
INEXPENSIVE OPEN DISTRIBUTED SERVICE 
PLATFORM 

Tor Martin Didriksen, Lars Sivert S0rumgard, Tor 0ystein MoInes 
Telenor R&D, Kongens gt. 8, 7004 Trondheim, Norway 

Key words: Intelligent Networks, Distributed Platforms, CORBA, Parlay 

Abstract: This paper presents a platform to interconnect an IN node (SCP) to other 
communication networks (Internet) in order to introduce new IN services and 
extend capabilities of existing ones. The experimental platform presented is 
based on standard industrial hardware and software components. A 
hypothetical case study illustrates the versatility of the various interfaces 
provided by the platform. 

1. INTRODUCTION 

The telecom service providers tend to constantly offer more advanced 
services. Service uniqueness is a means of success in a competitive telecom 
market. The intention of intelligent networks (IN) is to provide means to 
meet these challenges by offering a platform for service development and 
execution. This goal has to some extent been met, and ongoing 
standardisation [1][2][3] indicates that IN tries to keep pace with the growing 
demands. Still, between one and three years are probably required for 
successful introduction of a quite new tailored service [4]. The main reason 
for this is that the SCP manufacturers have failed in providing platforms 
supporting standard tools, multi-protocols, and standard databases. 

A serious problem caused by the lack of tools, and thus specialised skills 
required to developing IN services, is poor programmer availability. We 
believe that an open platform is the only means to decreasing cost and time­
to-market for new IN services. 

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35581-8 35

T. Yongchareon et al. (eds.), Intelligence in Networks
© IFIP International Federation for Information Processing 2000

http://dx.doi.org/10.1007/978-0-387-35581-8_35


108 Tor Martin Didriksen, Lars Sivert Serumgard, Tor 0ystein Moines 

This paper describes the architecture of a distributed and reliable 
experimental service platform that is not intended for IN services 
exclusively. The platform is based on standard hardware and software 
components. 

Section 2 describes a typical telecom service that will be referenced 
throughout the paper. Section 3 identifies a number of requirements to a 
service platform. Based on these requirements, Section 4 presents an 
experimental platform suitable for future services. Section 5 shows how the 
experimental platform can be opened up against additional access networks 
as well as external service providers. 

2. CASE STUDY: TRAVEL AGENCY (TA) 

This section describes a service for handling customers calling a travel 
agency (TA). We assume that the service was originally developed and 
available for PSTN only. While introducing the experimental platform later 
on, we will show how the service may be extended to include interfaces to 
additional access networks like mobile networks and the Internet. 

We will also show how to outsource the execution and development of 
the service to an external service provider interfacing to the experimental 
platform using a standardised interface like Parlay [10]. 

The reader should note that the service described here is just a 
hypothetical example to illustrate the discussion in this paper. 

2.1 Functional Properties of the Service 

The TA has one toll free phone number, and a number of offices handling 
calls to this number. Each office has a number of travel agents. The caller is 
first exposed to a menu listing a number of options, e.g. domestic travels, 
travels abroad, holiday travels, etc. Each option is associated with a digit to 
be entered by the caller to indicate the topic of the request. 

Each option in the menu is associated with a dedicated queue and a list of 
offices able to handle calls concerning this topic. Thus, an office is 
homogeneous in the sense that all agents in the office can handle the same 
type of requests. After selecting the most suitable option, the call is first 
attempted transferred to the offices in the list associated with the queue. If all 
agents in all relevant offices are busy, the call is inserted into the queue. 
Regularly, the first call in the queue is attempted transferred to the offices. 

When the caller is eventually connected to an agent, the two parties agree 
on a product and a price. The caller may provide his credit card number to 
pay in advance, or he may choose to be invoiced. Information about regular 



INexpensive Open Distributed Service Platform 109 

customers may be registered in advance and stored as customer profiles at 
the T A in a database. 

