. the model can match the ACF of B frames for both large and small lag, k. Owing to the limited 
space, the ACF of B frames for large k is not shown. 
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Figure 15 ACF of traffic data generated by Figure /6 ACF of B frames generated by our 
our model model 

the ACFs of the P, I, and B frame sequences very well. It can capture both 
the LRD and SRD. This model will play an important role in future network 
design and performance evaluation. 
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