2.2 Service Architecture 

A possible overall architecture of the travel agency service is depicted in 
Figure 1. There are basically three independent parts in this architecture: 

Figure 1. Hypothetical travel agency service 

1. The customers, PSTN and the SCPo 
2. The IN Platform with the Gateway to PSTN, the service for queue 

handling and a database to store the queue. 
3. The travel agency, possibly with its own customer database. 

The service described here is very basic, akin to what many companies 
have. Towards the end of this paper, we will explain how the service may be 
extended in various ways, with respect to functionality as well as how to 
outsource the service to an external service provider, and finally how to open 
up the platform for additional access networks. 

3. EXPERIMENTAL PLATFORM REQUIREMENTS 

An experimental platform for IN services should be: 



110 Tor Martin Didriksen, Lars Sivert Sorumgard, Tor @ystein Moines 

• Open: In this context, this is related to the concept of using standard 
hardware and software as platform building blocks. 

• Reliable: This is a very broad term [5] and includes both availability and 
security. Telecommunication services traditionally have a high level of 
reliability . 

• Distributed: This means that the platform should facilitate the 
decomposition of a service into autonomous entities communicating 
through specific interfaces. 

• Accessible: This means that the platform should be available in two 
respects: To end users, by means of various access networks, and to 
service providers (other than the network provider), by means of a 
standardised interface to the service platform. 

In the following sections, we will elaborate on these requirements. 

3.1 Openness 

An open service platform means a platform implemented using widely 
applied, standard, commercially available hardware and software 
components. There are a number of reasons why we consider this a 
requirement to the platform: 

• Applying widespread technology means that the number of alternative 
solutions to choose from is high, and that a suitable product in terms 
of cost and quality can be purchased. 

• Hiring qualified and skilled people to develop and maintain the service 
platform and the services is easier since more people can be assumed 
to have experience in the technologies applied. 

• Interfacing the platform to other entities such as additional access 
networks and services provided by external providers is easier. 

• Keeping up to date with the technological evolution is easier because 
new technology is likely to be based on the most promising and 
widespread existing technology. 

3.2 Reliability 

The platform should be fault tolerant, i.e. be able to recover from failures 
without performing incorrect actions. Recoverability means that failed 
components are able to restart themselves and rejoin the system after the 
cause of failure has been repaired. There are two related aspects of 
reliability: 

• Availability: The platform should provide high to continuous 
availability. This means that the platform should be able to resume 
providing services during recovery from failures. By minimising 



INexpensive Open Distributed Service Platform 111 

recovery time, the platform is capable of providing virtually 
uninterrupted service to its users . 

• Security: Security protects an information system from unauthorised 
attempts to access information or interfere with its operation [6]. 

Since the platform should be accessible by both subscribers and 
external service providers, a multitude of security issues should be 
investigated: 
- Identification and authentication of both humans and objects. 
- Authorisation and access control. 
- Confidentiality. 
- Security auditing. 
- Security of communication. 
- Accountability and Non-repudiation. 

Accountability and Non-repudiation are related terms. Users are 
accountable for their security-relevant actions. Non-repudiation provides 
irrefutable evidence of actions such as proof of origin of data to the 
recipient, or proof of receipt of data to the sender to protect against 
subsequent attempts to falsely deny the receiving or sending of the data. 

3.3 Distribution 

Distributed object technology is well-suited for creating flexible systems 
because the data and business logic are encapsulated within objects, allowing 
them to be located anywhere within the distributed system. This is beneficial 
in terms of providing a logical decomposition of the system into independent 
units with clear interfaces, but also because the logical separation of entities 
easily can be extended to a physical distribution as well, thereby facilitating 
replication and increased reliability. 

Another benefit of distribution is that scalability is supported since the 
system easily can be augmented with a number of additional components of 
a certain type. This of course assumes that there is a mechanism for 
distributing system load among numerous components of the same type. 

Distributed objects separate their interfaces from the implementation. 
They are able to describe their interfaces, events and properties "on the fly". 
The implementation language of server objects is transparent to clients, 
which enables the use of distributed objects as wrappers for existing 
applications regardless of implementation language. Existing IN services 
should therefore smoothly migrate to the new platform. 

The basic idea of the distributed object middle-ware architecture is the 
object bus, which e.g. in CORBA is the Object Request Broker (ORB) that 
lets objects interoperate across address spaces, languages, operating systems 
and networks. The bus provides mechanisms that let objects exchange meta-



112 Tor Martin Didriksen, Lars Sivert Sorumgard, Tor (l)ystein Moines 

data and discover each other. At the next level, the infrastructure augments 
the bus with system-level services including licensing, security, version 
control, persistence and transactions. Thus, many important low-level 
services, previously implemented by means of proprietary mechanisms, are 
now available as parts of off-the-shelf commercial middle-ware systems. 

3.4 Accessibility 

The experimental platform should provide a standard interface for access 
by External Service Providers (ESP). The Parlay Group (AT&T, BT, 
Cegetel, Cisco, Ericsson, IBM, Lucent, Microsoft, Nortel Networks, 
Siemens and Ulticom, Inc) focus on the production of an API specification 
that enables enterprises outside of the network domain to access network 
information and control a range of network capabilities. The published 
Parlay API has quickly gained popularity for this purpose, and is briefly 
described below. It should be noted that there are other alternatives to such 
an interface, however, we choose to base our discussion on Parlay. Figure 2 
shows where the Parlay API fits into the architecture. The figure and the 
description below are extracted from [10] . 

Enterprise Domain 

Service Components 

Physical Networks 

Network Operator's Domain 

Figure 2. Parlay API 

The Parlay API consists of two categories of interfaces: 
1. Service Interfaces. These offer applications access to a range of network 

capabilities and information. 
2. Framework Interfaces. These provide the supporting capabilities 

necessary for the Service Interfaces to be secure, resilient, located and 
managed. 



INexpensive Open Distributed Service Platform 113 

Examples of the supporting functionality provided via the framework 
interfaces are: Authentication, discovery, event notification, integrity 
management, and finally operation, administration and maintenance. 

Examples of service interfaces are: Generic call control service, !NAP [1] 

call control service, generic messaging service, generic user interaction 
service, and call user interaction service (voice prompt to user, DTMF input 
from user). 

A key to Parlay's success may be that the API is described using 
Microsoft and COREA IDL [9]. This means that the API fits nicely into the 
overall requirements to the architecture of the experimental platform since 
standard open technologies are applied. 

4. PLATFORM ARCHITECTURE 

Based on the requirements identified in the previous section, we have 
developed an experimental platform for development of telecommunication 
services. Figure 3 shows the experimental platform architecture. It 
interconnects through several interfaces to different kinds of access networks 
(currently SS#7, X.2S, TCIPIIP and CORBA). The platform is designed to 
be both scalable and fault tolerant. This chapter describes the platform 
architecture and the middle-ware software used to interconnect the 
components of the platform. 

EXTERNAL. 
CU ENT/SERVER 

Figure 3. Experimental IN service execution platform 



114 Tor Martin Didriksen, Lars Sivert Sorumgard, Tor @ystein Moines 

All items within the dashed line are part of the platform. Circles denote 
functional CORBA-aware units. Stacked symbols indicate replication, and 
replicas always run on separate physical hosts for fault tolerance and load 
sharing. 

4.1 Overview 

In Figure 3, gateways (GW) are generic (i.e. service independent) 
protocol converters, converting requests and responses to/from CORBA. 
Some of the gateways also have routing and firewall functionality, e.g. to 
overcome the Java "sandbox" limitations. The database is a standard SQL 
Server, but it is made fault tolerant by running it on an NT cluster. It is used 
by the services to store state between requests belonging to the same dialog. 
A fault tolerant name service uses "hot" replication based on group 
communication. Based on this platform we have implemented a variety of 
services, including: 

• Traditional IN services (miscellaneous forms of call routing) with web 
interfaces for customisation. 

• A service creation environment consisting of a generic set of building 
blocks for creating call centre solutions. 

• An electronic commerce service, with external interfaces for 
customers, merchants and banks. 

The functional units of the architecture of the platform are: 
• SCP: The SCP implements a generic script which simply passes INAP 

requests to the SS#7 gateway. This design allows new service 
deployment without SCP MIB programming. 

• SS#7 gateway: The CORBA-aware gateway converts SS#7 INAP 
requests to CORBA, analyses the message and hands it over to an 
instance of the appropriate replicated service objects. Upon reception 
of an answer from the servicing object, the reverse action is 
performed. Missing response from the requested object causes 
retransmission to another instance of the desired process, residing on 
another application server. 

• Middle-ware: COREA represents the platform middle-ware, i.e. the 
runtime environment or Object Transaction Manager (OTM) for our 
service implementation objects or components. 

• Application server: A service object implements service specific 
logic. This facilitates the introduction of new services by deploying 
new service objects on the application servers. 

• Database server: The internal database hosts data that needs to be 
stored during service execution, e.g. data about the state of service 



INexpensive Open Distributed Service Platform 115 

progress. It can also be used to host data for a service that runs solely 
on the experimental platform, and therefore has no external database. 
The current implementation relies upon a Microsoft SQL Server 7.0 
running on a fault tolerant NT Cluster. 

• Gateways: Gateways are developed on demand. Of particular interest 
are gateways to: 

The Internet. 
- Mobile terminals through W APIWML. 
- External service providers. 

• Fault tolerant naming service: The connections between Clients and 
Servers within the platform are permanent in order to avoid object 
binding for each service request. In the case of failure, some 
rebinding is required. The fault tolerant naming service enables 
rebinding of all connections upon failure detection instead of 
rebinding within a service request. This service is implemented by 
means of a replicated supervisor process. The supervisors implement 
the Replica Control Protocol [8] for group communication. 
- Servant Objects register to the replicated name service by 

providing kind (type) to identify redundant objects. 
- Clients request object kind in order to retrieve an lOR to any 

object of requested type, followed by an optional register interest 
message to the supervisor. Clients commit to reporting bad 
references to the name service, which in turn notifies all 
interested clients about the bad reference and provides a new 
lOR. 

4.2 Satisfaction of Platform Requirements 

Since we have already identified several requirements to a new platform 
for telecommunication services, it is of course relevant to discuss the 
proposed experimental platform according to these requirements. 

• Openness: The platform is based on CORBA, which is a commercially 
available system for communication in a distributed environment. A 
standard language is used for defining object interfaces. CORBA is 
language independent. 

• Reliability: CORBA provides mechanisms to handle application errors 
through e.g. distributed exception handling. Additional services to 
restart failing components may be implemented based on CORBA. 

A vallability: The fault tolerant naming service ensures that object 
references are valid, even in the case that the server fails. All 
servers are stateless. If a servant object needs to store state 
between invocations, it will use the (fault tolerant) database. Fault 



116 Tor Martin Didriksen, Lars Sivert Serumgard, Tor @ystein Moines 

tolerance will be easier to implement in the future as extended 
versions of CORBA will provide built-in support for this. 
Security: CORBA provides basic mechanisms for secure 
communication by means of Secure Sockets Layer (SSL). 
Additional CORBA security has been specified, but is not widely 
available yet. 

• Distribution: CORBA provides the necessary means to define clear 
interfaces in a programming language independent manner. Thus, 
components of various implementation languages may communicate. 
Components on different ORBs may communicate through the 
Internet Inter-Orb Protocol (HOP). Thus, physical distribution is well 
supported. 

• Accessibility: Gateways may be implemented to provide interfaces to 
additional access networks as well as external service providers. The 
versatility of CORBA makes it possible to implement the gateways 
in a number of languages. 

We feel that the last item concerning interfaces to the service platform is 
one of the most important aspects of a modem service platform. Thus, we 
discuss this topic further in the next section providing examples of how the 
travel agency service may be provided as an external service interfacing to 
the new service platform, and how the service may easily be extended to 
support additional access networks. 

s. EXTERNAL INTERFACES 

This section describes how adding various interfaces to the platform may 
extend the capabilities of the travel agency service introduced in Section 2. 

S.l Functional Extensions of the 'fA Service 

A possible extension to the service is to add capabilities for online 
payment processing. Thus, a customer can choose to register himself with 
the travel agency by providing information· about credit card numbers, bank 
accounts etc. This therefore becomes an extension to the previously existing 
customer profile. 

After the conversation with the agent is finished, the call can be 
transferred back to the T A service, and a payment dialogue can be initiated. 
This assumes that there is a connection between the travel agency computer 
and the service, to let the T A service be notified about the payment details. 
An architecture supporting this functionality is depicted in Figure 4. Here, 
the T A service provides more functionality than the service introduced in 



INexpensive Open Distributed Service Platform 117 

Section 2 since it also has to support processing of payment transactions and 
communication to external banking services etc. 

Figure 4. Extended functionality of the T A service 

PAYMENT 
PROCESSING 

Figure 5. ParlaylIIOP Interface to external service providers 



118 Tor Martin Didriksen, Lars Sivert Sorumgard, Tor @Ystein Moines 

5.2 External Service Provider 

The overall architecture for a service platform providing access to 
external service providers (ESP) is shown in Figure 5. The interface is built 
according to Parlay on top of CORBA, thus requiring a CORBA-enabled 
external platform. 

The Parlay interface allows service requests to be passed to the external 
service provider. Similarly, the ESP is able and allowed to perform PSTN 
switching. The entire T A service may in this way be developed and 
maintained by the ESP. In the architecture above, we assume that the 
payment processing is also an external service with a clear and secure 
interface to client services. The payment processing service, however, does 
not need to interact directly with the service platform, and may therefore 
communicate with the caller through the T A service. 

5.3 Gateways to Additional Access Networks 

If we concentrate on the upper half of the architecture in Figure 5, we 
will see how the service platform can be extended with gateways to 
additional access networks. The important point here is that the presentation 
layer is separated out and made part of the service platform, while the 
service itself, which is still provided externally, remains unchanged. This 
separation of the service into different layers is similar to the approach often 
used in traditional software development projects, where an application is 
divided into three tiers: User interface, business logic and database. 

To illustrate the addition of gateways to access networks, we can 
consider providing the service for Wireless Application Protocol (W AP) 
enabled mobile telephones. Adding a gateway to other networks such as the 
Internet would be quite similar. 

The functionality of the service remains basically the same. When using a 
W AP phone, the customer places a call to the toll free number, and is 
exposed to a menu presented textually on the telephone. An option is chosen, 
and the call is placed in a queue in the same way as for PSTN. Then, the 
connection can be terminated, and the customer can wait offline. When the 
call is ready to be serviced, the customer is notified through W AP 
notification, and may choose to answer or abandon the call. If answering, the 
conversation with the agent takes place, and finally the payment transaction 
can be carried out using textual menus displayed on the telephone rather than 
voice messages. An architectural design supporting this solution is depicted 
in Figure 6. 



INexpensive Open Distributed Service Platform 119 

Figure 6. W AP Interface to mobile users 

A web server is added to the service platform to run servlets providing 
the link between the W AP gateway and the CORBA objects of the service 
platform. The servlet generates output written in Wireless Markup Language 
(WML) which is eventually presented on the telephone. The W AP gateway 
is a protocol converter that converts W AP to HTTP. A firewall protects the 
service platform against unauthorised intrusion. 

6. CONCLUSION 

We have identified and argued that a new, experimental platform for the 
development of telecommunication services should be: Open, reliable, 
distributed and accessible. An experimental platform has been established 
according to these requirements, and initial experiences indicate that this is a 
step in the right direction. However, more experience is needed, particularly 
concerning security, before the platform can be used for supporting 
commercial services. 

We have been experimenting with various services to identify common 
functionality to be considered part of the platform, and have thus 
implemented a fault tolerant naming service to handle failure of CORBA 
objects. A related service could be implemented to support error detection 
and -handling to provide a more flexible, generic and component­
independent handling of failures. Report generation and logging could also 
be supported by this service. 

Current efforts are being made to investigate an extension of the platform 
to include additional access networks, in our case a mobile network carrying 



120 Tor Martin Didriksen, Lars Sivert S8rumgard, Tor @ystein Moines 

W AP. Our experiences so far are that the solution indicated using a servlet 
connection is flexible, simple and reliable. The hard part is to make the 
presentation layer generic to avoid tailor-made user interface components for 
each service. 

In parallel, we are experimenting with external services interfacing to the 
service platform using Parlay. For traditional PSTN-based services, Parlay 
appears to provide the necessary functionality for call control, switching etc. 
The weakness is the lack of support for including service-specific interfaces, 
which is quite cumbersome at the moment. 

Combining the two efforts, thus implementing an external service 
interfacing to a service platform providing access to multiple networks, 
revealed interesting problems. Parlay appears to be a rather cumbersome 
solution for services accessed by a network based on data traffic (i.e., not 
speech). In particular, online communication, which would be done through 
conversation using PSTN, is hard to achieve due to the missing support for 
service-specific interfaces in Parlay. 

REFERENCES 

[i] European Telecommunication Standards Institute, Network Aspects 6: Intelligent 
Networks, www.etsLfr, 1992 

[2] International Telecommunication Union - Standardization Section, Q.1200-series, 
Intelligent Network Recommendation, www.itu.ch. 1993 

[3] Telcordia (Bellcore), Advanced Intelligent Network Requirements, www.telcordia.com. 
1992 

[4] H. Zuidweg, P.Quentin, G. Reyniers, E. Devleeschouwer, B. Quirynen: A Distributed 
CORBA-Based IN Architecture, 4th International Conference in Networks, Bordeaux, 
November 25-28,1996 

[5] Kenneth P. Birman: "Building Secure and Reliable Network Applications". Manning 
Publications Co. Greenwich, CT, 1996. ISBN 1-884777-29-5 

[6] Object Management Group, 1996, "CORBA Security Service Specification". 
[7] Gray 1. and Reuter A.: "Transaction Processing: Concepts and Techniques". Morgan 

Kaufmann, 1992 
[8] AMR EL ABBADI, DALE SKEEN & FLAVIU CHRISTIAN, An Efficient, fault-tolerant protocol 

for replicated data management, ACM 0-89791-153-9/85/003/0215,1985 
[9] PARLAY Industry Working Group: CORBA IDL. httj>:lIparlay.msftlabs.coml 
[10] PARLAY Industry Working Group: Parlay White Paper. httj>:lIparlay.msftlabs.coml 


	INEXPENSIVE OPEN DISTRIBUTED SERVICEPLATFORM
	1. INTRODUCTION
	2. CASE STUDY: TRAVEL AGENCY (TA)
	2.1 Functional Properties of the Service
	2.2 Service Architecture

	3. EXPERIMENTAL PLATFORM REQUIREMENTS
	3.1 Openness
	3.2 Reliability
	3.3 Distribution
	3.4 Accessibility

	4. PLATFORM ARCHITECTURE
	4.1 Overview
	4.2 Satisfaction of Platform Requirements

	5. EXTERNAL INTERFACES
	5.1 
Functional Extensions of the 'fA Service
	5.2 External Service Provider
	5.3 Gateways to Additional Access Networks

	6. CONCLUSION
	REFERENCES




